

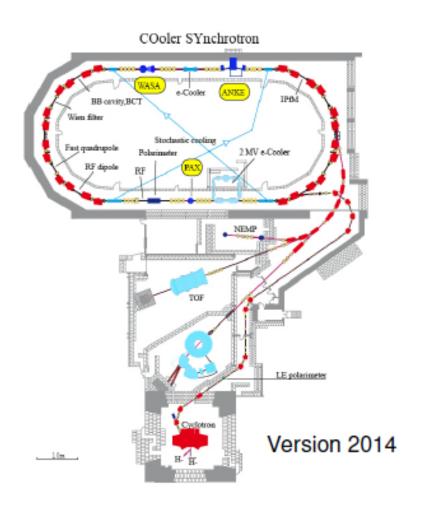
Stochastic Extraction at COSY

Slow Extraction Workshop 2017, CERN, Nov 9th, - 11th, - 2016

Bernd Lorentz

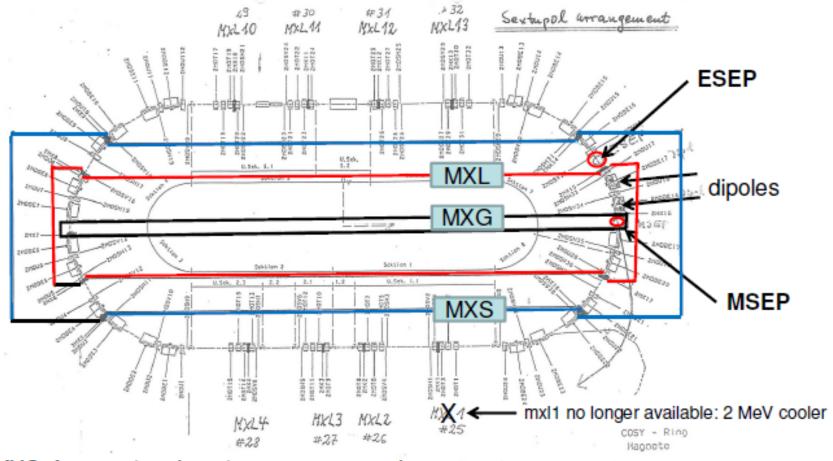
IKP4, COSY, Forschungszentrum Jülich

Content


- Sketch of Extraction Development at COSY
- COSY Layout and Main Parameter
 - Extraction Layout and Components
- Extraction: Longitudinal Aspects
- Spill Time Structure (Example)
- Backup Slides Extraction: Transverse Aspects

