Probing Right-handed neutrinos via the Semileptonic Higgs Channel

Yu Gao

Wayne State University

Collider Dark Matter Workshop, 17', TAMU

1704.00881 1611.00773

Outline

- Searches for right-handed neutrinos
- Brief overview on collider bounds
- A search channel from $g g \rightarrow h j$ and semileptonic *h* decays

Why RH neutrinos & where to look

- Understanding neutrino masses: heavy Majarona fermion(s) for see-saw mechanism
- Cosmology: Relativistic species (N_{eff}), reheat, dark matter, etc.
- EW theories: Extended symmetry requirements

- Indirect search cosmic ray signals
- Correction to W, Z properties (EWPD)
- Weakly(and strongly?) produced at collider
- Associated production with (model dependent) other BSM partners

`Common' see-saw features in RH Neutrinos

- See-saw: A finite Majorana RH neutrino mass
- RH neutrino talks to SM via Yukawa (Dirac mass) terms
- Leads to a (small) mixing into SM neutrinos, hence W, Z, couplings, etc.
- Identify with "economical" SM extensions with fermion(s)

$$\mathscr{L} = \mathscr{L}_{\rm SM} + \bar{N}_i i \partial N_i + (\lambda_N^{ij} N^i L^j H + \frac{M_N^{ij}}{2} N_i N_j + \text{h.c.})$$

(Type-I) see-saw

$$\begin{array}{ccc} \nu_L & \nu_R \\ \nu_L \begin{pmatrix} 0 & \boldsymbol{\lambda}_N^T v \\ \nu_R \begin{pmatrix} \boldsymbol{\lambda}_N v & \boldsymbol{M}_N \end{pmatrix} & \boldsymbol{\theta} \approx \left(\frac{m_\nu}{M_N} \right)^{1/2} \end{array}$$

Minkowski (1977) Yanagida(1979) Gell-Mann, Ramond, & Slansky (1979) Glashow (1980)

How to produce a RH neutrino?

- Via mixing with the SM neutrino.
- Leading channel : Drell-Yan
- Resonant W, Z, h production (for $M_N < M_{W/Z/h}$)
- Need significant mixing $\nu \simeq \nu_m + V_{\ell N} N_m$

and a few other ways ...

N pair production suppressed by mixing⁴

Vector-boson and/or lepton fusion: need lepton and/or VB luminosity

and a few other *less blessed* ways ...

N pair production suppressed by mixing⁴ Note: Z' are not mixing-suppressed but $(m_{z'}/g_{z'})$ must be large

Vector-boson and/or lepton fusion: need lepton and/or VB luminosity

Or maybe go after associated N partners instead

e.g. SU(2) charged triplets [Type III]

RN decays: Missing energy, or prompt decays?

• RH *N* decays weakly via its mixing into SM neutrino, yet its lifetime varies greatly...

May search for other `associated' particles, like charged scalars in Type II, heavy Z' in extra U(1), etc.

When RH N's lifetime is very long and N becomes MET at collider, leadings to mono-lepton signals, but measuring its mass and identifying the N can be difficult.

NOTE: A long RH N lifetime can be useful in indirect searches

- In a 1 5 GeV mass range, (Type-I) RH neutrinos can escapes the Sun before decaying [with a Lorentz boost from TeV -scale dark matter annihilations]
- Signal in both high-energy γ-ray & neutrinos in the Sun's direction ΔL ⊃ y_D(L[†] · iτ₂H)N + h.c.,

$$\Gamma_N \propto \theta^2 G_{\rm F}^2 M_N^5 \frac{M_N}{M_{\rm DM}}$$

boosted $\tau_N \propto \frac{M_{\rm DM} m_{\nu}}{M_N^5}$

 Leads to strong bounds from both Fermi-LAT and IceCube

R. Allahverdi, YG , B. Knockel, S. Shalgar, 1612.03110, PRD 95 no. 7, 075001 (2017) For neutrino sector's DM, aslo see R. Allahverdi, S.Campbell, B.Dutta, YG PRD 90, no. 7, 073002 (2014)

Collider friendly scenario: Inverse seesaw R. N. Mohapatra, 1986

- Outsource Maj. mass to an additional singlet fermion
- Larger mixing angle into RH *N*, but no LNV in *N* decay
- Can be flavor-diagonal in *v*-*N* mixing (m_D terms)

$$\mathcal{L} \supset -Y_D^{\alpha\beta}\overline{\ell_L^{\alpha}}\tilde{H}N_R^{\beta} - M_N^{\alpha\beta}\overline{S_L^{\alpha}}N_R^{\beta} - \frac{1}{2}\mu_{\alpha\beta}\overline{S_L^{\alpha}}S_L^{\beta^C} + H.c.$$

$$\frac{|SU(2) U(1)_Y}{\ell 2 - 1/2} \qquad M_{\nu} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M_N^T \\ 0 & M_N & \mu \end{pmatrix} \stackrel{\nu}{N} \stackrel{N}{s}$$

$$\frac{N_R}{S_L} \stackrel{\mathbf{1}}{\mathbf{1}} \quad 0 \qquad m_{\nu} \simeq (m_D M_N^{-1})\mu(M_N^{-1^T} m_D^T)$$

A quick look at the present and future...

