

WG3 (Cryomodule) summary & plan with recommendation to the CB

V.Parma, CERN TE-MSC

P. DUTHIL, IN2P3-CNRS

Objectives

- Warm or cold magnets?
- Technical spec. and interfaces for cavity helium vessel and tuner
- Coupler requirements and assembly constraints
- Alignment requirements for cavities and quads
- Dimensions, T and P for cryomodule cryogenic lines (depending on cryogenic scheme adopted)
- Prepare ingredients for:
 - The preparation of the technical specification for the prototype cryomodule
 - And refining the objectives for the prototype cryomodule program

Machine layout issues & recommandation 1/2

- Key feature (outcome sectorisation workshop): availability of the machine
 - High reliability/maintainability
 - Possibility of changing a cryomodule with "short" intervention
 - Full segmentation seems an interesting option
 - But needs to be deepely analysed (technical/cost)
 - ➤ Segmentation has important impact on cryomodule design:
 - Cryogenics lines sizes and layout
 - > Technical service module
 - > Connection to CDL
 - > C/W transitions

Machine layout issues & recommandation 2/2

- Nominal temperature:
 - For the time being: Tmax = 2K (31mbar) on each He bath (outside cavity surface)
 - T optimisation seems necessary: decreasing the temperature: Q versus cryogenics cost

Magnets issues

- FD and FODO schemes seems equivalent;
- \triangleright FD seems to be preferable for reduced layout length. For low β: possibility of changing the scheme (FD+3+FD+3) may result in more compact layout. To be further investigated. No impact for β=1 prototype cryomodule
- \triangleright New Quad alignment spec.: ± 0.2 mm (1σ)
 - Not impossible but tight (XFEL has ± 0.3mm)
 - ➤ Major advantage for having warm magnets
- Correction (to be included in the general mech. layout):
 - 1 steerer for each quad;
- Diagnostic :
 - Today 1 BPM per quadrupole doublet (mid length)
 - Possibility of using BPM as diagnostics for matching (QPU), but position between doublet to be reviewed
 - Need of additional diagnostic to be included?

Magnets issues

- > SPL quadripole, in general easy design (both warm and cold versions)
- Possibility of warm magnets would result in full segmentation with distribution line
- Present layout:
 - 10 Tesla/m; $L \le 400$ mm; $\emptyset^{\sim}400$ mm; $m^{\sim}300$ kg;
 - consistant with the present layout for segmented version;
 - but:
 - 1 steerer to be included in the design,
 - the H- stripping has to be further inverstigated, could require reduced gradient i.e. longer magnets (=longer machine)
 - BPM could be placed within the warm quad (outer diam. then slightly larger)
- Estimated total power consumption : 400kW
- Heat loads: ~10⁻², 10⁻¹ W @2K
- Pulsed working conditions (several Hz, could be up to 50 Hz):
 - → no pb (but care concerning the coupling with the power supply);
- Permanent magnet version still would require trimming;
- Power converter architecture (individual or series) to be compared;
- > Further comparison between power converters for cold or warm magnets

Coupler integration needs

- Outer conductor of coaxial power coupler in contact with LHe bath at the coupler/cavity interface;
- Heat intercept:
 - 5-8K not optimal;
 - other temperature range can be investigated:
 - eg. 2K spilling, warm-up from ~5K up to 300K
- ➤ Position: vertical upward is the prefered option for wave guide connection in the tunnel & transportation
 - Consequence for cryomodule design: bi-phase pipe needs to be sideways (has to be above cavity)

Cavity He vessel and tunner assembly

- > LHe tank: Ti for the prototype
- Coupler port directly in the 2K LHe bath
- Heat loads: what are the static and dynamic loads?
- Presently adopted inter-cavity bellow zone is questioned in terms of leaking field and associated heat loads. It could be subjected to change
- Present cavity alignment spec. (not addressed in this workshop): ± 0.5 mm (1σ)
- Microphonics: tuner may handle it

(Dynamic & static) Heat loads

- Present budgets are based on bibliography.
- More specific values for SPL should be elaborated:
 - dynamic losses should evaluated on (SPL type) representative set of cavities only
 - Static losses: also depending on segmentation choice
- ➤ HP SPL: 10% cryogenic duty cycle doubles heat laods compared with formal version
 - → double the installed cooling capacity needs
 - → increases the cryogenic line diameter: x1,4
 - → requires investigation on the cavity surface heat exchange

Cryogenics issues

- Pressures specifications are proposed:
 - Design pressure for cavity and low pressure circuit have to be defined (6 bar seem too high for cavities):
 - Maximum allowable pressure (at RT and at cold) will be checked by CEA
- A cryogenic scheme has to be chosen and further investigated
 - Number of pipes (inside the cryostat)
 - Pipes diameters (at present only sizes for distribution lines presented)
- ➤ HP new version heat loads have a fundamental impact on pipes sizes (cryomodule design) and cryoplant
- Avoid flanges for interfaces into the cryogenic piping

Survey issues

- The alignment of the SPL is not really challenging (if SPL SPS connection available)
 - Cryostat must be equipped with survey reference targets and a tilt reference (standard LHC equipment)
 - Cryostat must be supported with a precise realignment system (e.g. LHC jacks system)
- Internal metrology will be more challenging
 - Alignment method should be decided (e.g. laser tracker):
 - → position of the alignment fiducials w.r.t a reference axis (by measurement or adjustment of fiducials)
 - For the cryostat prototype: need to verify the internal position of the components
 - monitoring of the cavities and quads with respect to external fiducials on the cryostat (sensor type and protocol should be chosen)
 - Integrate alignement metrology in the design
 - Use of WPM (Tesla system) shall be investigated

Further work

- Cryomodule prototype requires urgent (end of the year) decisions to be in timr for 2012:
 - Refining objectives of the prototype
 - Choice of layout segmentation
 - Choice of cryogenic "baseline" scheme
 - HL to be coped with (HP new version!)
 - Cooling scheme (also choice for coupler)
 - Final sizes, pressures, temperature
 - → Support from the Collaboration Board is needed to freeze the objective of the prototype

THANK YOU FOR YOUR ATTENTION!

SPECIAL THANKS TO ALL SPEAKERS FOR THEIR EXCELLENT WORK!