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pp(s) ∝ ln2 s

⇒ multiple jet production required

= multiparton interactions (MPIs)
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NB: inclusive jet cross section – unmodified by such MPIs

e.g., summary contribution of the 3 processes:
2∗ (+2)+1∗ (−4)+0∗ (+1) = 0

⇒ collinear factorization holds:
dσ

jet
pp

dp2
t
= ∑I,J fI ⊗ dσ2→2

IJ

dp2
t

⊗ fJ



Main message: to reduce σtot
pp, enhance MPIs

Simpliest way to regulate the rise of σtot
pp : denser parton ’packing’

larger proton size
⇒ larger σtot

pp

smaller parton density
⇒ smaller MPI rate

smaller proton size
⇒ smaller σtot

pp

larger parton density
⇒ larger MPI rate



Main message: to reduce σtot
pp, enhance MPIs

Simpliest way to regulate the rise of σtot
pp : denser parton ’packing’

larger proton size
⇒ larger σtot

pp

smaller parton density
⇒ smaller MPI rate

smaller proton size
⇒ smaller σtot

pp

larger parton density
⇒ larger MPI rate

Unfortunately, not a solution:
proton size is constrained by data on Bel

pp(s) ∝ 〈b2(s)〉
more generally, dσel

pp/dt is related to the transverse profile of
the proton (thanks to data of TOTEM & ATLAS ALFA)
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Next possibility: color fluctuations in the proton

p     = + + ...

Generally, proton is a superposition of different parton Fock
states (of different size & parton density): |p〉= ∑i

√
Ci |i〉

larger size states dominate σtot
pp

small size states contribute sizably to MPIs
(e.g., double parton scattering ∝ density squared)

⇒ larger dispersion between the Fock states would reduce σtot
pp

for the same σ
jet
pp

but: would yield a high cross section for low mass diffraction

NB: σ
SD(LM)
pp – constrained by TOTEM & LHCf data
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What is wrong with the uncorrelated parton picture?

double (multiple) hard scattering results
from independent cascades

⇒ mostly in central collisions

How multiparton correlations help?

one has to create parton ’clumps’ to
enhance peripheral multiple scattering
(without changing the transverse profile)

can be done via ’soft’ & ’hard’ parton
splitting mechanisms

’soft parton splitting’ naturally emerges in enhanced Pomeron
framework in QGSJET-II [SO, 2006, 2011]
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QGSJET-II: interactions between parton cascades

’General Pomerons’ contain both soft & hard processes
(’semihard Pomeron’ approach) [Drescher et al., 2001]

soft Pomerons to describe soft (parts of) cascades (p2
t < Q2

0)

⇒ transverse expansion governed by (small) Pomeron slope

DGLAP for hard cascades

= +

soft Pomeron

QCD ladder

soft Pomeron

Pomeron-Pomeron interaction: a closer look

basic assumption: multi-P
vertices – dominated by soft
(|q2|< Q2

0) parton processes

+ ...= +



Taking into account interactions between parton cascades
substantially reduces the impact of jet production on σtot

pp

e.g., a reasonable fit of σtot
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was obtained for a low cutoff
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from particle production:
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1st explanation: rescattering of intermediate partons
reduces effective parton density

For independent parton cascades, one uses universal PDFs (GPDs)

those contain rescattering of intermediate
partons off the parent hadron only
(hidden in the ’blob’)
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1st explanation: rescattering of intermediate partons
reduces effective parton density

For independent parton cascades, one uses universal PDFs (GPDs)

those contain rescattering of intermediate
partons off the parent hadron only
(hidden in the ’blob’)

p

(x, Q  )2

In enhanced framework, parton density is influenced by the collision

intermediate partons scatter off the
partner proton in addition

this dynalically reduces the effective
parton density for an exclusive process
(stronger effect for higher s, smaller b)

p

p
...

