Elemental Abundances of Ultra-Heavy GCRs measured with the SuperTIGER Instrument

Kenichi Sakai NASA/GSFC/CRESST/UMBC

For the SuperTIGER collaboration

20th International Symposium on Very High Energy Cosmic Ray Interactions

ISVHECRI2018

21-25 May, 2018 Nagoya University, Nagoya, JAPAN W.R. BINNS², R.G. BOSE², T.J. BRANDT¹, D.L. BRAUN², W.M. DANIELS¹,
P.F. DOWKONTT², S.P. FITZSIMMONS¹, D.J. HAHNE¹,T. HAMS^{1,6}, M.H. ISRAEL²,
J. KLEMIC³, A.W. LABRADOR³, J.T. LINK^{1,6}, R.A. MEWALDT³, J.W. MITCHELL¹,
P. MOORE², R.P. MURPHY², M.A. OLEVITCH², B.F. RAUCH², K. SAKAI^{1,6},
F. SAN SEBASTIAN¹, M. SASAKI^{1,6}, G.E. SIMBURGER², E.C. STONE³,
C.J. WADDINGTON⁴, J.E. WARD^{2,*}, AND M.E. WIEDENBECK⁵

¹ NASA/Goddard Space Flight Center, Greenbelt, MD 20771 USA

- ² Washington University in St. Louis, St. Louis, MO 63130 USA
- ³ California Institute of Technology, Pasadena, CA 91125 USA
- ⁴ University of Minnesota, Minneapolis, MN 55455 USA
- ⁵ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
- ⁶ Center for Research and Exploration in Space Science and Technology (CRESST)

2 Elemental Abundances in GCRs

- Elements in the upper 2/3rds of the periodic table, are extremely rare compared to lighter elements.
- The heavy component contains unique information not obtainable from light cosmic rays.
- UH Measurement requires large instruments at the top of the atmosphere or in space for long exposure time.

3 Charge histograms from TIGER

Trans-Iron Galactic Element Recorder (TIGER)

- Combined dataset from 50 days of flight over Antarctica in 2001-2002 and 2003-2004.
- Well defined peaks at ₃₁Ga, ₃₂Ge, ₃₄Se

• limited statistics at higher Z

4 GCRS fractionation from TIGER & HEAO data

Meyer, Drury & Ellison ApJ. 487 182 (1997)

Preferential acceleration of dust (refractory) and mass-dependence of acceleration of cold ISM gas (volatiles).

Taking abundances relative to a 20%-80% mix of massive star material (wind outflow plus SN ejecta) and normal ISM organizes data much better than when taken relative to SS abundances.

SuperTIGER-I

2012/2013 LDB flight

5 SuperTIGER-I Science Objectives

○ Primary objectives

- Measure composition of cosmic rays 26 ≤ Z ≤ 40 with good statistics and individual-element resolution
- Test of OB-association source model for galactic cosmic rays.
- Test of mass dependence of acceleration.
- Secondary objectives
 - Energy spectra of elements 10 ≤ Z ≤ 28 0.8-10 GeV/nuc.
 - Search for evidence of nearby microquasars.

OB Association 30 Doradus in LMC **Credit:** NASA, ESA, F. Paresce (INAF-IASF), R. O'Connell (U. Virginia), & the HST WFC3HST Science Oversight Committee

N44 Superbubble in LMC Diameter ~100pc Credit: Gemini Obs, AURA, NSF

6 Instrument

- Acceptance ~8.3 m²sr
- \odot 2 nearly identical modules, each module consists of
 - 2 scintillating fiber hodoscopes (H1, H2)
 - 3 Layers of scintillator detectors (S1, S2, S3)
 - Aerogel Cherenkov detector (C0, n=1.043, 1.025)
 - Acrylic Cherenkov detector (C1, n=1.49)

7 Measurement Technique

8 Flight Status

SuperTIGER flight was carried out over Antarctica.

- SuperTIGER flew for 55 days, 1 hour, and 34 minutes December 9, 2012-February 2, 2013 (NZ)
- Collected over 50 million cosmic-ray events (~44 total days of data, 82% high-priority telemetry)
- SuperTIGER Recovery was carried out in the 2014/2015 Austral Summer.

9 Charge Determination

10 Resolution for $Z \le 30$

11 Charge histograms for $30 \le Z \le 40$ nuclei

- First high statistics measurement of abundances of all elements with 30 ≤ Z ≤ 40
- Complementary to ACE measurement taken in space, but ACE has lower numbers of events

12 Air correction & Propagation to source

- TOI → TOA: Atmospheric correction of 4.4 g/cm² (36.6~39.6km) includes both the fraction of particles interacting (~36% for ³⁴Se) and secondary production.
- TOA → Local interstellar: Solar modulation: Fisk model with a modulation parameter = 543 MV and a typical Top-of-Atmosphere energy of ~3.1 GeV/n.
- Local interstellar → Source: Leaky box propagation model (Wiedenbeck et al. 2007), which uses cross sections from Webber et al. (1990) and Silberberg et al. (1998).

13 GCRS fractionation from SuperTIGER-I

GCRS/SS

R. P. Murphy et al. ApJ. 831 148 (2016)

Ratio of GCRS abundances to SS abundances (Lodders 2003) vs. atomic mass (A).

The reference abundances to which GCRS abundances are compared to a mixture of 81% SS abundances (Lodders 2003) and 19% MSO (Woosley & Heger 2007).

