MATTER RELICS IN DISFORMAL SCALAR-TENSOR THEORIES

(Towards a post-inflationary string cosmology)

IVONNE ZAVALA SWANSEA UNIVERSITY

MITCHELL WORKSHOP ON COLLIDER AND DARK MATTER PHYSICS 2017

BASSED ON 1612.05553 + WORK IN PROGRESS W/BHASKAR DUTTA, ESTEBAN JIMENEZ

THE ACDM MODEL OF COSMOLOGY

The Λ CDM model, supplemented with inflation is in very good agreement with current observations

Ordinary Matter: ~5% of density content!

Dark Matter: non-luminous weakly interacting particles (axions, wimps, neutrinos, LSP, etc).

Dark Energy: permeates the universe uniformly causing the accelerated expansion of the universe (Λ , modified gravity, quintessence).

PRE-BBN COSMOLOGICAL EVOLUTION

- While Λ CDM strongly supported by current data, physics from reheating till just before BBN $(T \sim MeV)$, remains relatively unconstrained.
- During this period, universe may have gone through a nonstandard period of expansion, compatible with BBN
- In the context of the thermal relic scenario, if such modification happens during DM decoupling, DM freeze-out may be modified with measurable consequences for the thermal relic DM abundances and cross-sections:
 - particle freeze-out may be accelerated (or delayed) and the relic abundance enhanced (or suppressed)

THERMAL RELIC SCENARIO

What is the origin and nature of dark matter?

The favourite framework for origin of dark matter is the thermal relic scenario:

During thermal equilibrium $\chi \bar{\chi} \leftrightarrow f \bar{f}$ $(\Gamma_{\chi} \gtrsim H)$

$$n_{\chi}^{eq} \sim e^{-m_{\chi}/T}$$

the longer the DM (anti) particles remain in equilibrium the lower their number densities are at freeze- out. Thus species with larger interaction cross sections which maintain thermal contact longer,

- As universe cools and expands, interactions become less frequent and decay rate drops $\chi \bar{\chi} \leftrightarrow f \bar{f} \ (\Gamma_{\chi} \lesssim H)$
- At this point number density freezes-out, and we are left with with a relic of DM particles

freeze out with diminished abundances. Thermal relic WIMPS are excellent DM candidates as their weak scale cross section $\sigma \sim G^2_F m^2_{\chi}$ gives the correct order of magnitude for Ω_{DM} h² for a standard radiation-dominated early universe. However, if the universe experiences a non-standard expansion law during the epoch of dark matter decoupling, freeze-out may be accelerated and the relic abundance enhanced

The longer the DM particles remain in equilibrium, the lower their density will be at freeze-out and vice-versa

THERMAL RELIC SCENARIO

In this scenario, a DM candidate with a weak scale interaction cross-section, freezes out with an abundance that matches the presently observed value for the DM density

$$\Omega_{DM} = 0.1188 \pm 0.0010 h^{-2}$$
 $(h = 0.6774 \pm 0.0046)$ $(H = 100h \, \text{km/s/Mpc})$

Observations indicate that annihilation cross-sections can be smaller than the thermal average value for lower dark matter masses (≾100 GeV)

Whereas an annihilation cross-section larger than the thermal average value can still be allowed for larger DM masses

[Planck, '15] [DES, Fermi-LAT, '16]

STRING THEORY ORIGIN OF DM?

 String theory models of particle physics (D-branes, heterotic, M-theory) offers a plethora of potential DM candidates (SUSY partners, axions, hidden sector mater, etc)

- But hard to make a distinction between stringy and field theory LSP, e.g.
- Can we find alternative ways, even if indirect, to test string theory predictions in terms of their dark matter candidates?