(x, Q  )2



2nd explanation: ’clumping’ due to ’soft parton splitting’

E.g., double dijet production from soft Pomeron splitting

(+1)(−4)(+2)
small slope for soft Pomeron ⇒ two hard processes are
closeby in b-space

≡ having a parton ’clump’ in the target proton

⇒ enhanced MPI rate in peripheral collisions
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2nd explanation: ’clumping’ due to ’soft parton splitting’

E.g., double dijet production from soft Pomeron splitting

(+1)(−4)(+2)
small slope for soft Pomeron ⇒ two hard processes are
closeby in b-space

≡ having a parton ’clump’ in the target proton

⇒ enhanced MPI rate in peripheral collisions

adding two other contributions ⇒ negative correction to σtot
pp

NB: no impact on inclusive jet cross section
[2∗ (+2)+1∗ (−4)+0∗ (+1) = 0]

Generic property: thanks to AGK cancellations, collinear
factorization holds for inclusive jet cross section

dσ
jet
pp

dp2
t

= ∑
I,J

fI ⊗
dσ2→2

IJ

dp2
t

⊗ fJ



General major problem with hadron multiplicity rise

Applies to any model which respects collinear factorization
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Applies to any model which respects collinear factorization

σ
jet
pp(s,Q0) ∝ 1

Q2
0

s∆eff , ∆eff ≃ 0.3

⇒ dNch/dη|η=0 ∝ 1/Q2
0 × s∆eff , s → ∞

LHC data indicate: dNch/dη|η=0 ∝ s0.2

moreover, the normalization depends on the chosen pt-cutoff

in QGSJET-II-04, a rather large value (3 GeV2) is used

with the factorization scale M2
F = p2

t /4, yields pcut
t ≃ 3.4 GeV

ideally, pt-cutoff should be just a technical parameter,
without a strong impact on the results

⇒ some important perturbative mechanism seems missing

In many MC models: energy-dependent pt-cutoff, pcut
t = pcut

t (s)

rather, an ad hoc recipie

usually advocated as a parton saturation effect

however: parton saturation is ’hidden’ in PDFs

⇒ no freedom: PDFs are measured in DIS experiments

also: saturation shouldn’t be relevant to peripheral collisions

wanted: a perturbative mechanism to suppress low pt jet
production, without a strong impact on PDFs
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generally can’t be treated probabilistically

⇒ brave (wild?) assumptions may be needed
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Dynamical higher twist corrections: brave assumptions

Basic assumptions (qq′-scattering as an example)

restrict oneself with rescattering
on soft (xg ≃ 0) gluons

neglect color octet contributions

interprete the respective
correlators as GPDs

H

More technical (model implementation)

describe low x GPDs by Pomeron asymptotics

account for multiparton correlations due to the “soft
splitting” mechanism

account for absorptive corrections to GPDs due to enhanced
Pomeron diagrams

i.e., incorporate the mechanism in the Pomeron framework

NB: AGK rules not applicable for HT contributions
(e.g., no corrections to diffraction)



Dynamical higher twist corrections: hevristic reasoning

Consider as an example corrections to qq′ scattering in LC gauge

Twist 4 contribution to the cross section:

∆σHT(s) =
1

2s

∫
d4kq

(2π)4

d4kq′

(2π)4

d4kg1

(2π)4

d4kg2

(2π)4
H

αβ
ijkl(kq,kq′ ,kg1

,kg2
)

×
[∫

d4zqd4zg1
d4zg2

eikqzq+ikg1
zg1

−ikg2
zg2 〈p|ψ̄j(0)Aα(zg2

)Aβ(zg1
)ψi(zq)|p〉

]

×
[∫

d4zq′ e
ikq′ zq′ 〈p|ψ̄l(0)ψk(zq′)|p〉

]

H
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)ψi(zq)|p〉

]

×
[∫

d4zq′ e
ikq′ zq′ 〈p|ψ̄l(0)ψk(zq′)|p〉

]

doing collinear factorization, one
obtains [Ellis et al., 1982; Qiu, 1990]

∆σHT(s) =
∫

dxq′ dxq dxg1
dxg2

× q(xq′) Tqg(xq,xg1
,xg2

)

× 1

2s
d⊥

αβ Tr[p̂′ Hαβ(xq,xq′ ,xg1
,xg2

) p̂]

H
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here the quark-gluon correlation function:

Tqg(xq,xg1
,xg2

) =
1

xg1
xg2

∫
dy−q
4π

dy−g1

2π

dy−g2

2π

×e
ip+xqy−q +ip+xg1

y−g1
−ip+xg2

y−g2 〈p|ψ̄(0)γ+ F+α(y
−
g2
)F+

α (y
−
g1
)ψ(y−q )|p〉
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Consider as an example corrections to qq′ scattering in LC gauge

∆σHT(s) =
∫

dxq′ dxq dxg1
dxg2

× q(xq′) Tqg(xq,xg1
,xg2

)

