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THE ACDM MODEL OF COSMOLOGY

The ACDM model, supplemented with inflation is in very good
agreement with current observations
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Ordinary Matter: ~5% of density content!

Dark Matter: non-luminous weakly inferacting parficles
(axions, wimps, neutrinos, LSP, etfc).

Dark Energy: permeates the universe uniformly causing the
accelerated expansion of the universe (A, modified gravity,
guintessence).



PRE-BBN COSMOLOGICAL EVOLUTION

While ACDM strongly supported by current data, physics from
reheating till just before BBN (T' ~ MeV), remains relatively
unconstrained.

During this period, universe may have gone through a non-
sfandard period of expansion, compatible with BBN

In the context of the thermal relic scenario, if such
modification happens during DM decoupling, DM freeze-out
may be modified with measurable consequences for the
thermal relic DM abundances and cross-sections:

particle freeze-out may be accelerated (or delayed) and
the relic abundance enhanced (or suppressed)

[Kamionkowski, Turner, '90; Salaki, '03; Rosalki,
‘03; Profumo, Ullio, ‘'03; Catena ek al. ‘04 ]



THERMAL RELIC SCENARIO

What is the origin and nature of dark mattere

The tavourite framework for origin of dark matter is the
thermal relic scenario:

During thermal equilibrium xx < ff (Ty 2 H)

nyl ~ e~ mx/T

the longer the DM (anti) particles remain in equilibrium the lower their number densities are at freeze- out. Thus species with larger interaction cross sections which
maintain thermal contact longer,

As universe cools and expands, inferactions become
less frequent and decay rate drops xx < ff I'x S H)

At this point number density freezes-out, and we are
left with with a relic of DM particles

freeze out with diminished abundances. Thermal relic WIMPS are excellent DM candidates as their weak scale cross section 0 ~ G2Fm2X gives the correct order

of magnitude for Qpy; h? for a standard radiation-dominated early universe. However, if the universe experiences a non-standard expansion law during the
epoch of dark matter decoupling, freeze-out may be accelerated and the relic abundance enhanced

The longer the DM particles remain in equilibrium, the lower
their density will be at freeze-out and vice-versa



THERMAL RELIC SCENARIO

In this scenario, a DM candidate with a weak scale
Interaction cross-section, freezes out with an abundance that
matches the presently observed value for the DM density

Qpas = 0.1188 & 0.0010h 2 (h = 0.6774 £ 0.0046)

(H = 100h km/s/Mpc)

Observations indicate that annihilation cross-sections can be
smaller than the thermal average value for lower dark matter

masses (5100 GeV)

Whereas an annihilation cross-section larger than the thermal
average value can still be allowed for larger DM masses
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STRING THEORY ORIGIN OF DM?

® String theory models of particle physics
(D-branes, heterotic, M-theory) offers a = ssaonic
plethora of potential DM candidates
(SUSY partners, axions, hidden sector
marter, efc)

4-Leptonic

® But hard 1o make a distinction between o -
stringy and field theory LSP, e.qg.

@ Can we find alternative ways, even if @

indirect, to test string theory predictions \—4
INn tferms of their dark matter comdidcj’res2




PLAN

¢ Conformal and Distormally coupled matter: a
phenomenological approach

¢ Modified expansion rate: conformal case
¢ Effects on relic abundance
¢ Turning on Disformal factor

¢ Towards a D-brane picture

[See Estebain Jimenez’s talic]



CONFORMAL&DISFORMALLY COUPLED MATTER

Consider the following action:

S:SEH—I—S¢+Sm

1
k2

t'oy=g R~ [atoy=g 5067 + V(6)| - [d'21/F LG
where matter is coupled to

g,ul/ — C(¢)g/w + D(¢)a,u¢8u¢

C(¢) conformal transformation (preserves angles)

D(¢) disformal transformation (distorts angles)

[Bekenstein, 92]
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IMPACT ON EARLY EVOLUTION

Departures from standard cosmology will arise due fo the
different expansion rate, H determined by scalar evolution

[Kamionkowski, Turiher, '90]

— Impact in DM relic abundances [Saloli, ‘03; Rosaki 03]
[Profumo, Ullio, ‘03]
First study of conformally coupled DM/Quintessence model
was considered by Catena et al. Lahanas et al in non-critical
string theory models [Catena et al. ‘04]

[Lahawnas et al. ‘o8]

A first estimate of modification of the relic
abundance of WIMP's due fo change in
expansion rate at the time of CDM freeze-out S
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e What are the generic predictions for conformal coupling?
e How is cross-section modified (enhanced/diminished)<¢
e What is the effect of a distormal couplinge



MODIFIED EXPANSION RATE

In FRW background, evolution equations in Einstein frame (with
respect fo guv) become

/{2

H® = = [ps + 7] ,
. 9 /4;2
H+ H* =~ [py+ 3P + p+ 3P) .

d+3Hdp+Vy+Qo=0.

