Activation monitoring and prediction models

2nd Slow Extraction Workshop, 9 - 11th November 2017

A.C. Araujo Martínez, D. Björkman, <u>M.A. Fraser</u>, B. Goddard, V. Kain, P.M. Schicho, C. Theis, H. Vincke, CERN

Overview

- Why model the build-up of Induced Radioactivity?
- History of SE-induced radioactivation of SPS
- Introduction to empirical models of IR(t)
- A practical implementation of IR(t):
 - Instrumentation, data logging, fitting
- Predictive power of IR(t) :
 - Cool-down times for future operational scenarios:
 - YETS 2017-18 and future SPS BDF operation
- Conclusion:
 - Future studies and development, e.g. online tool

Why monitor and model the build-up of IR?

- Slow extraction is a lossy, resonant process and it's efficiency is sensitive to the smallest machine parameters
 - e.g. alignment to 100 μ m, power converter ripple of a few ppm etc.

Why monitor and model the build-up of IR?

- Slow extraction is a lossy, resonant process and it's efficiency is sensitive to the smallest machine parameters
 - e.g. alignment to 100 μ m, power converter ripple of a few ppm etc.
- Stable operation is not trivial and constant monitoring, warnings and interlocking are mandatory
 - We learnt this the hard-way at CERN SPS with elevated activation in 2015
 - Feedforward, or feedback OP systems, will be the solution in the longer term

Why monitor and model the build-up of IR?

- Slow extraction is a lossy, resonant process and it's efficiency is sensitive to the smallest machine parameters
 - e.g. alignment to 100 μ m, power converter ripple of a few ppm etc.
- Stable operation is not trivial and constant monitoring, warnings and interlocking are mandatory
 - We learnt this the hard-way at CERN SPS with elevated activation in 2015
 - Feedforward, or feedback OP systems, will be the solution in the longer term
- We want to monitor and empirically model the IR(t):
 - Full numerical calculations are too computationally intensive: we are look for a simple but reliable empirical approximation
 - Keep an eye on activation levels before the end-of-year RP survey: avoid local radioactive hotspots!
 - Understand cool-down times as a function of Protons On Target (POT)
 - Predict activation levels for future operational scenarios as a function of extraction efficiency and POT

• Analysis of archived yearly end-of-run RP survey data shows a rough linear correlation of activation vs. POT:

• Analysis of archived yearly end-of-run RP survey data shows a rough linear correlation of activation vs. POT:

- Analysis of archived yearly end-of-run RP survey data shows a rough linear correlation of activation vs. POT:
 - Can we model the build-up of longer-lived isotopes?
 - i.e. background not recovering during year-end stops:

• Analysis of archived yearly end-of-run RP survey data shows a rough linear correlation of activation vs. POT:

 Analysis of archived yearly end-of-run RP survey data shows a rough linear correlation of activation vs. POT:

- Analysis of archived yearly end-of-run RP survey data shows a rough linear correlation of activation vs. POT:
 - Can we model the build-up of longer-lived isotopes?
 - i.e. background not recovering during year-end stops:

 Different empirical models for IR(t) were proposed by R. Keizer [1-4] at CERN in the 1990's without theoretical justification, where the best model had just two decay constants k₁ and k₂ and the form:

 $\operatorname{IR}(t) \propto \exp\left(-k_1 \ln(t)^{k_2}\right)$

 Different empirical models for IR(t) were proposed by R. Keizer [1-4] at CERN in the 1990's without theoretical justification, where the best model had just two decay constants k₁ and k₂ and the form:

$$\operatorname{IR}(t) \propto \exp\left(-k_1 \ln(t)^{k_2}\right)$$

 By differentiating this ansatz (see extra slides) one can write the timedependent effective half-life of IR(t) by inspection:

$$t_{\text{eff},\frac{1}{2}}(t) = \frac{t}{k_1 k_2 \ln(t)^{k_2 - 1}} \ln(2)$$

 Different empirical models for IR(t) were proposed by R. Keizer [1-4] at CERN in the 1990's without theoretical justification, where the best model had just two decay constants k₁ and k₂ and the form:

$$\operatorname{IR}(t) \propto \exp\left(-k_1 \ln(t)^{k_2}\right)$$

 By differentiating this ansatz (see extra slides) one can write the timedependent effective half-life of IR(t) by inspection:

$$t_{\text{eff},\frac{1}{2}}(t) = \frac{t}{k_1 k_2 \ln(t)^{k_2 - 1}} \ln(2)$$

• The effective half-life describes the non-linear time dependence of IR generated by the mixture of different radionuclides produced during the initial irradiation and in the resulting chains of of radioactive decay