× 1

2s
d⊥

αβ Tr[p̂′ Hαβ(xq,xq′ ,xg1
,xg2

) p̂]

H

here the quark-gluon correlation function:

Tqg(xq,xg1
,xg2

) =
1

xg1
xg2

∫
dy−q
4π

dy−g1

2π

dy−g2

2π

×e
ip+xqy−q +ip+xg1

y−g1
−ip+xg2

y−g2 〈p|ψ̄(0)γ+ F+α(y
−
g2
)F+

α (y
−
g1
)ψ(y−q )|p〉

now: assume the integrals to be dominated by xg1
,xg2

≃ 0

e.g., converting 1/xgi
into poles & doing residies

[Guo & Qiu, 2001]
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QGSJET-III-01: preliminary results

Currently, implementation of the HT-effects is the main
difference to QGSJET-II-04

now twice smaller cutoff for hard processes: Q2
0 = 1.5 GeV2

(⇒ pcut
t ≃ 2.4 GeV)

additionally, I enhanced the rate of high mass diffraction by
∼ 30% and reduced low mass diffraction

what about using even a smaller cutoff?

generally possible but would require higher order corrections
(multiple exchanges of soft gluons)

⇒ additional assumptions
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√
s-dependence of σ

tot/el
pp : different effects

the main effect on σ
tot/el
pp is

due to enhanced diagrams
(already in QGSJET-II)

higher twist effects:
additional correction
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√
s-dependence of dNch/dη & dNch/dpt

soft production: mostly affected by enhanced diagrams
(shadowing & saturation of soft (pt < pcut

t ) parton cascades)

reduction of jet production (pt > pcut
t ) by HT effects: ≃ 25%

the effect fades away at high pt (∝ 1/|q|2)
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Current parameter tune may not be the optimal one

here tried to minimize HT-effects & maximize HM-diffraction
(in view of CMS & ATLAS data)

⇒ strong effects due to enhanced graphs
(higher PPP-coupling)

alternative: stronger HT-effects & weaker HM-diffraction
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improvement of forward production, e.g., RRP-contribution
(mainly pion exchange) desirable (in view of LHCf data)

model calibrated to the same data set as QGSJET-II-04

⇒ similar results expected

E.g., ≃ 5 g/cm2 shift of Xmax – mostly due to higher diffraction

not sure about it because of
the CMS-TOTEM tension:

TOTEM CMS
MX range, GeV 7−350 12−394

σSD
pp (∆MX), mb ≃ 3.3 4.3±0.6

dσSD
pp

dygap
, mb 0.42 0.62
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Outlook

1 Treatment of nonlinear effects due to enhanced Pomeron
graphs remains the key element of the model

with 2 adjustable parameters, provides a very rich formalism

plays central role for timing the energy-rise of cross sections &
soft hadron production

2 Treatment of higher twist effects – a useful complement

with 1 additional adjustable parameter, provides a dynamical
scheme which mimics energy-dependent pt-cutoff

offers additional flexibility for the model tuning

however, not a perturbative approach:
involves numerous phenomenological assumptions

⇒ independent cross checks & calibration desirable

3 More technical improvements, notably, concerning forward
production are required for more reliable EAS predictions



Outlook

1 Treatment of nonlinear effects due to enhanced Pomeron
graphs remains the key element of the model

with 2 adjustable parameters, provides a very rich formalism

plays central role for timing the energy-rise of cross sections &
soft hadron production

2 Treatment of higher twist effects – a useful complement

with 1 additional adjustable parameter, provides a dynamical
scheme which mimics energy-dependent pt-cutoff

offers additional flexibility for the model tuning

however, not a perturbative approach:
involves numerous phenomenological assumptions

⇒ independent cross checks & calibration desirable

3 More technical improvements, notably, concerning forward
production are required for more reliable EAS predictions



Outlook

1 Treatment of nonlinear effects due to enhanced Pomeron
graphs remains the key element of the model

with 2 adjustable parameters, provides a very rich formalism

plays central role for timing the energy-rise of cross sections &
soft hadron production

2 Treatment of higher twist effects – a useful complement

with 1 additional adjustable parameter, provides a dynamical
scheme which mimics energy-dependent pt-cutoff

offers additional flexibility for the model tuning

however, not a perturbative approach:
involves numerous phenomenological assumptions

⇒ independent cross checks & calibration desirable

3 More technical improvements, notably, concerning forward
production are required for more reliable EAS predictions


