Phenomenology of the Higgs sector of Dimension-7 Neutrino Mass Generation

Tathagata Ghosh Oklahoma State University

T. G., S. Jana, S. Nandi, arXiv:17xx.xxxxx

Mitchell Collider and Dark Matter Workshop 2017

Texas A&M University

May 19, 2017

Neutrino Mass and the Model

2 Higgs Sector

Probing Higgs Sector at the LHC

Summary of what we know now

- Convincing evidence of neutrino oscillations obtained in:
 - SK, SNO, KamLAND

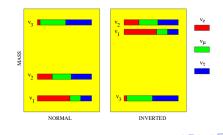
• $\delta \simeq 306^{+39}_{-70}$

- Other solar and atmospheric neutrino experiments
- Accelerator K2K experiment
- Neutrino oscillations are direct consequence of small neutrino masses and mixing

$$\begin{array}{ll} \text{MIXINGS Defined as:} \\ \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U_{\alpha i} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \\ & c_{ij} = \cos \theta_{ij} \quad s_{ij} = \sin \theta_{ij} \\ P = \text{diag}\{1, 1, e^{i\alpha}\} \end{array}$$

 $U = \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta} \\ -c_{23} s_{12} - s_{23} s_{13} c_{12} e^{i\delta} & c_{23} c_{12} - s_{23} s_{13} s_{12} e^{i\delta} & s_{23} c_{13} \\ s_{23} s_{12} - c_{23} s_{13} c_{12} e^{i\delta} & -s_{23} c_{12} - c_{23} s_{13} s_{12} e^{i\delta} & c_{23} c_{13} \end{pmatrix} P$

• $\sin^2 \theta_{12} \simeq 0.304 \pm 0.013$, $\sin^2 \theta_{23} \simeq 0.452^{+0.052}_{-0.028}$, $\sin^2 \theta_{13} \simeq 0.0218 \pm 0.0010$


M.C. Gonzalez-Garcia et al., Nuclear Physics B 00 (2015)

Masses

- We only know two mass difference squares:
 - Atmospheric: $\Delta m^2_{31} \approx (2.457 \pm 0.047) \times 10^{-3} \text{ ev}^2$
 - ► Solar: $\Delta m^2_{21} \approx (7.50^{+0.19}_{-0.17}) \times 10^{-5} \text{ ev}^2$
 - Mass pattern still unknown
- Possibilities:
 - Normal: $m_1 \ll m_2 \ll m_3$
 - Inverted: $m_1 \simeq m_2 \gg m_3$

Neutrino Mass Generation

- No neutrino mass in SM
- Neutrino mass term can be Dirac or Majorana
 We focus on Majorana ⇒ lepton number violated
- In an effective theory of neutrino mass generation $\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda_{NP}} \mathcal{O}^{d=5} + \frac{1}{\Lambda_{NP}^2} \mathcal{O}^{d=6} + \frac{1}{\Lambda_{NP}^3} \mathcal{O}^{d=7} + \dots$
- Neutrino mass: $m_{
 u} \sim v imes (rac{v}{\Lambda_{NP}})^{d-4}$
- Lowest higher dim. operator $\mathcal{O}^{d=5}$: $\mathcal{L}_{d=5} = \frac{1}{\Lambda_{NP}} LLHH$

Weinberg, PRL43 (1979) 1566

d=5 Neutrino Mass Generation

• Lowest higher dim. operator $\mathcal{O}^{d=5}$: $\mathcal{L}_{d=5} = \frac{1}{\Lambda_{WP}} LLHH$

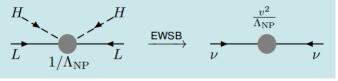


Fig. Credit: T. Ota

- Realization of Weinberg op. -
 - See-saw: there are many seesaw realizations
 - Type-I Minkowski (77), Ramond, Slansky (79), Yanagida (79), Glashow (79), Mohapatra, Senjanovic (80)
 - Type-II Schechter, Valle (80), Lazarides, Shafi, Wetterich (81), Mohapatra, Senjanovic (81)
 - ★ Type-III Foot, Lew, He, Joshi (89), Ma (98)
 - ★ Linear, Inverse, etc ...
 - Loop-induced:
 - ★ 1-loop Zee (80), Ma (99)
 - ★ 2-loop Babu (88)