glied der Helmholtz-Gemeinsch

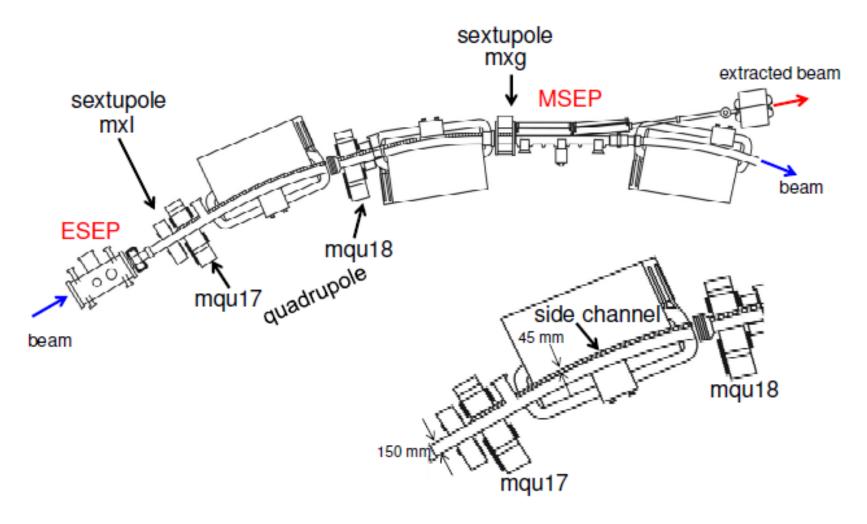
COSY Floorplan


- Circumference: 184
- Straight section: 40 m
 (telescopes with 2 π phase advance)
- Arc section 52 m (three cells, each QF-D-QD-D-D-QD-D-QF)
- Protons and deuterons momentum range 300 (540) MeV/c to 3300 MeV/c
- Polarized and unpolarized particles
- 100 keV electron cooler at injection and new 2 MeV cooler
- Stochastic cooling above 1.5 GeV/c
- Three extraction beam lines
- Beam extraction in the whole momentum range

tglied der Helmholtz-Gemeinsc

Sextupole Distribution

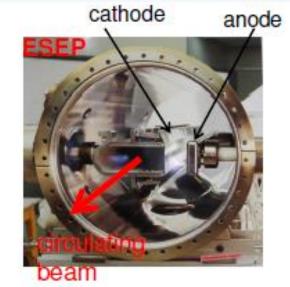
MXS: four sextupoles at one power supply


MXL: four sextupoles at one power supply

MXG: two sextupoles at one power supply

Chromaticity correction only

Arc Section and Extraction Elements



Main data ESEP and MSEP

ESEP

max. energy	2.5	GeV		
max. momentum	3.3	GeV/c		
deflection	3.5	mrad		
max. voltage	200	kV		
max. gradient	120	kV/cm		
gap width	12 - 40	mm		
radial position variation anode and cathode	± 20	mm		
angle resp. to closed orbit	± 2	mrad		
anode thickness	0.1	mm		
length	1	m		

max. field	1.1	T		
length	2 x 1	m		
deflection	2 x 5	degrees		
max. current	2740	Α		
inner side	88	mm		
outer side	120	mm		
gap	32	mm		

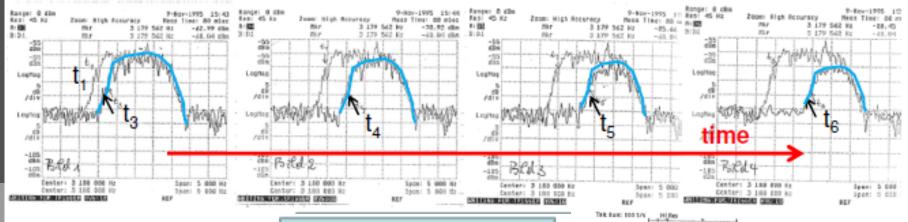
Mitglied der Helmholtz-Gemeinschaft

Extraction Elements at COSY

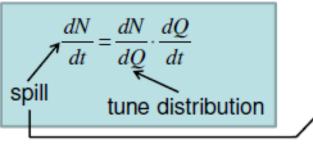
MSEP

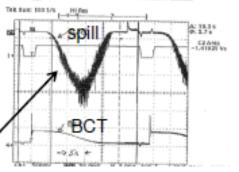
Second part: disassembled




itglied der Helmholtz-Gemeinsch

Conventional Extraction Method


- The beam is slowly swept across the resonance with constant speed by moving the tune.
- Circulating beam intensity distribution behaves like a rigid body: Hard resonance edge for all particles!
- For a constant spill the beam edge should never be repelled from the resonance!
 Otherwise ripple modulations.


Longitudinal beam distributions during extraction of 800 MeV/c protons:

Linear tune ramp:

$$Q(t) = Q_S + \frac{dQ}{dt} \cdot (t - t_0)$$

lied der Helmholtz-Gemeinschaft

Stochastic Extraction with Band-Limited White Noise

- The main difference to the conventional extraction method is in the way the particles are driven to the third order resonance.
- The average tune of the beam and thus the lattice optics is not changed.
- Instead, the beam distribution is longitudinally heated by adding noise around a revolution harmonic.
- A diffusion in tune is created by a proper setting of the horizontal chromaticity to accelerate the particles into resonance.