PLAN

- Conformal and Disformally coupled matter: a phenomenological approach
- Modified expansion rate: conformal case
- Effects on relic abundance
- Turning on Disformal factor
- Towards a D-brane picture

[See Esteban Jimenez's talk]

CONFORMAL&DISFORMALLY COUPLED MATTER

Consider the following action:

$$S = S_{EH} + S_{\phi} + S_{m}$$

$$= \frac{1}{2\kappa^{2}} \int d^{4}x \sqrt{-g} R - \int d^{4}x \sqrt{-g} \left[\frac{1}{2} (\partial \phi)^{2} + V(\phi) \right] - \int d^{4}x \sqrt{-\tilde{g}} \mathcal{L}_{M}(\tilde{g}_{\mu\nu})$$

where matter is coupled to

$$\tilde{g}_{\mu\nu} = C(\phi)g_{\mu\nu} + D(\phi)\partial_{\mu}\phi\partial_{\nu}\phi$$

- $C(\phi)$ conformal transformation (preserves angles)
- $D(\phi)$ disformal transformation (distorts angles)

CONFORMAL&DISFORMALLY COUPLED MATTER

Consider the following action:

$$S = S_{EH} + S_{\phi} + S_{m}$$

$$= \frac{1}{2\kappa^{2}} \int d^{4}x \sqrt{-g} R - \int d^{4}x \sqrt{-g} \left[\frac{1}{2} (\partial \phi)^{2} + V(\phi) \right] + \int d^{4}x \sqrt{-\tilde{g}} \mathcal{L}_{M}(\tilde{g}_{\mu\nu})$$

where matter is coupled to

$$\tilde{g}_{\mu\nu} = C(\phi)g_{\mu\nu} + D(\phi)\partial_{\mu}\phi\partial_{\nu}\phi$$

- $C(\phi)$ conformal transformation (preserves angles)
- $D(\phi)$ disformal transformation (distorts angles)

CONFORMAL&DISFORMALLY COUPLED MATTER

Consider the following action:

$$S = S_{EH} + S_{\phi} + S_{m}$$

$$= \frac{1}{2\kappa^{2}} \int d^{4}x \sqrt{-g} R - \int d^{4}x \sqrt{-g} \left[\frac{1}{2} (\partial \phi)^{2} + V(\phi) \right] + \int d^{4}x \sqrt{-\tilde{g}} \mathcal{L}_{M}(\tilde{g}_{\mu\nu})$$

where matter is coupled to

$$\tilde{g}_{\mu\nu} = C(\phi)g_{\mu\nu} + D(\phi)\partial_{\mu}\phi\partial_{\nu}\phi$$

- $C(\phi)$ conformal transformation (preserves angles)
- $D(\phi)$ disformal transformation (distorts angles)

IMPACT ON EARLY EVOLUTION

- Departures from standard cosmology will arise due to the different expansion rate, \tilde{H} determined by scalar evolution
 - ⇒ impact in DM relic abundances

[Kamionkowski, Turner, '90] [Salati, '03; Rosati, '03] [Profumo, Ullio, '03]

- First study of conformally coupled DM/Quintessence model
 was considered by Catena et al. Lahanas et al in non-critical
 string theory models
- A first estimate of modification of the relic abundance of WIMP's due to change in expansion rate at the time of CDM freeze-out

IMPACT ON EARLY EVOLUTION

- Departures from standard cosmology will arise due to the different expansion rate, \tilde{H} determined by scalar evolution
 - ⇒ impact in DM relic abundances

[Kamionkowski, Turner, '90] [Salati, '03; Rosati, '03] [Profumo, Ullio, '03]

- First study of conformally coupled DM/Quintessence model was considered by Catena et al. Lahanas et al in non-critical string theory models

 [Catena et al. '04]
 [Lahanas et al. '06]
- A first estimate of modification of the relic abundance of WIMP's due to change in expansion rate at the time of CDM freeze-out

- What are the generic predictions for conformal coupling?
- How is cross-section modified (enhanced/diminished)?
- What is the effect of a disformal coupling?