• Different empirical models for IR(t) were proposed by R. Keizer [1-4] at CERN in the 1990's without theoretical justification, where the best model had just two decay constants k_1 and k_2 and the form:

$$\operatorname{IR}(t) \propto \exp\left(-k_1 \ln(t)^{k_2}\right)$$

 By differentiating this ansatz (see extra slides) one can write the timedependent effective half-life of IR(t) by inspection:

$$t_{\text{eff},\frac{1}{2}}(t) = \frac{t}{k_1 k_2 \ln(t)^{k_2 - 1}} \ln(2)$$

- The effective half-life describes the non-linear time dependence of IR generated by the mixture of different radionuclides produced during the initial irradiation and in the resulting chains of of radioactive decay
- $t_{\text{eff},1/2}$ increases towards ∞ (stability) at an exponentially slower rate, which is what we might expect physically: $\lim_{t \to \infty} t_{\text{eff},\frac{1}{2}} = \infty$ and $\lim_{t \to \infty} \frac{\partial t_{\text{eff},\frac{1}{2}}}{\partial t} = 0$

Effective half-life for different IR(t) models

• An example: difference between measured half-life next to ZS Tank 2 and different empirical models during a week long Technical Stop:

*Sullivan-Overton formula where irradiation time >> cooling time: proposed and investigated at CERN in 1960's

Effective half-life for different IR(t) models

• An example: difference between measured half-life next to ZS Tank 2 and different empirical models during a week long Technical Stop:

*Sullivan-Overton formula where irradiation time >> cooling time: proposed and investigated at CERN in 1960's

IR(t) vs. numerical computation, e.g. ActiWiz

• Cool-down computed numerically with *ActiWiz* [7] after bombardment of different materials with 400 GeV p+ for 200 days, POT = 1×10^{19} :

• Fit to *ActiWiz* data is generally poorer when change in IR is too large over the range of interest, i.e. the empirical model has its limits

IR(t) vs. numerical computation, e.g. ActiWiz

• Cool-down computed numerically with *ActiWiz* [7] after bombardment of different materials with 400 GeV p+ for 200 days, POT = 1×10^{19} :

- Measured fit constants consistent with material composition of the ZS:
 - SS 304L vacuum tank and, SS 304L or Invar anode support [8]

A predictive model for IR(t) (1)

- The problem is time-discretised taking *n* bins of length $\Delta t = 30$ mins:
 - Too many bins makes fitting slow and cumbersome, too few and we lose resolution

A predictive model for IR(t) (1)

- The problem is time-discretised taking n bins of length Δt = 30 mins:
 Too many bins makes fitting slow and cumbersome, too few and we lose resolution
- Induced Radioactivity at the nth bin can be written as a sum of all exponential decay contributions from all prior bins with 3 constants where we add a conversion constant, G [Sv/h]

$$IR(t_n) = G \sum_{i=1}^{n} N_{L,n+1-i} P_{ex,n+1-i} \exp\left(-k_1 \ln((i-1)\Delta t)^{k_2}\right)$$

$$L_{BLM,n+1-i}[Gy]$$

- P_{ex} is the number of extracted protons and N_L is the specific loss (per proton)

A predictive model for IR(t) (1)

