What was done in CDR

- Simulation of the range of diffractive kinematics
- Simulation of diffractive structure function for proton using HI fit B and saturation models

Figure 4.39: Simulation of a possible LHeC measurement of the diffractive structure function, F_{2}^{D} using a $2 \mathrm{fb}^{-1}$ sample, compared with an estimate of the optimum results achievable at HERA using the full luminosity for a single experiment $\left(500 \mathrm{pb}^{-1}\right)$. The loss of kinematic region if the LHeC scattered electron acceptance extends to within 10° of the beam-pipe, rather than 1° is also illustrated.

Figure 4.44: Simulated F_{2}^{D} measurements in selected $x_{\mathbb{P}}, \beta$ and Q^{2} bins. An extrapolation of the H1 Fit B DPDF fit to HERA data is compared with two different implementations of the dipole model, both of which contain saturation effects and include $q \bar{q} g$ photon fluctuations in addition to $q \bar{q}$ ones.

What was done in CDR

- Simulation of diffractive structure function for lead
- Systematics estimated to be 5%
- Ratio of diffractive to total

Figure 4.45: Diffractive structure function $x_{\mathbb{P}} F_{2}^{D}$ for Pb in bins of Q^{2} and $x_{\mathbb{P}}$ as a function of β. Model calculations are taken from [408].

Figure 4.46: Diffractive structure function $x_{\mathbb{P}} F_{2}^{D}$ for Pb in bins of Q^{2} and $x_{\mathbb{P}}$ as a function of β. Model calculations are based on the dipole framework [461,462].

[^0] framework $[461,462]$.

What should/could be done more

- Re-evaluate pseudodata with different errors taking into account better luminosity? What about systematics?
- Pseudodata for FCC-eh?
- Should we change binning for the presentation? LHeC/FCC have larger range of kinematics, can we better demonstrate that?
- Wojtek has started extracting the diffractive pdfs (see next slide). Demonstrate shrinking of the uncertainties
- Can we do the same for FCC?
- Nuclear DPDFS?
- What about dipole/saturation models? How can we demonstrate differences there? Nuclear ratios?
- More ideas: higher twist analysis, a la Motyka and Slominski?

2 Extrapolation for LHeC

Here I normalize to $M_{N}=m_{p}$.
I make an estimate of predictions for LHeC by taking extrapolations of H1-2006B and ZEUS-SJ parameterizations with 15% uncertainty added. This 15% comes from ca. 10% normalization error + ca. 10% fit uncertainty
Predictions from both parameterizations are also shown separately with 5% error bands to illustrate the expected improvement at the LHeC.
Maybe only one such curve (e.g. the average) would be better.

First attempt to simulate DPDFs for
 LHeC by Wojtek

Figure 2: $E_{e}=50 \mathrm{GeV}$. The curves for $Q^{2}=3 \cdot 10^{k}$ are shifted up by $0.02 \times k$. The red and blue bands show 5% error. The grey band shows the uncertainty range of current parameterizations.

[^0]: Figure 4.47: Ratio of the transversely polarised photon contribution to the diffractive structure function $x_{\mathbb{P}} F_{2}^{D}$ to the inclusive structure function F_{2} in p and Pb for fixed values of Q^{2} and β as a function of the energy W. Model calculations are based on the dipole