MODIFIED EXPANSION RATE

In FRW background, evolution equations in Einstein frame (with respect to $g_{\mu\nu}$) become

$$H^{2} = \frac{\kappa^{2}}{3} \left[\rho_{\phi} + \rho \right] ,$$

$$\dot{H} + H^{2} = -\frac{\kappa^{2}}{6} \left[\rho_{\phi} + 3P_{\phi} + \rho + 3P \right] ,$$

$$\ddot{\phi} + 3H\dot{\phi} + V_{,\phi} + Q_{0} = 0 .$$

$$Q_0 = \rho \left[\frac{D}{C} \ddot{\phi} + \frac{D}{C} \dot{\phi} \left(3H + \frac{\dot{\rho}}{\rho} \right) + \left(\frac{D_{,\phi}}{2C} - \frac{D}{C} \frac{C_{,\phi}}{C} \right) \dot{\phi}^2 + \frac{C_{,\phi}}{2C} (1 - 3\omega) \right]$$

Total energy is conserved $\nabla_{\mu} \left(T_{\phi}^{\mu\nu} + T^{\mu\nu} \right) = 0$, but individual

conservation equations are modified:

$$\dot{\rho}_{\phi} + 3H(\rho_{\phi} + P_{\phi}) = -Q_{0}\dot{\phi},$$

 $\dot{\rho} + 3H(\rho + P) = Q_{0}\dot{\phi}.$

Note that in the Jordan/disformal frame, the energy-momentum tensor is conserved, $\nabla_{\mu}\tilde{T}^{\mu\nu}=0$ \Rightarrow $\tilde{\rho}+3\tilde{H}(\tilde{\rho}+\tilde{P})=0$

MODIFIED EXPANSION RATE

We are looking for the modified expansion rate in the disformal or Jordan frame, felt by matter $\tilde{g}_{\mu\nu}$, $\tilde{H}\equiv \frac{d\ln\tilde{a}}{d\tilde{\tau}}$,

$$\tilde{H} = \frac{H\gamma}{C^{1/2}} \left(1 + \alpha(\varphi)\varphi' \right) \qquad (\varphi = \kappa \phi)$$

where '=d/dN,

$$\gamma^{-2} = 1 - \frac{H^2}{\kappa^2} \frac{D}{C} \varphi'^2,$$
$$\alpha(\varphi) = \frac{d \ln C^{1/2}}{d\varphi},$$

We need to compare this modified rate with the standard GR:

$$H_{GR}^2 = \frac{\kappa_{GR}^2}{2}\,\tilde{
ho}$$
 where $\tilde{
ho} = C^{-2}\gamma^{-1}
ho$

In terms of H and φ , it can be written as

$$\gamma^{-1}H^2 = \frac{\kappa^2}{\kappa_{GR}^2} \frac{C^2 (1+\lambda)}{B} H_{GR}^2 \qquad \left(B = 1 - \frac{\varphi'^2}{6}\right)$$

MODIFIED EXPANSION RATE

We are looking for the modified expansion rate in the disformal or Jordan frame, felt by matter $\tilde{g}_{\mu\nu}$, $\tilde{H}\equiv \frac{d\ln\tilde{a}}{d\tilde{\tau}}$,

$$\tilde{H} = \frac{H\gamma}{C^{1/2}} \left(1 + \alpha(\varphi)\varphi' \right) \qquad (\varphi = \kappa \phi)$$

We need to compare this modified rate with the standard GR:

$$\gamma^{-1}H^2 = \frac{\kappa^2}{\kappa_{GR}^2} \frac{C^2 (1+\lambda)}{B} H_{GR}^2$$

Deviation from GR can be readily computed from

$$\xi \equiv \frac{\tilde{H}}{H_{GR}}$$

which needs to go to 1 towards the start of BBN

In the conformal case, equations can be reduced to a single master equation for φ , which we solve during radiation and matter era $V(\varphi) \sim 0$

$$\frac{2}{3(1-\varphi'^2/6)}\varphi'' + (1-\tilde{\omega})\varphi' + 2(1-3\tilde{\omega})\alpha(\varphi) = 0,$$

where $\tilde{\omega} = \gamma^2 \omega$ is the Jordan frame eos computed from

$$1 - 3\tilde{\omega} = \frac{\tilde{\rho} - 3\tilde{p}}{\tilde{\rho}} = \sum_{A} \frac{\tilde{\rho}_{A} - 3\tilde{p}_{A}}{\tilde{\rho}} + \frac{\tilde{\rho}_{m}}{\tilde{\rho}}$$

which takes into account small departures from 1/3 when a species becomes non-relativistic