May 19, 2017 6 / 27

d=7 Neutrino Mass Generation

• Next higher dim. operator $\mathcal{O}^{d=7}$: $\mathcal{L}_{d=7} = \frac{1}{\Lambda_{NP}^3} LLHHH^{\dagger}H$

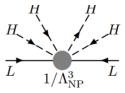
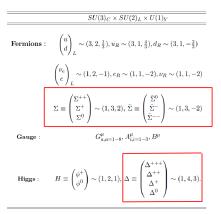
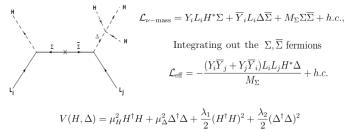



Fig. Credit: T. Ota

- Advantage: $m_{\nu} \sim \left(\frac{\nu^4}{\Lambda_{NP}^3}\right)$ More suppression \rightarrow lower $\Lambda_{NP} \rightarrow$ Collider testable
- We focus on the model proposed by Babu, Nandi and Tavartkiladze, Phys. Rev.D 80, 071702 (2009)
- Tree-level d=7 neutrino mass generation

The Model

- We focus on the model proposed by Babu, Nandi and Tavartkiladze, Phys. Rev.D 80, 071702 (2009)
- Particle content of the model:

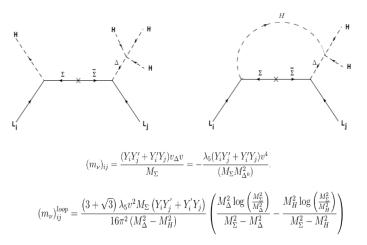


• One Y = 3, SU(2)-quadruplet scalar; and two SU(2)-triplet vector-like leptons with Y = 2, and -2

Neutrino Mass Generation in the Model

$$+\lambda_3(H^{\dagger}H)(\Delta^{\dagger}\Delta) + \lambda_4(H^{\dagger}\tau_a H)(\Delta^{\dagger}T_a\Delta) + \{\lambda_5 H^3 \Delta^{\star} + h.c.\},\$$

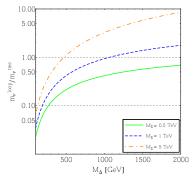
EWSB induces a VEV on the CP-even neutral component of the quadruplet


 $v_{\Delta} = -\lambda_5 v^3 / M_{\Delta}^2$

This leads to d=7 neutrino mass at tree level -

$$(m_{\nu})_{ij} = \frac{(Y_i Y'_j + Y'_i Y_j) v_{\Delta} v}{M_{\Sigma}} = -\frac{\lambda_5 (Y_i Y'_j + Y'_i Y_j) v^4}{(M_{\Sigma} M_{\Delta^0}^2)}$$

However



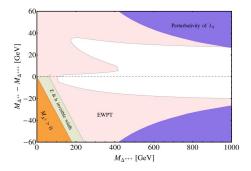
• This model does not prevent loop-level d = 5 mass generation

Bambhaniya, Chakrabortty, Goswami, Konar, arXiv:1305.2795

d=7 v d=5 Mass Generation

- This model does not prevent loop-level d = 5 mass generation
- $m_
 u^{loop}/m_
 u^{tree}\sim 1$ upto M_\Deltapprox 500 GeV for $M_\Sigma\sim$ 5 TeV
- Regardless of neutrino mass origin, Higgs sector offers reach phenomenology
- We choose $M_{\Sigma} = 5 \text{ TeV} \implies$ Integrate out $M_{\Sigma} \implies$ computationally less expensive

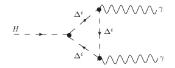
Higgs Sector of the Model



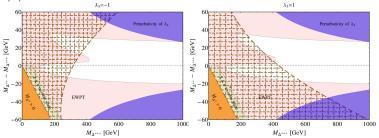
$$\begin{split} \mathbf{Higgs}: \qquad H &\equiv \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \sim (1,2,1), \ \Delta &\equiv \begin{pmatrix} \Delta^{+++} \\ \Delta^{++} \\ \Delta^0 \end{pmatrix} \sim (1,4,3). \\ V(H,\Delta) &= \mu_H^2 H^{\dagger} H + \mu_\Delta^2 \Delta^{\dagger} \Delta + \frac{\lambda_1}{2} (H^{\dagger} H)^2 + \frac{\lambda_2}{2} (\Delta^{\dagger} \Delta)^2 \\ &+ \lambda_3 (H^{\dagger} H) (\Delta^{\dagger} \Delta) + \lambda_4 (H^{\dagger} \tau_a H) (\Delta^{\dagger} T_a \Delta) + \{\lambda_5 H^3 \Delta^{\star} + h.c.\}, \end{split}$$

