

NATIONAL RESEARCH CENTRE «KURCHATOV INSTITUTE»

Institute for High Energy Physics

of National Research Centre «Kurchatov Institute»

IHEP (U-70) slow extraction overview

Sergey Ivanov, Oleg Lebedev

2nd Slow Extraction Workshop CERN, Genève, November 9-11, 2017

Outlook

Program Committee recommendations for machine overviews:

- details spared for technical talks= no U-70 dedicated technical talk, hence a few technical details are here;
- emphasis on operation (where possible);
- quantify attainable loss levels and spill quality;
- list operational problems and issues;
- list any specific loss reduction techniques applied;
- list any spill quality improvements applied;
- mention stability/reproducibility (do machines have a super-cycle, hysteresis effects?);
- are activation levels and remote handling issues?
- key instrumentation for intensity calibration, efficiency, losses, spill quality.

Other talk topics to be touched (mentioned in other report recommendations)

- Separatrix folding
- RF KO vs quad driven extraction: losses vs spill quality Better compare Translation vs Diffusion, a separate talk today
- Stochastic noise injection
- Feedback and feedforward spill control
- Reproducibility of spill quality machine stability studies
- Mains 50 Hz noise: active filtering and other compensation techniques. State of the art

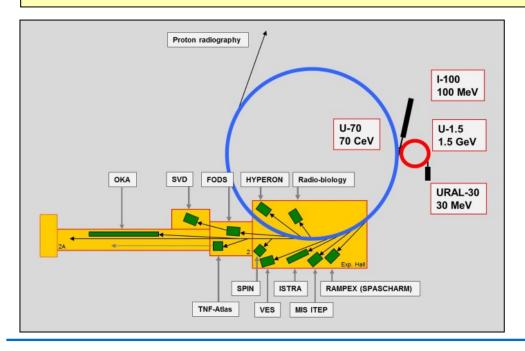
Where

Proton (light-ion) synchrotron U-70

• Energy 1.32 – 50/60/70 GeV

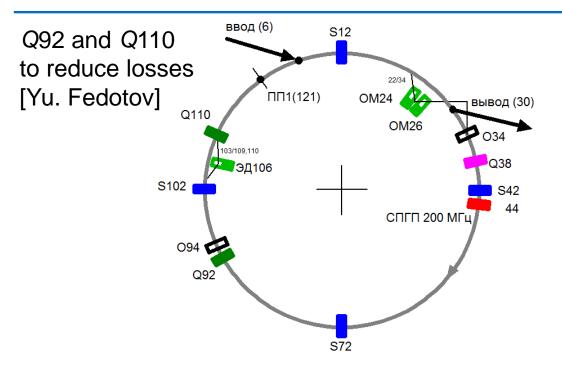
• Orbit length 1483.699 m

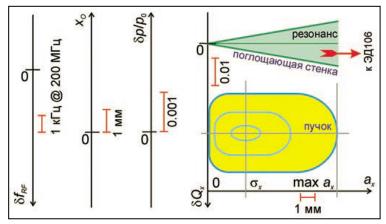
• Bending radius ρ 194.125 m


Magnetic rigidity Bp
233 T⋅m (max)