SuperTIGER-II

2017/2018 LDB Campaign

14 SuperTIGER-II Science Objectives

○ Primary objectives

- Measure composition of cosmic rays 26 ≤ Z ≤ 40 with good statistics and individual-element resolution (It's hard to define the peaks for Z > 40 due to limited statistics).
 SuperTIGER-I
- Measure composition of cosmic rays 26 ≤ Z ≤ 40 with improved statistics and expand our measurements in the 40 ≤ Z ≤ 56 range
- Test whether nuclei in the Z=50's charge range are produced and accelerated by the same sources as those in the Z ≤ 40 range

⁵²Te, ₅₄Xe and ₅₆Ba detected by SuperTIGER (44 days+60 days)

15 From ST-I Recovery to ST-II Flight Ready

2014/2015 Recovery

2017 Flight Ready

2016/2017 Refurbish

16 16 Launch attempts of SuperTIGER-II in 2017/2018

Showing 1st Dec09, 2017, 10:00:00 Showing 2nd Dec14, 2017, 18:00:00 Showing 3rd Dec17, 2017, 18:00:00 Showing 4th Dec18, 2017, 18:00:00 Dec 21, 2017, 16:00:00 Showing 5th Showing 6th Dec24, 2017, 18:00:00 Showing 7th Dec25, 2017, 23:00:00 Showing 8th Dec29, 2017, 07:00:00 Showing 9th Jan02, 2018, 04:00:00 Jan02, 2018, 19:00:00 Showing 10th Jan03, 2018, 16:00:00 Showing 11th Showing 12th Jan07, 2018, 04:00:00 Breaking McMurdo record of the most showings (GRIPS's record: 11 showings) Jan08, 2018, 04:00:00 Showing 13th Jan10, 2018, 16:00:00 Showing 14th Showing 15th Jan11, 2018, 10:00:00 Showing 16th Jan14, 2018, 16:00:00

2018/2019 LDB flight

Jan15, 2018, 12:22:00 – Campaign Termination

17 Heavy r-process elements in binary neutron star mergers

Binary neutron star mergers (BNSM) Credit: LIGO Caltech

- Analysis of light curves from GW170817 suggests ultra-heavy elements like gold and platinum are produced in the kilonova from the binary neutron star merger.
 - Light r-process elements: $28 \le Z \le 58$
 - Heavy r-process elements: $58 \le Z \le 90$

D Kasen et al. Nature 551, 80–84 (2017)

18 Source of heavy r-process nuclei: SNe VS BNSM

- Recent measurement of ₆₀Fe (radioactive with half-life 2.6 Myr) by the ACE-CRIS experiment is the first conclusive evidence that there is a recently synthesized component in the cosmic rays
- The 60 Fe almost certainly comes from SNe from nearby Sco-Cen OB associations

W. R. Binns et al., Science 10.1126 (2016)

- If SNe synthesize and accelerate all of the r-process nuclei
 - expect to see significant numbers of the short lived ₉₄Pu and ₉₆Cm
- If binary neutron star mergers (BNSM) are the source of the heavy r-process nuclei
 - expect to see little or no ₉₄Pu and ₉₆Cm since BNSM in the vicinity of the solar system are much less frequent than SNe and the short lived ₉₄Pu and ₉₆Cm should have mostly decayed

HNX Mission

Space based experiment (proposed)

19 HNX Science Objectives

○ Primary objectives

- Measure composition of cosmic rays 26 ≤ Z ≤ 56 with good statistics and individual-element resolution (Charge resolution of Z > 56 is reduced due to scintillator saturation).
 SuperTIGER-II
- Measure composition of cosmic rays
 6 ≤ Z ≤ 96 with ECCO (21 m² of Barium Phosphate glass) and CosmicTIGER (2 m² Silicon and Cherenkov Detectors) on DragonLab Capsule
- Because actinides (89 ≤ Z ≤ 103) are clocks that measure absolute age of the UHGCR, HNX will determine whether UHGCRs are accelerated from newly synthesized or old material.

CERN SPS Test (Pb beam, Nov 2016) 20

10⁴ Peak (Pb): 81.9 Sigma (Pb): 0.19 10³ 10² A/Z = 2.2A/Z =2.0 A/Z =2. 10 10 30 50 20 40 60 70 80

Combined 2 HNX Silicon Strip Detectors (Ohmic Side)

- The 500 µm thick, single-sided prototype silicon detectors have 32 DC-coupled strips with 3 mm pitch on the junction side with an approximate $10 \times 10 \text{ cm}^2$ active area.
- The prototype SSD can measure nuclei from carbon through lead with superb charge resolution, σ_z < 0.2 at Z = 82 in CERN Pb beam test.

21 Summary

○ SuperTIGER-I

- The first flight of SuperTIGER in December, 2012 was highly successful
- 55 day flight duration: Breaking the record for the longest flight by a balloon of its size
- Measured the elemental abundances of GCR from ₂₆Fe to ₄₀Zr
- The results support a model of cosmic-ray origin in OB associations, with a source mixture of 19% MSM and 81% normal ISM material with solar system abundances (Based on the models of Woosley & Heger 2007 and Lodders 2003)

R. P. Murphy et al. ApJ. 831 148 (2016)

○ SuperTIGER-II (expand measurements in the $40 \le Z \le 56$)

- The second flight of SuperTIGER in December, 2017 was cancelled due to bad weather
- **16 flight** attempts: Breaking McMurdo record of the most showings
- Next LDB flight in 2018

\bigcirc HNX (for measurements in the $6 \le Z \le 96$)

• The silicon strip detector was tested with CERN SPS beam