S 0.330
0.325
0.320
0.305
0.305
0.300

10⁴ 10³ 10² 10¹ 1 10⁻¹ 10⁻² 10⁻³ 10⁻⁴ 10⁻⁵

T(GeV)

[See Esteban Jimenez's talk]

Conformal coupling acts as effective potential for φ

$$\frac{2}{3(1-\varphi'^2/6)}\varphi'' + (1-\tilde{\omega})\varphi' + 2(1-3\tilde{\omega})\alpha(\varphi) = 0,$$

For concreteness we consider

$$C(\varphi) = (1+b\,e^{-\beta\,\varphi})^2 \qquad \qquad (b=0.1,\ \beta=8) \label{eq:continuous}$$
 [Catena et al. '04]

 V_{eff}

$$\Rightarrow V_{eff} = \ln(1 + be^{-\beta\varphi})$$

Conformal coupling acts as effective potential for φ

$$\frac{2}{3(1-\varphi'^2/6)}\varphi'' + (1-\tilde{\omega})\varphi' + 2(1-3\tilde{\omega})\alpha(\varphi) = 0,$$

For concreteness we consider

$$C(\varphi) = (1+b\,e^{-\beta\,\varphi})^2 \qquad \qquad (b=0.1,\ \beta=8) \label{eq:continuous}$$
 [Catena et al. '04]

 V_{eff}

$$\Rightarrow V_{eff} = \ln(1 + be^{-\beta\varphi})$$

Conformal coupling acts as effective potential for φ

$$\frac{2}{3(1-\varphi'^2/6)}\varphi'' + (1-\tilde{\omega})\varphi' + 2(1-3\tilde{\omega})\alpha(\varphi) = 0,$$

For concreteness we consider

$$C(\varphi) = (1+b\,e^{-\beta\,\varphi})^2 \qquad \qquad (b=0.1,\ \beta=8)$$
 [Catena et al. '04]

$$\Rightarrow V_{eff} = \ln(1 + be^{-\beta\varphi})$$

Conformal coupling acts as effective potential for φ

$$\frac{2}{3(1-\varphi'^2/6)}\varphi'' + (1-\tilde{\omega})\varphi' + 2(1-3\tilde{\omega})\alpha(\varphi) = 0,$$

For concreteness we consider

$$C(\varphi) = (1+b\,e^{-\beta\,\varphi})^2 \qquad \qquad (b=0.1,\ \beta=8) \label{eq:continuous}$$
 [Catena et al. '04]

$$\Rightarrow V_{eff} = \ln(1 + be^{-\beta\varphi})$$

Conformal coupling acts as effective potential for φ

$$\frac{2}{3(1-\varphi'^2/6)}\varphi'' + (1-\tilde{\omega})\varphi' + 2(1-3\tilde{\omega})\alpha(\varphi) = 0,$$

For concreteness we consider

$$C(\varphi) = (1+b\,e^{-\beta\,\varphi})^2 \qquad \qquad (b=0.1,\ \beta=8)$$
 [Catena et al. '04]

$$\Rightarrow V_{eff} = \ln(1 + be^{-\beta\varphi})$$

This second choice of initial conditions gives the most interesting evolution

Conformal factor evolution

$$(\varphi_0, \varphi_0') = (0.2, -0.994)$$

Scalar field evolution

$$(\varphi_0, \varphi_0') = (0.2, -0.994)$$

Expansion rates comparison

(for initial conditions: $(\varphi_0, \varphi_0') = (0.2, -0.994)$)

$$\tilde{H} = \frac{H\gamma}{C^{1/2}} \left(1 + \alpha(\varphi)\varphi' \right)$$

(we consider only expanding solutions, $(1+\alpha(\varphi)\varphi')>0$)

Note that Einstein frame H always decreases (no violation of energy conditions). However, disformal frame H can increase

Notorious notch appears, which gives rise to possibility of re-annihilation effect.