• Intensity < 1.4·10¹³ ppp

Ramping cycle
0.1 Hz ca


• 1-2 runs/ year, duration 1000-1500 hr

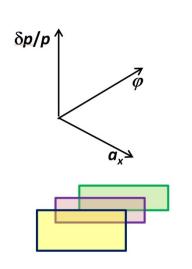

Beam availability for physics, 24/7 > 85%

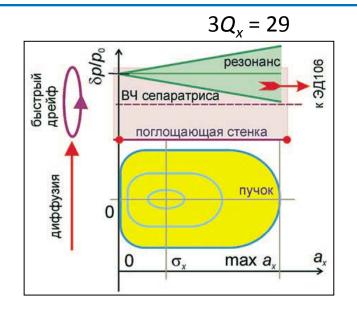
Hardware

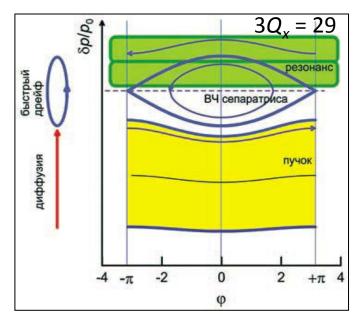
a Steinbach diagram, rotated

 3^{rd} order horizontal resonance $3Q_x = 29$

$$3Q_x = 29$$
, $Q_x = 9.7$ ca

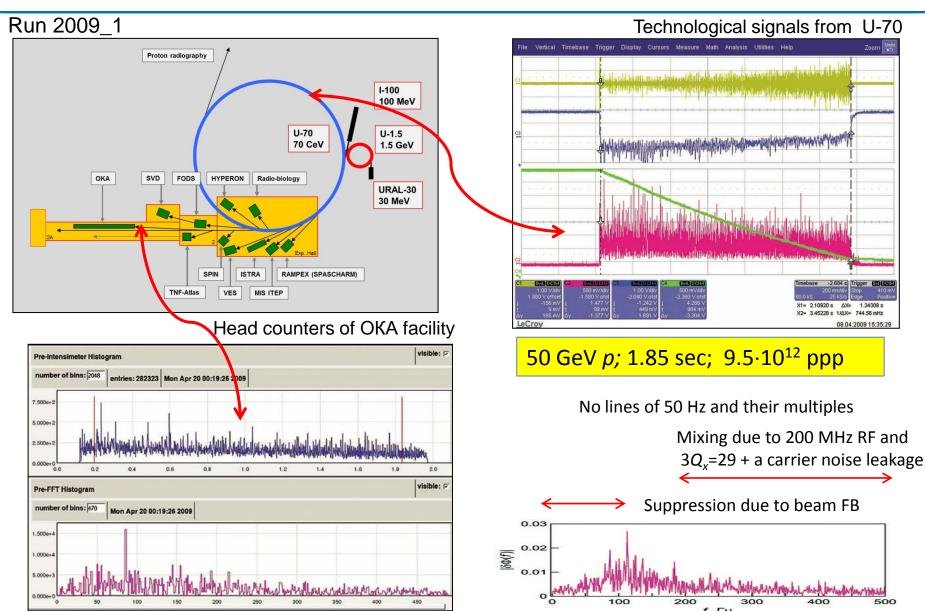

2 feeding alternatives:


- Q38, translation (drift)
- RF200 MHz, diffusion

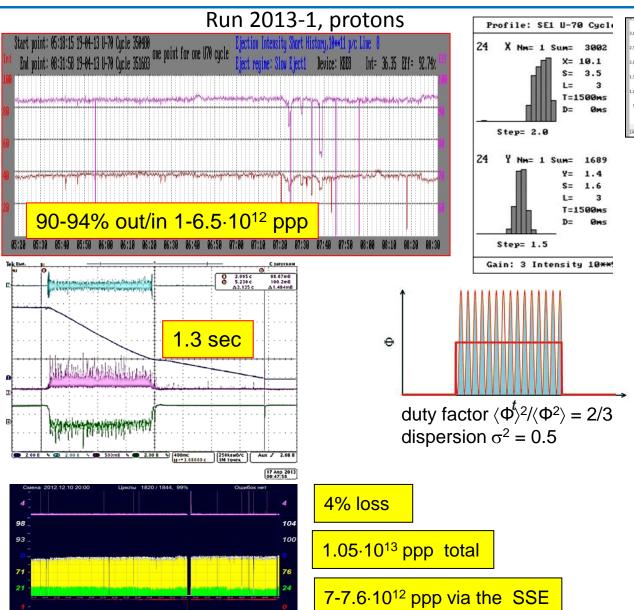


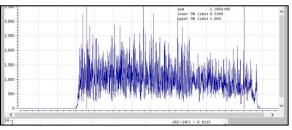
Aux RF system 200 MHz 2 cavities 450 kV/turn total Operational RF 5.52 - 6.06 MHz, p $h_1 = 30$ $h_2 = 33 \times 30 = 990$