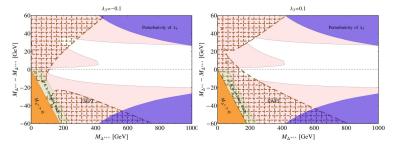
- The Higgs sector contains exotic doubly and triply-charged Higgs
- $\bullet\,$ Striking SS2I or SS3I signatures at the LHC from $\Delta^{\pm\pm}$ and $\Delta^{\pm\pm\pm}$ decay
- Neutral Sector: mixing between h and Δ^{0r} is proportional to v_{Δ} or λ_5
- $v_{\Delta} \lesssim 2$ GeV from ρ parameter
- $M^2_{\Delta^{0r}} \approx M^2_{\Delta^{0r}} \approx -\lambda_5 v^3 / v_\Delta \implies \lambda_5 \lesssim -v_\Delta$ to generate $\mathcal{O}(100 1000)$ GeV mass
- Mixing is negligible except for $v_\Delta \sim \mathcal{O}(1)$ GeV

Mass Splitting of the Quadruplet



- $M_i^2 = M_{\Delta^0}^2 q_i \frac{\lambda_4}{2} v^2 (q_i = 1, 2, 3)$
- $\Delta M > 0 \implies M_{\Delta^{+++}} < M_{\Delta^{++}} < M_{\Delta^+} < M_{\Delta^0}$
- $\Delta M < 0 \implies M_{\Delta^{+++}} > M_{\Delta^{++}} > M_{\Delta^+} > M_{\Delta^0}$
- EWPT $\implies S, T$ parameters constrains the parameter space in $M_{\Delta^{\pm\pm\pm}} \Delta M$ plane
- Gives rise to potentially difficult mass-spectra at the LHC


 $H \to \gamma \gamma$



- Presence of doubly and triply-charged scalars can significantly increase/decrease the decay width of SM Higgs into di-photon
- $h\Delta\Delta$ coupling depends on combination of quartic couplings λ_3 and λ_4
- λ_4 is constrained by EWPT
- Measured $\mu^{\gamma\gamma} = BR_{NP}^{\gamma\gamma}/BR_{SM}^{\gamma\gamma}$ at the LHC can strongly constrain on Δ mass-spectra (depends on the value of λ_3)
- LHC combined Run-I $ightarrow \mu^{\gamma\gamma} = 1.16 \pm 0.18$

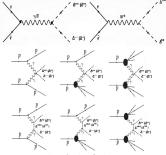
${\it H} \rightarrow \gamma \gamma$ constraint from Run-I

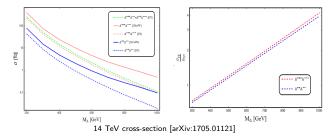
Brown shaded regions ruled out – highly λ_3 dependent

■ ◆ ■ ト ■ つへの May 19, 2017 15 / 27

・ロト ・ 理 ト ・ 国 ト ・ 国 ト

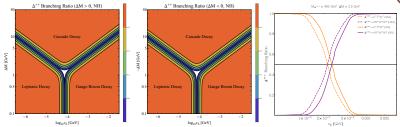
Direct and Associated production of $\Delta^{\pm\pm\pm}(\Delta^{\pm\pm})$




Fig. Credit: S. Jana

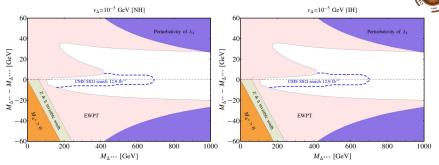
- $\Delta^{\pm\pm\pm}(\Delta^{\pm\pm})$ pair and associated production at the LHC happens via Drell-Yan (DY)
- Photon fusion (PF) is a secondary process \rightarrow Photon PDF is available from NNPDF, CTEQ, MRST
- For larger $\Delta^{\pm\pm\pm}(\Delta^{\pm\pm})$ PF contribution is significant \rightarrow However uncertainty in available photon PDFs are significantly large Babu, Jana, (2016) [arXiv:1612.09224], K.Ghosh, Jana, Nandi, (2017) [arXiv:1705.01121]