Expansion rates comparison (for initial conditions: $(\varphi_0, \varphi_0') = (0.2, -0.994)$)

$$\tilde{H} = \frac{H\gamma}{C^{1/2}} \left(1 + \alpha(\varphi)\varphi' \right)$$

(we consider only expanding solutions, $(1+\alpha(\varphi)\varphi')>0$)

Note that Einstein frame H always decreases (no violation of energy conditions). However, disformal frame H can increase

Notorious notch appears, which gives rise to possibility of reannihilation effect.

Expansion rates comparison

(for initial conditions: $(\varphi_0, \varphi_0') = (0.2, -0.994)$)

$$\tilde{H} = \frac{H\gamma}{C^{1/2}} \left(1 + \alpha(\varphi)\varphi' \right)$$

(we consider only expanding solutions, $(1+\alpha(\varphi)\varphi')>0$)

Note that Einstein frame H always decreases (no violation of energy conditions). However, disformal frame H can increase

Notorious notch appears, which gives rise to possibility of re-annihilation effect.

Expansion rates comparison

(for initial conditions: $(\varphi_0, \varphi_0') = (0.2, -0.994)$)

$$\tilde{H} = \frac{H\gamma}{C^{1/2}} \left(1 + \alpha(\varphi)\varphi' \right)$$

(we consider only expanding solutions, $(1+\alpha(\varphi)\varphi')>0$)

Note that Einstein frame H always decreases (no violation of energy conditions). However, disformal frame H can increase

Notorious notch appears, which gives rise to possibility of reannihilation effect.

EFFECT ON DM RELIC ABUNDANCE

The impact of modified expansion rate on relic abundance for DM particle χ with mass m_{χ} can now be determined from Boltzmann equation

$$\frac{dn_{\chi}}{dt} = -3\tilde{H}n_{\chi} - \langle \sigma v \rangle \left(n_{\chi}^2 - (n_{\chi}^{eq})^2 \right)$$

which determining the dark matter number density n_{χ} evolution.

Here $\langle \sigma v \rangle$ is the annihilation cross-section and n_{χ}^{eq} the equilibrium number density.

Rewriting Boltzmann equation in terms of $x=m_\chi/\tilde{T}$

$$Y = \frac{n_{\chi}}{\tilde{s}}, \, \tilde{s} = \frac{2\pi}{45} g_s(\tilde{T}) \tilde{T}^3$$

$$\frac{dY}{dx} = -\frac{\tilde{s}\langle\sigma v\rangle}{x\tilde{H}} \left(Y^2 - Y_{eq}^2\right)$$

EFFECT ON DM RELIC ABUNDANCE

Boltzmann equation, gives us the DM relic abundance

[See Esteban Jimenez's talk]

Relic abundance evolution for DM particle with mass $m_\chi = 1000\,{\rm GeV}$

Expansion and interaction rates' evolution

A re-annihilation phase occurs for the initial conditions chosen

Turning on the disformal coupling, we need to solve the coupled system of eqs for φ, H

$$H' = -H \left[\frac{3B}{2} (1 + \tilde{\omega}\gamma^{-2}) + \frac{\varphi'^2}{2} \right]$$

$$\varphi'' \left[1 + \frac{3H^2 \gamma^2 B}{\kappa^2} \frac{D}{C} \right] + 3\varphi' \left[1 - \tilde{\omega} \frac{3H^2 B}{\kappa^2} \frac{D}{C} \right] + \frac{H'}{H} \varphi' \left[1 + \frac{3H^2 \gamma^2 B}{\kappa^2} \frac{D}{C} \right]$$

$$+3B\alpha(\varphi)(1 - 3\tilde{\omega}) + \frac{3H^2 \gamma^2 B}{\kappa^2} \frac{D}{C} (\delta(\varphi) - \alpha(\varphi))\varphi'^2 = 0$$