- The problem is time-discretised taking n bins of length Δt = 30 mins:
 Too many bins makes fitting slow and cumbersome, too few and we lose resolution
- Induced Radioactivity at the nth bin can be written as a sum of all exponential decay contributions from all prior bins with 3 constants where we add a conversion constant, G [Sv/h]

$$IR(t_n) = G \sum_{i=1}^{n} N_{L,n+1-i} P_{ex,n+1-i} \exp\left(-k_1 \ln((i-1)\Delta t)^{k_2}\right)$$

$$L_{BLM,n+1-i}[Gy]$$

- P_{ex} is the number of extracted protons and N_L is the specific loss (per proton)
- To account for the changing extraction efficiency observed last year we linked the IR measured on a given PMIU detector to the prompt loss L_{BLM} measured at the nearest BLM: we fit to measured values of L_{BLM} :

$$L_{BLM}[Gy] = N_L \left[\frac{Gy}{p^+}\right] P_{ex}[p^+]$$

A predictive model for IR(t) (2)

- We have a network of radiation monitors in LSS2:
 - BLMs for prompt extraction dose measurements: $L_{BLM}(t)$
 - PMIUs for residual, induced radioactive (without beam): IR(t)
 - We use the ring BCT to normalise to the number of protons extracted: $P_{ex}(t)$
- All the data is logged by the CERN Accelerator Logging Service:
 - We use an API (via pyTimber) to access all time series data in CALS before preparing aligning, binning and filtering the data for fitting

*Library of python functions and scripts to access CALS, timestamp align, resample and bin, filter and fit data is available, also in IPython notebook format

Beam ON = saturation from prompt losses

*Library of python functions and scripts to access CALS, timestamp align, resample and bin, filter and fit data is available, also in IPython notebook format

*Library of python functions and scripts to access CALS, timestamp align, resample and bin, filter and fit data is available, also in IPython notebook format

*Library of python functions and scripts to access CALS, timestamp align, resample and bin, filter and fit data is available, also in IPython notebook format

*Library of python functions and scripts to access CALS, timestamp align, resample and bin, filter and fit data is available, also in IPython notebook format

*Library of python functions and scripts to access CALS, timestamp align, resample and bin, filter and fit data is available, also in IPython notebook format

*Library of python functions and scripts to access CALS, timestamp align, resample and bin, filter and fit data is available, also in IPython notebook format

*Library of python functions and scripts to access CALS, timestamp align, resample and bin, filter and fit data is available, also in IPython notebook format

Fitting this data set using *scipy.optimize.curve_fit* in IPython on a CERN SWAN server took 21.7 minutes

*Library of python functions and scripts to access CALS, timestamp align, resample and bin, filter and fit data is available, also in IPython notebook format

Fit constants for different detectors

PMIU #	Paired with BLM.ZS #	Fit constants $IR(t)^*$				
		<i>k</i> ₁	k ₂	$G\left[\frac{Sv/h}{Gy}\right]$		
1	201	3.14	0.69	0.0062		
2	202	3.01	0.69	0.0027		
3	203	2.73	0.66	0.0007		
4	204	2.44	0.76	0.0008		
average	average	3.31	0.67	0.0016		

*Fit constants will depend on unit of time chosen: care when comparing different datasets, c.f. cooldown data presented earlier Fitting only on 2016 data: full cool-down not included

Fit constants for different detectors

PMIU #	Paired with	Fit constants $IR(t)^*$		s IR (t) *	Fitting only on 2016 data: full cool-down not included		
	BLM.ZS #				$- k_1 = 3.011, k_2 = 0.694, G = 0.003$		
		<i>k</i> ₁	k ₂	$G\left[\frac{Sv/h}{Gy}\right]$			
1	201	3.14	0.69	0.0062			
2	202	3.01	0.69	0.0027	(\mathbf{t})		
3	203	2.73	0.66	0.0007			
4	204	2.44	0.76	0.0008			
average	average	3.31	0.67	0.0016			
*Fit constants will depend on unit of time chosen: care when comparing different datasets, c.f. cooldown data presented earlier					$2016^{-0.9} \ 2016^{-0.9} \ 2016^{-0.1} \ 2016^{-0.1} \ 2016^{-1.1} \ 2017^{-0.1} \ 2017^{-0.5}$ Date		