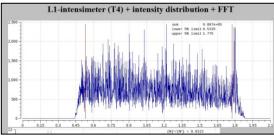
Two-step feeding the $3Q_x = 29$



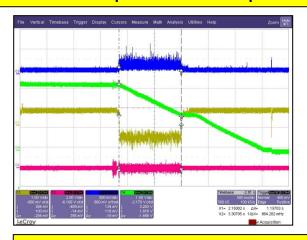
FEATURES:


- A "chimney" zone (recall separatrix folding technique) + a beam trap inside empty RF buckets
- Separatrixes are transparent w.r.t. diffusion
- Re-feeding depleted by SE 200 MHz "bunches"
- Surplus stochastic acceleration of extracted fraction
- No sweeping (drift) over extracted momenta during a spill

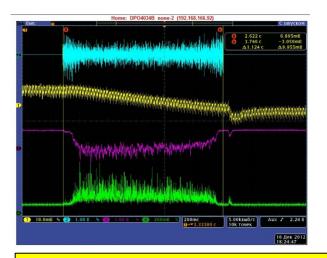

- Adjustable trajectory of WP to resonance in the (Q_x, Q_y) -plane
- Absorbing wall (sink) = const (a_x)
- Phase mixing and randomizing
- "Ribbon" waiting beam less prone to coherent instabilities
- Close to applicability margin from shorter extraction t


Operation (1)

Operation (2)

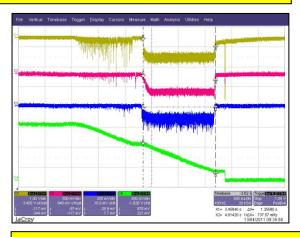

duty factor $\langle \Phi \rangle^2 / \langle \Phi^2 \rangle$ to 0.82 dispersion $\sigma^2 = 0.22$ no cut-offs and lines of the mains harmonics 1/2:1:2 rule-of-thumb for U-70

Flattop SE @ U-70:

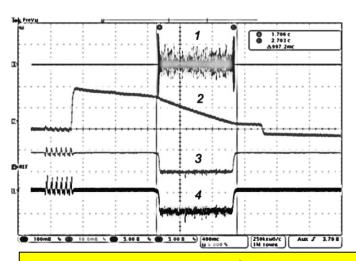

- effective
- intensive
- slow
- low-ripple

Operation (3)

Routine operation: sequential and parallel beam sharing at flattop



SSE, p, 50 GeV, (1-7) ·10¹² ppp 1.25 s spill



Dynamic range 3 orders of magnitude

SSE, C, 24.1 GeV/u, 1.7·109 ipp 1 s spill

SE CD+IT, p, 50 GeV, 3·10¹² ppp 1.35 s spill

SSE, C, 456 MeV/u, 2·10⁹ ipp 0.6-1 s spill

Beam feedback [with a feed-forward entry]

 $\Phi + \delta \Phi_{AC}^{ext} - \delta \Phi^{fb}$

Output

Input 0

Slow

extraction monitoring

Noise

source

Regulation of

the mean

spill level

 Φ_{DC}

Input 5

 $\delta\Phi^{tot}$

Comparator

Extraction

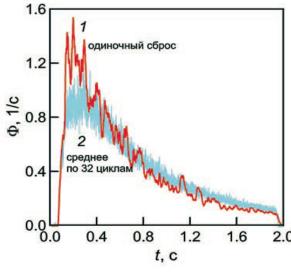
monitor

Adder

 $\Phi - \delta \Phi^{fb}$

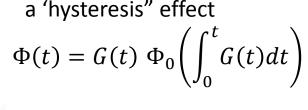
to

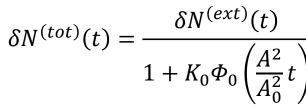
flatten spills

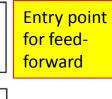

(DC)

reduce ripple

(low-pass AC)


Object under control:


- non-linear,
- non- *t*-invariant (depleted, hysteresis)
- without a "reverse gear"