Use same conformal factor plus a small disformal contribution:

$$D(\varphi) = D_0 \varphi^2$$
 with $D_0 = -4.9 \times 10^{-14}$

Turning on the disformal coupling, we need to solve the coupled system of eas for φ , H

$$H' = -H \left[\frac{3B}{2} (1 + \tilde{\omega}\gamma^{-2}) + \frac{\varphi'^2}{2} \right]$$

$$\varphi'' \left[1 + \frac{3H^2 \gamma^2 B}{\kappa^2} \frac{D}{C} \right] + 3\varphi' \left[1 - \tilde{\omega} \frac{3H^2 B}{\kappa^2} \frac{D}{C} \right] + \frac{H'}{H} \varphi' \left[1 + \frac{3H^2 \gamma^2 B}{\kappa^2} \frac{D}{C} \right]$$

$$+3B\alpha(\varphi)(1 - 3\tilde{\omega}) + \frac{3H^2 \gamma^2 B}{\kappa^2} \frac{D}{C} (\delta(\varphi) - \alpha(\varphi))\varphi'^2 = 0$$

Use same conformal factor plus a small disformal contribution:

$$D(\varphi) = D_0 \, \varphi^2$$
 with $D_0 = -4.9 \times 10^{-14}$

Modified expansion with conformal and disformal functions turned on, for same initial conditions

Shape remains similar, position of notch moves and becomes sharper with a small increase in H

Turning on the disformal coupling, we need to solve the coupled system of eqs for φ, H

$$H' = -H \left[\frac{3B}{2} (1 + \tilde{\omega}\gamma^{-2}) + \frac{\varphi'^2}{2} \right]$$

$$\varphi'' \left[1 + \frac{3H^2 \gamma^2 B}{\kappa^2} \frac{D}{C} \right] + 3\varphi' \left[1 - \tilde{\omega} \frac{3H^2 B}{\kappa^2} \frac{D}{C} \right] + \frac{H'}{H} \varphi' \left[1 + \frac{3H^2 \gamma^2 B}{\kappa^2} \frac{D}{C} \right]$$

$$+3B\alpha(\varphi)(1 - 3\tilde{\omega}) + \frac{3H^2 \gamma^2 B}{\kappa^2} \frac{D}{C} (\delta(\varphi) - \alpha(\varphi))\varphi'^2 = 0$$

Use same conformal factor plus a small disformal contribution:

$$D(\varphi) = D_0 \, \varphi^2$$
 with $D_0 = -4.9 \times 10^{-14}$

Modified expansion with conformal and disformal functions turned on, for same initial conditions

Shape remains similar, position of notch moves and becomes sharper with a small increase in H

Turning on the disformal coupling, we need to solve the coupled system of eas for φ , H

$$H' = -H \left[\frac{3B}{2} (1 + \tilde{\omega}\gamma^{-2}) + \frac{\varphi'^2}{2} \right]$$

$$\varphi'' \left[1 + \frac{3H^2 \gamma^2 B}{\kappa^2} \frac{D}{C} \right] + 3\varphi' \left[1 - \tilde{\omega} \frac{3H^2 B}{\kappa^2} \frac{D}{C} \right] + \frac{H'}{H} \varphi' \left[1 + \frac{3H^2 \gamma^2 B}{\kappa^2} \frac{D}{C} \right]$$

$$+3B\alpha(\varphi) (1 - 3\tilde{\omega}) + \frac{3H^2 \gamma^2 B}{\kappa^2} \frac{D}{C} (\delta(\varphi) - \alpha(\varphi)) \varphi'^2 = 0$$

Another example

$$C = (8\varphi^2 + 1)^2,$$
$$D = d_1\varphi^3 + d_2\varphi^2 + d_3\varphi$$

Turning on the disformal coupling, we need to solve the coupled system of eqs for φ, H

$$H' = -H \left[\frac{3B}{2} (1 + \tilde{\omega}\gamma^{-2}) + \frac{\varphi'^2}{2} \right]$$

$$\varphi'' \left[1 + \frac{3H^2 \gamma^2 B}{\kappa^2} \frac{D}{C} \right] + 3\varphi' \left[1 - \tilde{\omega} \frac{3H^2 B}{\kappa^2} \frac{D}{C} \right] + \frac{H'}{H} \varphi' \left[1 + \frac{3H^2 \gamma^2 B}{\kappa^2} \frac{D}{C} \right]$$

$$+3B\alpha(\varphi)(1 - 3\tilde{\omega}) + \frac{3H^2 \gamma^2 B}{\kappa^2} \frac{D}{C} (\delta(\varphi) - \alpha(\varphi))\varphi'^2 = 0$$

