

Measurements of very-forward energy with the CASTOR calorimeter of CMS

Sebastian Baur for the CMS Collaboration

Detector overview and physics motivation

Overview

CMS has an excellent calorimetric instrumentation in the forward region with CASTOR as a unique instrument

CASTOR in CMS

- Tungsten-Quartz sampling calorimeter •
- Acceptance of $-6.6 < \eta < -5.2$
- Segmentation in φ and z
- Separated electromagnetic and • hadronic sections with depth of 20 X_0 / 10 λ_{int}
- Energy scale known to ±15% •

Forward physics with CASTOR

- Highest energy densities dominated by soft interactions
- Probe underlying event and especially Multiparton Interactions (MPI)

Forward physics with CASTOR

- Highest energy densities \rightarrow relevant for air shower development
- Probe models for cosmic-ray air showers

Forward physics with CASTOR

- Highest energy densities \rightarrow relevant for air shower development
- Probe models for cosmic-ray air showers
- Example: elasticity in Sibyll 2.1

Highlighted results with CASTOR

LHC Run 1: 900 GeV \rightarrow 7 TeV

- "Study of the underlying event at forward rapidity" [JHEP 04 (2013) 072]
- Study of the CASTOR energy density
 - → as function of leading jet $p_{\rm T}(|\eta| < 2)$ at central acceptance
 - $\rightarrow\,$ relative to the inclusive energy density
 - \rightarrow as function of \sqrt{s}
- Mostly pre-LHC models used

[JHEP 04 (2013) 072] $(dE^{hard}/d\eta)/(dE^{incl}/d\eta)$ CMS -6.6 < η < -5.2 \sqrt{s} = 0.9 TeV √s = 2.76 TeV **√**s = 7 TeV 1.8 Leading charged jet $|\eta^{jet}| < 2$ Data 6 THIA6 D6T PYTHIA6 Z2* PYTHIA6 Z2* no MPI PYTHIA8 4C HERWIG++ 2.5 0.8 0.6 MC/data 1. 0. **0.8** 15 20 10 15 20 10 15 20 25 5 10 5 5 Leading charged jet p_ (GeV/c) decrease with increase with collision scale collision scale remnant MPI fragmentation

[JHEP 04 (2013) 072] $(dE^{hard}/d\eta)/(dE^{incl}/d\eta)$ CMS -6.6 < η < -5.2 \sqrt{s} = 0.9 TeV √s = 2.76 TeV **√**s = 7 TeV 1.8 Leading charged jet $|\eta^{jet}| < 2$ Data EPOS 1.99 QGSJETII-03 SIBYLL 2.1 CASCADE 2 DIPSY 0.8 0.6 MC/data 0.9 0.8 5 10 15 20 15 20 10 15 20 25 5 10 5 Leading charged jet p_ (GeV/c) decrease with increase with collision scale collision scale remnant MPI fragmentation

Evolution is

- Well matched by (LHC tuned) PYTHIA 6/8
- Underestimated by QGSJetII.03
- Overestimated by Sibyll 2.1 and EPOS 1.99

Compared to updated models (using Rivet plugin CMS_2013_11218372):

- No significant changes from EPOS 1.99 to EPOS LHC
- Better description by new versions
 - QGSJetII.04 and
 - Sibyll 2.3

LHC Run 2: 13 TeV pp

- Strong combined effort in CMS to exploit early 13 TeV low pileup data
- Number of MinimumBias analyses with consistent event selections and particle level definitions

$$\xi_{\rm X} = \frac{M_{\rm X}^2}{s}$$
, $\xi_{\rm Y} = \frac{M_{\rm Y}^2}{s}$ and $\xi = \max(\xi_{\rm X}, \xi_{\rm Y})$
HF OR
 $\xi > 10^{-6}$

Measurement of forward $dE/d\eta$

Average energy density per pseudorapidity: → CMS-PAS-FSQ-15-006, CERN CDS 2146007

Combining HF and CASTOR acceptances $\rightarrow 3.15 < |\eta| < 6.6$

Measurement of forward $dE/d\eta$

[CMS-PAS-FSQ-15-006]

Measurement of $dE/d\eta$

- Predictions are generally a bit too high
- PYTHIA8 Monash, EPOS LHC, QGSJetII.04: comparable results
- CUETP8M1 and CUETP8S1 differ in PDF choice
 - \rightarrow spread is larger than tuning uncertainties

[CMS-PAS-FSQ-15-006]

Measurement of energy spectra $d\sigma/dE$

- Total energy: Sum all calorimeter towers above noise threshold
- Signal in the first two modules of CASTOR is sensitive to the electromagnetic component
- Back part measures the hadronic contribution

Measurement of energy spectra $d\sigma/dE$

• Strong sensitivity for MPI modeling in PYTHIA 8

Total energy (GeV)

- Strong constraints for cosmic-ray models, generally good performance
- Low energy distribution sensitive to diffraction and collision elasticity

Total energy (GeV)

EPOS / QGSJetII / Sibyll 2.1 ↔ Sibyll 2.3

20

Measurement of energy spectra $d\sigma/dE$

[JHEP 08 (2017) 046]

CMS

Measurement of energy spectra $d\sigma/dE$

[JHEP 08 (2017) 046]

- Electromagnetic energy in general very well described; Sibyll 2.3 has significantly less e.m. energy than Sibyll 2.1 and as data
- Hadronic energy: All models are on the upper edge of the uncertainties
- No room to boost muon production

S. Baur – Measurements of very-forward energy with the CASTOR calorimeter of CMS International Symposium on Very High Energy Cosmic Ray Interactions, Nagoya, Japan, May 2018

Summary

- CMS has a unique and well understood forward instrumentation
- Especially CASTOR provided some very interesting set of measurements:
- → Relative energy density as function of central jet $p_{_{\rm T}}$
 - \rightarrow probe UE strength at different center-of-mass energies
 - \rightarrow transition between remnant fragmentation and MPI dominated regime
- → Forward energy density in $3.15 < |\eta| < 6.6$
 - → Already good agreement found
 - \rightarrow sensitive to MPI tunes and PDF
- → Inclusive energy spectra in CASTOR acceptance
 - \rightarrow Relevant for MPI modeling and air-shower predictions
 - → Sensitive to diffraction,
 - → First em/had separation with CASTOR

[JHEP 04 (2013) 072]

[CMS-PAS-FSQ-15-006]

[JHEP 08 (2017) 046]

Backup

HF calorimeters

- iron wedges and quartz fibers,
- 13 segments in η : 3.152 < $|\eta|$ < 5.205
- at both sides of CMS: HF- and HF+
- Energy scale known to ±10%

HF (Hadron Forward)

Calibration of CASTOR

- Challenging calibration procedure due to exposed position
- Data-driven absolute calibration based on HF scale with independent dataset
- Channel-wise intercalibration with beam halo muons (dedicated trigger)

CASTOR energy scale uncertainty

- Systematic uncertainty of the energy scale:
 - \rightarrow HF calibration: 10%
 - \rightarrow model & extrapolation uncertainty: 10%
 - \rightarrow non-compensation: 5%
 - \rightarrow position uncertainty: 7%
 - → total: 17%

Alignment is done with infrared sensors with respect to the beampipe with precision of ~2mm

Energy reconstruction in CASTOR

- Energy resolution and calibration affected by non-compensation
- Large MonteCarlo corrections needed