Direct and Associated production of $\Delta^{\pm\pm\pm}(\Delta^{\pm\pm})$


17 / 27

- $\Delta^{\pm\pm\pm}(\Delta^{\pm\pm})$ pair and associated production at the LHC happens via Drell-Yan (DY)
- \bullet Photon fusion (PF) is a secondary process \rightarrow Photon PDF is available from NNPDF, CTEQ, MRST
- For larger $\Delta^{\pm\pm\pm}(\Delta^{\pm\pm})$ PF contribution is significant \rightarrow However uncertainty in available photon PDFs are significantly large Babu, Jana, (2016) [arXiv:1612.09224], K.Ghosh, Jana, Nandi, (2017) [arXiv:1705.01121]

Decay of $\Delta^{\pm\pm\pm}(\Delta^{\pm\pm})$

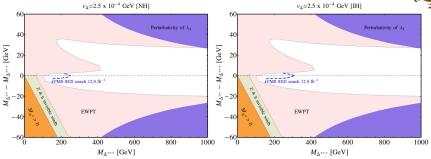


- Depends on ΔM and v_{Δ}
- For $\Delta M \ge 0 \implies$

• $\Delta^{\pm\pm\pm} \rightarrow I^{\pm}I^{\pm}W^{\pm}(W^{\pm}W^{\pm}W^{\pm})$ dominates for small (large) v_{Δ}

- $\Delta^{\pm\pm}
 ightarrow l^{\pm}l^{\pm}(W^{\pm}W^{\pm})$ dominates for small (large) v_{Δ}
- \blacktriangleright Crossover happens at $\sim 10^{-4}$ GeV
- ▶ For $\Delta M \gtrsim 2-20$ GeV Cascade Decay $\Delta^{\pm\pm} \rightarrow \Delta^{\pm\pm\pm} W^{*\mp}$ dominates
- For $\Delta M < 0 \implies$
 - $\Delta^{\pm\pm\pm}
 ightarrow \Delta^{\pm\pm} W^{\pm}$ always happens
 - $\Delta^{\pm\pm}
 ightarrow l^{\pm}l^{\pm}(W^{\pm}W^{\pm})$ dominates for small (large) v_{Δ}
 - ▶ For $\Delta M \gtrsim 2-20$ GeV Cascade Decay $\Delta^{\pm\pm} \rightarrow \Delta^{\pm} W^{*\pm}$ dominates

Constraint from SS2I Searches at LHC



- \bullet CMS and ATLAS searches for $\Delta^{\pm\pm}$ in SS2I final states
- However they assume 100% BR in various leptonic channel
- In a realistic fitting of neutrino masses it never happens We use $\Delta m_{21}^2 = 7.50 \times 10^{-5} \text{ev}^2$, $\Delta m_{31}^2 = 2.50 \times 10^{-3} \text{ev}^2$, $\sin^2 \theta_{12} = 0.320$, $\sin^2 \theta_{23} = 0.500$, $\sin^2 \theta_{13} = 0.025$, $\delta = 0$
- CMS analysis at 12.9 fb⁻¹ provides strongest limit CMS PAS HIG-16-036
- We obtain the strongest limits from $\mu^\pm\mu^\pm(e^\pm e^\pm)$ for NH (IH)
- No bound for $W^{\pm}W^{\pm}$ dominated channel

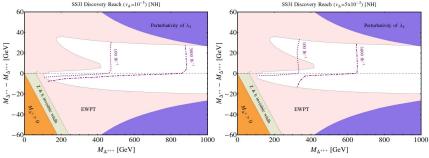
Tathagata Ghosh (OK State) d=7 Neutrino Mass, Higgs Sector, and LHC

Constraint from SS2I Searches at LHC

- $\bullet~$ CMS and ATLAS searches for $\Delta^{\pm\pm}$ in SS2I final states
- However they assume 100% BR in various leptonic channel
- In a realistic fitting of neutrino masses it never happens We use $\Delta m_{21}^2 = 7.50 \times 10^{-5} \text{ev}^2$, $\Delta m_{31}^2 = 2.50 \times 10^{-3} \text{ev}^2$, $\sin^2 \theta_{12} = 0.320$, $\sin^2 \theta_{23} = 0.500$, $\sin^2 \theta_{13} = 0.025$, $\delta = 0$
- CMS analysis at 12.9 fb⁻¹ provides strongest limit CMS PAS HIG-16-036
- We obtain the strongest limits from $\mu^\pm\mu^\pm(e^\pm e^\pm)$ for NH (IH)
- No bound for $W^{\pm}W^{\pm}$ dominated channel