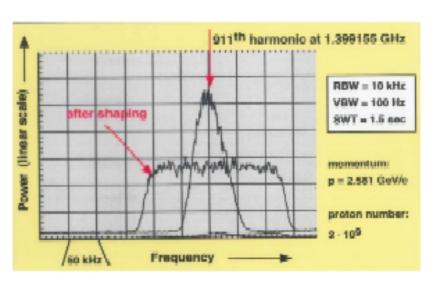
S. van der Meer, "Stochastic Extraction, a Low-Ripple Version of Resonant Extraction", CERN/PS/AA 78-6

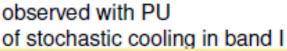
R. Cappi, W.E.K. Hardt and Ch.P. Steinbach, "Ultraslow Extraction with Good Duty Factor", 11th International Conference on High-Energy Accelerators, Geneva, Switzerland, July 7–11, 1980

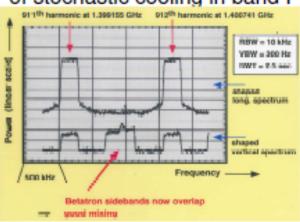
The LEAR team, "Performance of LEAR", IEEE Transactions on Nuclear Science, Vol. NS-32. No. 5, October 1985

Michel Chanel, "LEAR Performances", Proc. of the LEAR Symposium, CERN, 15th May 1999, CERN/PS 99-040 (CA)

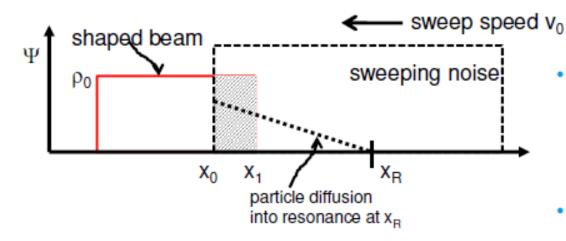
Step 1:


- Beam Momentum Distribution Shaping
 - Gaussian beam → Uniform beam distribution


Step 2:


- Uniform noise is applied that always covers the resonance.
- The carrier frequency is slowly moved towards the shaped beam distribution.
 - Particles diffuse into the resonance and are extracted.

Longitudinal Beam Shaping



- Rectangular shaped noise with width W = 1 kHz applied to the 4th revolution harmonic
- Longitudinal momentum distribution rectangular ⇒ transverse sidebands rectangular
- Shaping time 1 s
- Width of 4th harmonic without noise 340 Hz
- The resulting width of the revolution harmonic 911 agrees with $W = 911 \cdot \frac{1kHz}{4} = 228Hz$
- Necessary voltage: U_{rms} = 77 V, noise power into 50 Ω: 120 W, spectral noise density: S = 120 mW/Hz

litglied der Helmholtz-Gemeinscha

Beam Extraction with swept Noise

- Band-limited white noise permanently covering the resonance is swept over the beam with speed v₀.
- Diffusion equation with diffusion coefficient D

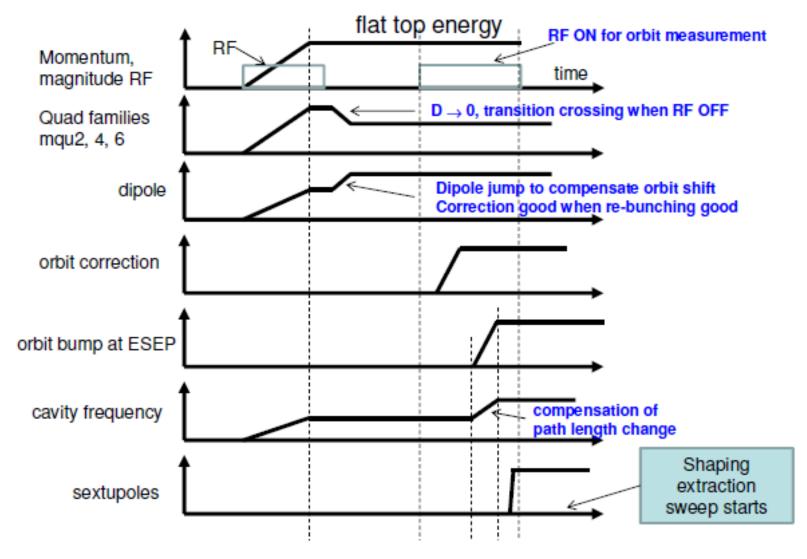
In the vicinity of the resonance:

$$\Psi_0(x) \approx -\frac{v_0 \cdot \rho_0}{D}(x - x_R)$$
 \Rightarrow $\Psi_0(x_R) = 0$

The number of particles that are extracted per sec is given by

$$\Phi_{ex}(t) = \Phi(x_R, t) = -D \cdot \frac{\partial}{\partial x} \Psi(x_R, t)$$
 and yields the **constant flux** $\Phi_{ex}(t) = \Phi_0$

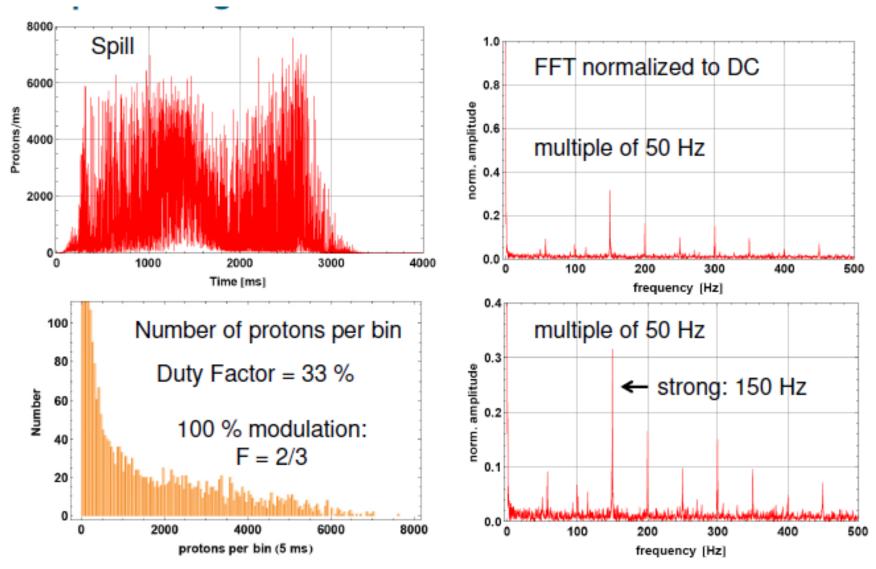
W. Hardt, "Remarks on Stochastic Extraction", PS/DL/Note 78-5


Choice and Control of Extraction Parameters

- Many parameters must be controlled and adjusted:
 - Sextupole strength (emittance should be known)
 - Angle of separatrix at ESEP (little program)
 - Chromaticity (can be measured)
 - Hardt condition (can be checked at wire chamber after MSEP, optimum if beam position does not vary during extraction)
 - Momentum spread (can be measured)
 - Orbit bump (can be measured, choice of amplitude depends on sextupole strength and thus spiral step)
 - Angle kick in ESEP and deflection in MSEP
 - Tune and beam shaping prior to extraction (shaping can be tuned so that spill becomes flat, no "initial" peak)
 - Extraction noise (width and center frequency, no "initial" peak)
 - Power adjustment
- Parameters are not independent from each other
 - Parameters are tuned to optimum extraction efficiency (> 80 %)