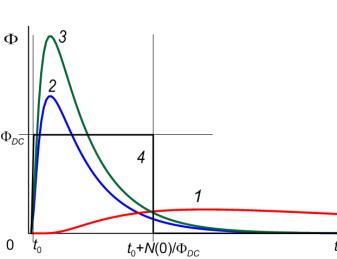
Fixed noise power variable magnitude

spectrum shape & its

Colored

noise

generator


Trigger

Stop

Start

Input 2

Input I

Feedback depth

Noise

amplitude

regulation

Input 3

Amplitude

modulator

Deflector

 A/A_0

Switch

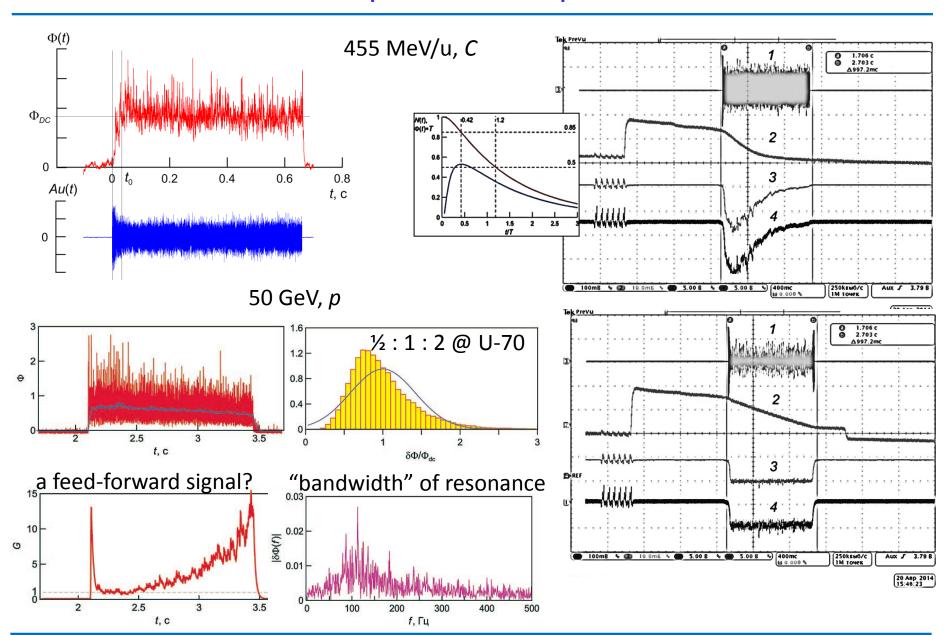
 $(A-\delta A^{fb})u(t)$

Gain

regulation

Electronics

 k_0, T_0


Beam transfer function

 $\Phi(A,t), \phi_0(A,t)$

Beam

Input 4

Square-wave spills

Conclusion

Almost a replica from that at the 1st SE WS (Darmstadt, 2016)

In the U-70, two stochastic SEs are now routinely employed leaving no place for translational feeding de-facto. **Our experience tells that:**

- To minimize spill ripples is to: (1) lower ripple amplitude a in optics + (2) apply to shorter relaxation times $\propto a^2$ inherent to a diffusive feeding (compared to $\propto a^1$ for a translational one)
- There is pear-to-peak asymmetry of ripples w.r.t. to average + suppressed tendency to blackout cut-offs during stochastic extraction
- Reducing coherent ripples in SE spills with a beam feedback circuit in a resonant $(3Q_x = n)$ scheme is noticeably LPF-limited (few tens of Hz) due to a virtual (non-dissipative, nonlinear) bandwidth of coherent response of an extracted fraction propagated along $3Q_x = n$ phase-plane trajectories
- Feed-forward spill control is redundant. Feedback option is sufficient and easier
- In the stochastic SE, some leakage of carrier (transport) noise ripples into a spill is inevitable. Beam user *t*-resolution over a spill must smear this leakage out (say, by observer inherent time constant >10 noise autocorrelation time). Otherwise, stochastic feeding procedure would turn inappropriate and rather degrade higher-frequency content of spills