- Variation in G is due to different relative positions of BLMs and PMIUs
- Difference in k₁ and k₂ indicate spatial difference in the decay rate:
 Local differences of materials composing equipment or being activated?
- Predictive power of model was also tested using fit constants with older data, dating back to 2011: agreement to about 10% was found [9]

Cooldown predictions in YETS 2017

2nd Slow Extraction Workshop, 9 – 11th November 2017

1.6

2.7E13

(measured)

M.A. Fraser, TE-ABT-BTP

intervention, above)

- Predicted cool-down time at the end of a year of SPS BDF operation [9]:
 - For a 5 mSv intervention based on the exchange of ZS Tank 2 carried out February 2016
 - PMIU202 is paired with the specific loss measured on the BLM next to ZS Tank 2
 - This neglects the build-up of longer living isotopes over many years of operation!

- Predicted cool-down time at the end of a year of SPS BDF operation [9]:
 - For a 5 mSv intervention based on the exchange of ZS Tank 2 carried out February 2016
 - PMIU202 is paired with the specific loss measured on the BLM next to ZS Tank 2
 - This neglects the build-up of longer living isotopes over many years of operation!

- Predicted cool-down time at the end of a year of SPS BDF operation [9]:
 - For a 5 mSv intervention based on the exchange of ZS Tank 2 carried out February 2016
 - PMIU202 is paired with the specific loss measured on the BLM next to ZS Tank 2
 - This neglects the build-up of longer living isotopes over many years of operation!

- Predicted cool-down time at the end of a year of SPS BDF operation [9]:
 - For a 5 mSv intervention based on the exchange of ZS Tank 2 carried out February 2016
 - PMIU202 is paired with the specific loss measured on the BLM next to ZS Tank 2
 - This neglects the build-up of longer living isotopes over many years of operation!

Conclusions

- An empirical relationship has been exploited to model the build-up and cool-down of slow extraction induced radioactivity of the SPS
- A software toolkit was developed in python to exploit the empirical relationship and to fit logged data:
 - Only 3 fit constants are required to give reasonable predictions over the timescales fitted (~10%)
 - Cool-down times for a simple case study (ZS exchange) were predicted for YETS
 2017 and for future SPS BDF operation
 - As longer time periods are fitted, one expects the prediction of the build-up of longer-lived isotopes will improve: to be studied
- The cool-down following a year of operation scale quadratically with intensity or extraction inefficiency:

 $t_{\rm cooldown} \sim N_L^2$, SPD², PPP²

• The model offers the possibility to predict cool-down times online and alert the operations team to anomalies: development possible

Thank you!

• Any questions?

References

[1] R.L. Keizer et al., *High intensity running and radiation problems during the 1995 physics run*, SL-Note-96-05-MS, Geneva, CERN

[2] R.L. Keizer et al., *High intensity running and radiation problems*, SL-Note-95-14-BT, Geneva, CERN, 1995

[3] G. Ferioli and R.L. Keizer, *Analysis of the induced radioactivity in the SPS extraction channels during 1994*, SL-Note-95-06-BT, 1995

[4] R.L. Keizer, Analysis of the beamloss and induced radioactivity measured in the extraction channels of the SPS during 1993, 1992 1991, SL-Note-94-06-BT, SL-Note-93-15-BT, SL-Note-93-14-BT, SL-Note-93-13-BT, SL-Note-93-08-BT, Geneva, CERN 1991-94.

[5] A.H. Sullivan and T.R. Overton, *Time variation of the dose-rate from radioactivity induced in a high-energy particle*, DI/HP/45/Rev, Geneva, CERN, 1964

[6] G.R. Stevenson, *Activation at accelerators*, CERN-TIS-RP-90-10-CF, Jahrestagung 1990, Fachverband für Strahlenschutz, Göttingen, Germany, pp. 109-117, 1990.