_ Py P P\ (Po _DCo\ 2, Coy_
where Qo—plcgb+cgb(3H+p>+(20 CC)gb +20(1 3w)

Total energy is conserved v, (74 + 1) = 0. but individual
conservation equations are modifled: | note thob in the Jordan/

disformal frame, the

10.¢ + 3H(p¢ + PCb) — _QOQSa ev\ergjﬂmamw&um tensor is

H+ 3H(,0—|— P) _ QO¢ conserved, V, T+ =0
=  p+3H(p+P)=0

v




MODIFIED EXPANSION RATE

We are looking for the modified expansion rate in the disformal
or Jordan frame, felt by matter g, H = e,

. H~
H = =5 (L+alp)y) (= K0)
= H?>D |
where '=d/dN, yr=1- 0
K
dln C1/?
alp) = —
v

We need to compare this modified rate with the standard GR:

2
K ~ _ _
Hep = =370 where 5=0C"2y"1,

In terms of H and ¢, it can be written as

2 2

1442 kS CT(1+A) o

v H® = Hép 97
RQGR 5 (B_l 6)



MODIFIED EXPANSION RATE

We are looking for the modified expansion rate in the disformal
or Jordan frame, felt by matter g, H = e,

Hry

H = 1/2

(1+ a(p)¢) (p = k)

We need to compare this modified rate with the standard GR:

’y_le _

which needs to go to 1 fowards the start of BBN



CONFORMAL CASE: SCALAR EVOLUTION

In the conformal case, equations can be reduced to a
single master equation for ¥, which we solve during radiation

and maftter era V(e) ~0
2 /! ~ / _
30 _2g ¢ T (@) ¢ 21 -30)alp) =0,

where & = v*w is the Jordan frame eos computed from

5—3]5:Z/5A—3]5A+ﬁ_m
1 P

1-30="—
p p

which takes info account small departures ...
from 1/3 when a species becomes non- ..

a(T)

relafivistic

T(GeV)

[See Esteban Jimenez’s tallk]



CONFORMAL CASE: SCALAR EVOLUTION

Conformal coupling acts as effective potential for ¢

2 . -
For concreteness we consider Vers
C(QO) _ (1_|_b€—5g0)2 (b:O.l, 5:8)
[Catena ek al. ‘04 ]
= Verr = In(1+ be_ﬁcp)

Vet
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CONFORMAL CASE: SCALAR EVOLUTION

Conformal coupling acts as effective potential for ¢

2
3(1 —¢/6)

"+ (1=@) " +2(1 = 30)alp) =0,

For concreteness we consider

C(QO) _ (1 4 be—ﬁgz))Q (b = 0.1, 5 = 8)
[Catena ek al. ‘04 ]
= Verr = In(1+ be_ﬁcp)
Vet




CONFORMAL CASE: SCALAR EVOLUTION

Conformal coupling acts as effective potential for ¢

2
3(1 —¢/6)

"+ (1=@) " +2(1 = 30)alp) =0,

For concreteness we consider

C(QO) _ (1 4 be—ﬁgz))Q (b = 0.1, 5 = 8)
[Catena ek al. ‘04 ]
= Verr = In(1+ be_ﬁcp)
Vet




CONFORMAL CASE: SCALAR EVOLUTION

Conformal coupling acts as effective potential for ¢

2
3(1 —¢/6)

"+ (1=@) " +2(1 = 30)alp) =0,

For concreteness we consider

C(QO) _ (1 4 be—ﬁgz))Q (b = 0.1, 5 = 8)
[Catena ek al. ‘04 ]
= Verr = In(1+ be_ﬁcp)
Vet




CONFORMAL CASE: SCALAR EVOLUTION

This second choice of inifial conditions gives the most
iInferesting evolution

Conformal factor evolution

(¢0, %) = (0.2,—-0.994)