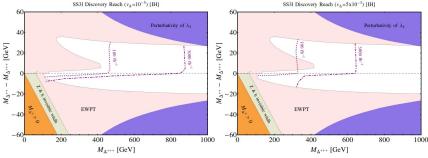
Tathagata Ghosh (OK State) d=7 Neutrino Mass, Higgs Sector, and LHC

May 19, 2017 20 / 27


Searching for $\Delta^{\pm\pm\pm}$ at the LHC

- Although $\Delta^{\pm\pm}$ has a better prospect to be found at the LHC, this particle is not exclusive to this model
- \bullet To verify/falsify this model we also need to search for $\Delta^{\pm\pm\pm}$
- $\Delta^{\pm\pm}$ searches looses sensitivity for $\Delta M\gtrsim 5$ GeV
- For $\Delta^{\pm\pm\pm}$ one needs to look at SS3I channel \implies sensitivity remains the same for all $\Delta M > 0$
- Major BGs $\rightarrow t\bar{t}(Z/\gamma^*), t\bar{t}W^{\pm}, t\bar{t}t\bar{t}, I^+I^-VV(V=Z,W^{\pm})$
- After cuts $t \bar{t} W^{\pm}$ dominates $ightarrow \sigma_{BG}^{total} pprox 5 imes 10^{-3}$ fb

Future Prospects of SS3I Search



- Discovery potential upto 450 (950) GeV at 100 (3000) fb⁻¹ for *IIW* dominated region
- Discovery potential upto 350 (700) GeV at 100 (3000) $\rm fb^{-1}$ for WWW dominated region
- Covers the whole area available for $\Delta M > 0$ scenarios
- Similar results for NH and IH

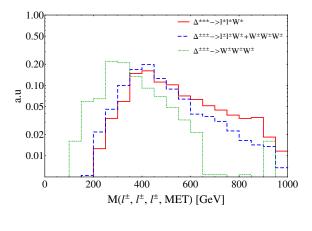
Future Prospects of SS3I Search

- Discovery potential upto 450 (850) GeV at 100 (3000) fb⁻¹ for *IIW* dominated region
- Discovery potential upto 350 (650) GeV at 100 (3000) $\rm fb^{-1}$ for WWW dominated region
- Covers the whole area available for $\Delta M > 0$ scenarios
- Similar results for NH and IH

Conclusion

- This model can provide an avenue to generate tiny neutrino masses via tree-level d=7 operator
- M_{Σ} has to be light upto $\lesssim 500$ GeV for d=7 to dominate \rightarrow regardless of d=7 or d=5 operator this model predict TeV scale doubly-triply charged Higgs at the LHC
- $\Delta^{\pm\pm\pm}$ can be discovered upto 350–500 GeV in SS3I channel at 100 fb⁻¹.... for all $\Delta M \ge 0$
- Large $\Delta M < 0$ poses serious problem \rightarrow Cascade Decay \rightarrow Innovative Search Strategy needed
- Improved result from $H \to \gamma \gamma$ can close this window albeit only for large λ_3 values

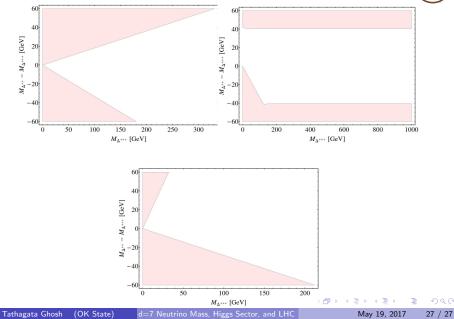
The End


Tathagata Ghosh (OK State) d=7 Neutrino Mass, Higgs Sector, and LHC

▲ ▲ 클 ▶ 클 ∽ ९.여 May 19, 2017 25 / 27

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Backup-I



$$\mathcal{L}_{m_{\nu}} = Y_i \overline{l_{iL}}^C H^* \Sigma_L + Y_i' \overline{\Sigma_R} \Phi l_{iL} + \overline{\Sigma_R} M_{\Sigma} \Sigma_L + h.c.,$$

→ ∃ →

Backup-II