[7] H. Vincke and C. Theis, *ActiWiz – optimizing your nuclide inventory at proton accelerators with a computer code*, Progress in Nuclear Science and Technology, vol 4., pp. 228-232, 2014

[8] J. Borburgh, Activation reduction due to different septum tank materials, SLAWG meeting #7, 28 September 2016, Geneva, CERN: <u>https://indico.cern.ch/event/570165/</u>

[9] M.A. Fraser et al., Modelling the radioactivity induced by slow extraction losses in the CERN SPS, Proc. IPAC'17, Copnehagen, Denmark, paper TUPIK086, 2017

[10] A.C. Araujo Martinez and M. A. Fraser, *Modelling slow extraction induced radioactivity in SPS LSS2*, CERN-STUDENTS-Note-2017-035, Geneva, CERN, 2017.

Extra slides

Build-up of IR in LSS6 during WANF

• Surveys made before, during and after the WANF period in LSS6 show the heating and cooling of LSS6. Measurements made 30 hours and again a few weeks later after operation was halted. Background recovers a year or two after WANF ceased.

Deriving the effective half-life of IR(t)

• Differentiating (using the chain rule) the empirical ansatz:

 $\operatorname{IR}(t) \propto \exp\left(-k_1 \ln(t)^{k_2}\right),$

one can write:

$$\frac{d\mathrm{IR}(t)}{dt} = -\frac{k_1 k_2 \ln(t)^{k_2 - 1}}{t} \mathrm{IR}(t)$$

• This a linear ODE which resembles our exponential law for radioactive decay with a time-dependent effective decay constant:

$$\frac{d I R(t)}{dt} = -\lambda(t) I R(t)$$

where by inspection the effective half-life can be written:

$$t_{1/2}(t) = \frac{\ln(2)}{\lambda(t)} = \frac{t}{k_1 k_2 \ln(t)^{k_2 - 1}} \ln(2)$$

ALARA III at CERN

https://edms.cern.ch/document/1296520/1

Waiving of the ALARA committee meeting

Circumstances

- **Repetitive intervention**
 - A procedure has been worked out under which circumstances a waiving of the ALARA committee meeting could be possible
 - o Generic DIMRs should be worked out and approved a priori in an ALARA committee meeting.

Urgent maintenance/repair

- 'Urgent ALARA committee' decision
- o No 'formal (physical)' ALARA committee meeting required
- Generic DIMRs for standard maintenance/repair should be worked out and approved a priori in an ALARA committee meeting.

new

CRITÈRE DE DOSE INDIVIDUELLE

hard limits Équivalent de dose prévisionnel individuel (H_i) pour l'intervention, ou pour l'ensemble

des interventions de même nature lorsque celles-ci sont répétées plusieurs fois sur une année :

	100 µSv		1 mSv		
niveau	1	niveau II		niveau III	
CRITÉRE DE	DOSE CO	LLECTIVE			
Équivalent de d	ose prévisio	onnel collective (H_c) po	our l'inte	ervention, ou pour	
des intervention	ns de mêm	e nature lorsque celle	s-ci son	t répétées plusieu	
une année :			5 mS	v	
	500 μSv		10 m		
niveau	I	niveau II		niveau III	

History of ZS normalised losses: 2017

M.A. Fraser, TE-ABT-BTP 2nd Slow Extraction Wor

2nd Slow Extraction Workshop, 9 – 11th November 2017

ActiWiz: http://actiwiz.web.cern.ch

shielding

Production & decay described via Bateman equations:

$$\frac{dN_n}{dt} = P_n + (b_{n-1,n} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_n \cdot N_n$$
Laplace transform (L)
$$N_n(t) = \sum_{k=1}^m \sum_{i=1}^n \left[\left(\prod_{j=i}^{n-1} \lambda_{j,j+1} \right) \sum_{j=i}^n \left(\frac{N_i^k e^{-\lambda_j (t_{k,irr} + t_{k,cool})}}{\prod_{p\neq j}^{n} (\lambda_p - \lambda_j)} + \frac{P_i^k (1 - e^{-\lambda_j t_{k,irr}}) e^{-\lambda_j t_{k,cool}}}{\lambda_j \prod_{p=i}^{n} (\lambda_p - \lambda_j)} \right) \right]$$
decay
$$build-up$$

M.A. Fraser, TE-ABT-BTP

2nd Slow Extraction Workshop, 9 – 11th November 2017