C(e)

T(GeV)

0.2} Scalar fi,ei.d evolukion

0.0 (QO(), @6) — (0.2, —0994)

o(T)

-0.4}

-0.6}




CONFORMAL CASE: EXPANSION RATE

T(GeV)

Expamsmm rakes comparésom

(for initial conditions: (vo, ) = (0.2,-0.994))

H~

H = 1/2

(I+ a(p)¢)

(we consider onhly expanding solutions,
(1+a(p)e’) >0)

Note that Einstein frame H always decreases (ho violakion of
energy conditions). However, distormal frame H can increase

Notorious nokech a
annihilation effec

gpeo\rs, which gives rise to possibility of re-
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CONFORMAL CASE: EXPANSION RATE
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EFFECT ON DM RELIC ABUNDANCE

The impact of modified expansion rate on relic abundance for
DM particle X with mass m, can now be determined from
Boltzmann equation

dn,

"X = 30y — (ov) (2 — (n59)?)

X

which defermining the dark matter number density n,
evolution.

Here (ov)is the annihilation cross-section and nf(q the

equilibrium numlber density.

Rewriting Boltzmann equation in terms of z = m, /T
Y =2 5= i—ggs(f)f?’ﬁ

s

dY — s{ov)

dr —  zH

(Y2 o Ye2q)

[See Estebann Jimenez’s kalic]



EFFECT ON DM RELIC ABUNDANCE

Boltzmann equation, gives us the DM relic abundance

[See Esteban Jimenez’s talic]
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DISFORMAL CASE:. EXPANSION RATE

Turning on the disformal coupling, we need to solve the

coupled system of eqgs for ¢, H
3B 127 a(p) = A C13
H =-H [—(1 e R dp
2 2 | dln D1/2

o [1 . 3H2~2B D] 43 [ _3H?B D] PR [1 . 3H2~2B D]

1 —
k2 C “ k2 C HSO k2 C

PTE20(0) — alg)g =0

Use same conformal factor plus a small distormal contribution:

+3Ba(p)(1 — 30) +

K2

D(¢) = Dop? with Dy = —4.9 x 10~ 14
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DISFORMAL CASE:. EXPANSION RATE

Turning on the disformal coupling, we need to solve the

coupled system of eqs for ¢, H
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DISFORMAL CASE:. EXPANSION RATE
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THE D-BRANE CASE /&
)

Conformal&Distormal couplings arise naturally from D-brane

actions. They are dictated by theory and arise as follows:
S =Sgpy + S¢ + S,

1
SEH = 9,2 d437\/ng>

D1(¢)

4 4 2
So=— [ dtav=g | 300 + M 01<¢>\/ G @R V()]
S = [ do7/ =5 Lar G
where Guv = C2(9) g + D2(¢)0,00,¢ .
D-brane case: b=0, C; =0C% D;=Ds

Accelerating scaling solutions in coupled DE/DM models have

been found in for monomial potentials.
[Koivisto, Wills, 1Z ‘13]
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WORK IN PROGRESS
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THE D-BRANE CASE

The coupled equations to find the scalar evolution and
expansion rates is No modified as

35 ¢/2M40D7]
H =-H 1+ w)+ |
[2(1 +A) ( ) v+ 1
3H*y"'B D 3H?>y3Bo D]  H' 3H?*y~'B D
/! 1 3 / -2 . 41 / 1
¥ [ +M4CDK2 C] + o [’V MACDR2 C] + HSO [ + VD2 C
3B’y_3 - 3[_[2,}/—13 D .
1 — _
+3ap P = 30) + e = [(0(0) — al) 7]
where p=i_MCDy »
B 3(v+1) ©

* We cannot take D=0. C&D contribute as a potential ferm

e How do these change expansion rate and thus relic
abundance and cross-section predictionse

e Can we constraint C&D from observation?
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SUMMARY

We Iinvestigated modifications to standard relic picture due
to non-standard early cosmology evolution in scalar-tensor
theories with conformal and disformal couplings to matter

For suitable initial conditions, inferesting non-trivial

modifications appear in expansion rate and thus in the relic
abundance of DM

We studied a phenomenological scalar-tensor model, as a
warm up to understand D-brane induced conformal/
disformal couplings to matter