Drell-Yan channels

- pp \rightarrow *l N*, *N* \rightarrow *l lv*, final state: `Trilepton' *lllv*
- pp $\rightarrow v N$, $N \rightarrow l l v$, final state: two lepton l l v v
- Semileptonic N decays $N \rightarrow j j v$, mass reconstruct-able
- Mediator can be on shell (resonance) for light N

Higgs channel ($h \rightarrow v N \rightarrow ll v v$)

Higgs mediation:

SM Higgs width is small, sensitive to smaller mixing Higher resonance mass than W, Z.

Semileptonic Higgs channel $(h \rightarrow v N \rightarrow l j j v)$

- The virtual W* in $N \rightarrow lW^*$ decays hadronically.
- *N* mass fully reconstructible

```
A. Das, YG, T.Kamon, 1704.xxxxx
```

- No leptons (Higgs channel), need ISR jet for triggering
- High P_T ISR transversely boosts *h* system higher l, $j_2 j_3 P_T$

Efficient reconstruction of W and N masses. $M_N = 100$ GeV.

Cuts, efficiency & signal strength

Max. allowed pre-cut cross-section

Quoting current bounds on mixings: LHC $h\rightarrow$ 2l2v, and EWPD limits

Max. signal cross-section with efficiencies

Optimally ~ fb signal around m_N 105-110 GeV

Backgrounds & significance...

			2	1	Cross-	sectio	ns in	pb, pre-cu	ut require	es $P_T(j_1)$ >	100 GeV
Channel	tj	tW	$t\overline{t}$	W+jets	Z+jets	WWj	WZj	ZZj	$M_N = 100$	$M_N {=} 105$	$M_N = 110$
Pre-cut σ [pb]	40	52	$4.7{\times}10^2$	$2.5{\times}10^3$	$9.5{\times}10^2$	7.1	5.4	0.69	0.017	0.030	0.035
Eff. $p_T(j_1) > 200$	0.12	0.034	0.052	0.12	0.13	0.25	0.29	0.23	0.17	0.16	0.17
Eff. N _j \geq 3,N _l =1	0.073	0.14	0.21	0.046	0.014	0.14	0.10	0.039	0.39	0.38	0.48
Eff. $M(j_2j_3)$ on M_W	0.12	0.16	0.12	0.17	0.14	0.29	0.33	0.27	0.40	0.42	0.40
$\sigma[{ m pb}]$	0.040	0.038	0.59	2.3	0.24	0.074	0.054	$2.0{\times}10^{-3}$	3.8×10^{-4}	$7.9{\times}10^{\text{-}4}$	1.0×10^{-3}

TABLE II: Cut efficiencies of Cuts (1)-(3) on SM background and heavy neutrino signals.

W+jets turns out to be the largest bkg, s/b \rightarrow % level

Mass	Window	$\sigma(tj)$	$\sigma(tW)$	$\sigma(t\bar{t})$	$\sigma(W+j$	ets)	$\sigma(Z{+}{\rm jets})$	$\sigma(WWj)$	$\sigma(WZj)$	$ V_{\ell N} ^2_{\rm max}$	LO $\sigma_{\rm sig}$	NNLO $\sigma_{\rm sig}$
	100	0.011	$3{\times}10^{-3}$	0.028	0.20		0.022	6.0×10^{-3}	5.0×10^{-3}	3.4×10^{-4}	3.5×10^{-4}	6.1×10^{-4}
M _N	105	0.011	$4{\times}10^{-3}$	0.028	0.23		0.026	8×10^{-3}	6×10^{-3}	9.0×10^{-4}	7.2×10^{-4}	1.2×10^{-3}
	110	0.010	$6{ imes}10^{-3}$	0.037	0.23	1	0.030	9.0×10^{-3}	7.0×10^{-3}	1.7×10^{-3}	9.3×10^{-4}	$1.6{\times}10^{\text{-}3}$

~ /

~ fb signal, 0.3 pb total background

(Conversative) S/Sqrt[S+B] = 2.6(3.8) at 3000 fb⁻¹ (for single-flavor N) $M_N = 100(110)$ GeV ¹⁹

Summary

- RH neutrino mass fully reconstructible in semileptonic $pp \rightarrow hj$ channel
- Best sensitivity at *N* mass 100-110 GeV range
- Given current EWPD & Higgs bounds, discovery potential in high luminosity LHC runs
- Analysis only requires *vN* mixing (caveats apply)
- Multiple roles of high $j_1 P_T$: for both triggering & *N* mass reconstruction

Thanks!