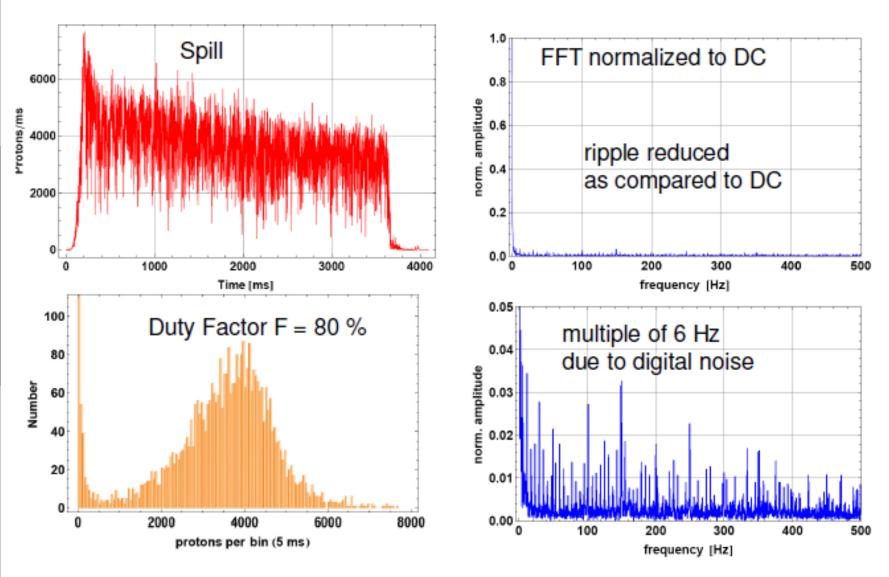
Mitglied der Helmholtz-Gemeinschaft

Ramp Procedure for Beam Extraction


Spill Structure (Example)

- Proton momentum 796 MeV/c
- Spill duration app. 4 s
- Hodoscope signals measured with time interval analyzer HP 5372 A
- Bin width 1 ms, 4096 bins

Mitglied der Helmholtz-Gemeinschaft


Conventional Extraction

Stochastic Extraction

ied der Helmholtz-Gemeinsch

Present COSY operation scheme

- 1. 50 % dedicated to studies for edm storage ring experiment
 - mainly internal to the COSY ring
 - extraction of polarized beam
- 2. 50 % FAIR related studies
 - detector tests for FAIR (Extracted beams)
 - tests of equipment for HESR@FAIR and machine studies

Close to 50 % extracted beam operation

jlied der Helmholtz-Gemeinscha

Present COSY operation scheme

- 1. 50 % dedicated to studies for edm storage ring experiment
 - mainly internal to the COSY ring
 - extraction of polarized beam
- 2. 50 % FAIR related studies
 - detector tests for FAIR (Extracted beams)
 - tests of equipment for HESR@FAIR and machine studies

			July				August				September		
Vest	27	20	200	20	21	22	22	24	35	30	27	30	29
	93/07/17	10/00/17	1200217	28/09/17	20,00717	079977	14/20/17	210007	2000017	ONATION	115977	10/06/17	20/06/17
Ander leeday Vehicalay huraday iklay	A. Marie	S. Carrier	MD / INT (D008.3)	Beam Instrum. (A007.2)	Beam Optio studies	MD	stochastic cooling	MD	Tb cross sections (D010)	HBS (A010.1)	HBS (A010.3)	MD	FAIR PAND
aturday unday		*			(A005.3)	unreder	(A001)		(DOIN)		ungsi Desterons		
			October					Supportion				December	
-	40	41	42	-	44	45	488	47	40	-	50	51	52
	02710117	CONTON I	16/16/17	20/10/17	20/10/17	0001177	1201107	20/11/17	27/11/17	OMPORT	11/12/17	1912/17	25012017
enday enday ednesday sureday	Holiday COSY tunnel	Charles .	M. Andrews	*Space charge	FAIR CBM	MD	JEDI Wienfliter		JEDI Wienflife	slow extraction	JEDI Polarim	CBAC 15	Marine Park
day turday reday	limited access	1	1	(A011)	(D004.2)		(E005)	05)	r (E005)	(A12)	eter (E002.3)	w.	1

Summary

- Stochastic extraction at COSY in the whole energy range
- Spill durations of a few seconds upto several minutes (1 h spill duration has been done)
- Extraction efficiency larger than 80 %
- Extraction of polarized beams