Applied Cosmic ray physics

for Earth planetary science and hazard prevention

Akimichi Taketa

CHEER, ERI, University of Tokyo Earthquake Research Institute

Center for High Energy gEophysics Resarch

In the 1990s...

- Q What is your research useful for?
- A1 It's not useful for you...
 (honest person's answer)
- A2 It would be useful in the future (your answer)

In the 2010s...

As you know...

Cosmic ray is useful!

Volcanology using hard component

- Earth tomography using very hard component (absorption/oscillation)
- Seismic fault zone tomography using using hard component
- Planetary science (pion and hard component)
- Civil engineering

Hydrology using soft and hard component

2018/5/25 ISVECRI 2018

I appreciate your work, especially

- Hadronic interaction model development
 - Hydrology using EM component
 - AS production
 - Muon tomography
 - Background estimation
 - Neutrino tomography
 - Atmospheric neutrino production
 - Inelastic cross section
- Primary cosmic ray spectrum measurement
 - Signal to noise ratio
 - Pion tomography of the astronomical body

MC simulation of volcano (2km w.eq.)

At low momentum (< 1 GeV), background particles dominate

Observed proton flux by Emulsion chamber

Observed proton-like flux was agreed within systematic uncertainty (50%)

If we have accurate and reliable MC, we can subtract BG flux from data, and BG contaminated data become available!

Principle of our PID method

- Scattering and dE/dX
 - Not absorption
 - For mobility
- Muon : Linear track
- Electron : Polygonal track
- Proton : large dE/dX

- Scintillator + WLSF + MPPC (MINERvA etc)
- Multi wire proportional chamber (ATLAS etc)
- Emulsion chamber (OPERA etc)

2018/5/25

ISVECRI 2018

Is it useful for cosmic ray physics?

- Basically yes, but…
 - Emulsion chamber and MWPC do not have good timing resolution
 - nano second is not possible
 - Scintillator based tracker can be used but…
 - Very expensive for Air shower array
 - Cannot treat multiple particle
- We are developing the next generation particle tracker for applied CR physics
 - Portable
 - Cost effective
 - Low power consumption

Basic design

- Triangular scintillator bar + WLSF + MPPC/SiPM + thin absorber
 - Good position/timing resolution
 - Solid type detector
- FADC + TDC readout
 - Both ends readout
 - Good timing resolution
- Discriminate muon and other particles using scattering
 - Need careful detector parameter optimization
- Key points
 - Reducing number of channels
 - Reducing the power consumption
 - Easy manufacturing/maintainance

How does it work?

- Position resolution < d_f
 - Output charge is proportional to track length in sci.
 - ullet $Q_{A} \propto l_{A}$, $Q_{B} \propto l_{B}$
 - $X_T = (X_A Q_A + X_B Q_B)/(Q_A + Q_B)$
 - TOF can be used
 - Cross calibration
 - 2mm resolution $@d_f = h_s = 1.7cm$
- Particle ID
 - Scattered particle
 - \rightarrow electron / low momentum
 - High $dE/dX \rightarrow proton or nuclei$
 - Slow particle → proton or nuclei
- Particle direction
 - Using TOF information

Applications of new detector

- Muography on ground(of course)
- Muography from borehole
 - Seismic fault zone
- Cosmic Electron radiography
 - Hydrological observation
 - Hybrid radiography by EM+muon for buildings
- Air Shower Array
 - Muon / EM ratio
 - Mass composition
 - Cross section (first interaction point)

Questions (Motivations)

- Is electron Xmax distribution measurement by FT enough for mass composition measurement?
 - Hadronic interaction models are agreed well, but there is still some discrepancy
 - Is systematic uncertainty of each interaction model small enough?
 - Why don't we add additional physical quantities? (like NICHE)
 - Confirmation using different method is always very important
- ◆ Energy discrepancy between ASA and FT is ~ 30%
 - From muon excess ?
 - Can we neglect it ?
 - Of course FT is more reliable way to measure the energy
 - Is air shower phenomenology understood completely?
- Can we detect GZK gamma rays (if it exist) ?

Air Shower Tracker Array

- Target energy range : 10PeV 10EeV
 - 10km² array
 - 2000-4000 a.s.l
 - 250-1000 m detector spacing
- Hybrid experiment using single type detector
 - Lateral distribution of muon and EM
 - Muon excess problem
 - Muon arrival direction
 - Better angular resolution
 - Muons come from shower axis
 - Hadron Xmax and cross section
 - Highest energy gamma ray search

Conclusion and TODO

- Detailed measurement of air shower particle should be important
 - to deepen our understanding of cosmic ray physics
- The detector for geophysics can contribute to cosmic ray physics
 - reimportation
- Cost estimation
 - less than 3M\$ for 100 detectors (2.5m²)
- Cost reduction
 - Fiber spacing is the key issue
 - Without reducing the number of p.e.
 - Optimum scintillator shape and detector arrangement

Importance of MC for muon radiography

Muon and electron: agreed within 5% Neutron and proton: agreed within 30%

Mt. Satsuma Iwo Jima

Fault crop

18

2018/5/25 ISVECRI 2018 19

Outline of the observation

Period : Oct. 2013 ~ Dec. 2013

Depth: 10m ~ 100m (9 point)

Direction: 45 degree step

ISVECRI 2018

Result

Muon flux and elevation map Average density by muon : 2.403 ± 0.002 g/cc

Average density by sampling: 2.45 ± 0.1 g/cc

ISVECRI 2018 21

Consistent with seismic fault zone

55m ~ 95m

Direction B

2018/5/25 ISVECRI 2018

Air shower radiography: remote sensing of water

- Developed for water level indicator
 - Water level in the building
- Groundwater stream
 - Essential for eruption prediction
 - Magma movement is measured by gravitymeter
 - Gravitymeter is disturbed by water stream

Mt Skurajima eruption prediction

2018/5/25 ISVECRI 2018 24

Water tank calibration

Density length and precipitation

2018/5/25 ISVECRI 2018 26

命行

様子 画像観測

ず、この方法は困難だ

水分を分析

とらえる仕組みも構想

が透視できるのは 少学知にすべ使えるとは 様 異性を調べた。今年は同 て発きせることが 宇宙線を用い 山学者の関心は高い。

<u>अंग्र</u>

SPIRE

は別の宇宙線の成分 昭道助教は、ミュー 水をどらえるとはア マグマはとらえられて

文のれ大野

ミュー粒子では難し

Neutrino absorption measured by IC

Geophysical application of vosc.

- Neutrino oscillation probability depend on electron density, not matter density
- By using neutrino oscillation, we can measure the electron density of the medium
 - If we knew the neutrino property very well
 - And had sensitive(=very large) detector
- We have the precise matter density profile of the earth
 - From seismic wave tomography and free oscillation
- Combining matter density and electron density,
 we can measure the average chemical composition of the deep earth!
 - Ratio of atomic number to mass number (Z/A)

Oscillograms (Fe vs Fe+2wt%)

Outer Core composition by HK