Another example

Turning on the disformal coupling, we need to solve the coupled system of eas for φ , H

$$H' = -H \left[\frac{3B}{2} (1 + \tilde{\omega}\gamma^{-2}) + \frac{\varphi'^2}{2} \right]$$

$$\varphi'' \left[1 + \frac{3H^2 \gamma^2 B}{\kappa^2} \frac{D}{C} \right] + 3\varphi' \left[1 - \tilde{\omega} \frac{3H^2 B}{\kappa^2} \frac{D}{C} \right] + \frac{H'}{H} \varphi' \left[1 + \frac{3H^2 \gamma^2 B}{\kappa^2} \frac{D}{C} \right]$$

$$+3B\alpha(\varphi)(1 - 3\tilde{\omega}) + \frac{3H^2 \gamma^2 B}{\kappa^2} \frac{D}{C} (\delta(\varphi) - \alpha(\varphi))\varphi'^2 = 0$$

Another example

$$C = (8\varphi^2 + 1)^2,$$
$$D = d_1\varphi^3 + d_2\varphi^2 + d_3\varphi$$

Less dramatic effect, and thus impact on relic abundance and cross-section

Conformal&Disformal couplings arise naturally from D-brane actions. They are dictated by theory and arise as follows:

$$S = S_{EH} + S_{\phi} + S_{m}$$

$$S_{EH} = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} R,$$

$$S_{\phi} = -\int d^4x \sqrt{-g} \left[\frac{b}{2} (\partial \phi)^2 + M^4 C_1^2(\phi) \sqrt{1 + \frac{D_1(\phi)}{C_1(\phi)} (\partial \phi)^2} + V(\phi) \right],$$

$$S_m = -\int d^4x \sqrt{-\tilde{g}} \mathcal{L}_M(\tilde{g}_{\mu\nu}),$$

where

$$\tilde{g}_{\mu\nu} = C_2(\phi)g_{\mu\nu} + D_2(\phi)\partial_{\mu}\phi\partial_{\nu}\phi$$
.

D-brane case:

$$b = 0, C_1 = C_2, D_1 = D_2$$

Accelerating scaling solutions in coupled DE/DM models have been found in for monomial potentials.

Conformal&Disformal couplings arise naturally from D-brane actions. They are dictated by theory and arise as follows:

$$S = S_{EH} + S_{\phi} + S_{m}$$

$$S_{EH} = \frac{1}{2\kappa^{2}} \int d^{4}x \sqrt{-g} R,$$

$$S_{\phi} = -\int d^4x \sqrt{-g} \left[+ M^4 C_1^2(\phi) \sqrt{1 + \frac{D_1(\phi)}{C_1(\phi)} (\partial \phi)^2} + V(\phi) \right],$$

$$S_m = -\int d^4x \sqrt{-\tilde{g}} \, \mathcal{L}_M(\tilde{g}_{\mu\nu}) \,,$$

where

$$\tilde{g}_{\mu\nu} = C_2(\phi)g_{\mu\nu} + D_2(\phi)\partial_{\mu}\phi\partial_{\nu}\phi.$$

D-brane case:

$$b = 0, C_1 = C_2, D_1 = D_2$$

Accelerating scaling solutions in coupled DE/DM models have been found in for monomial potentials.

The coupled equations to find the scalar evolution and expansion rates is no modified as

$$\begin{split} H' &= -H \left[\frac{3B}{2(1+\lambda)} (1+\omega) + \frac{\varphi'^2 M^4 C D \gamma}{\gamma+1} \right], \\ \varphi'' \left[1 + \frac{3H^2 \gamma^{-1} B}{M^4 C D \kappa^2} \frac{D}{C} \right] + 3 \varphi' \left[\gamma^{-2} - \frac{3H^2 \gamma^{-3} B \tilde{\omega}}{M^4 C D \kappa^2} \frac{D}{C} \right] + \frac{H'}{H} \varphi' \left[1 + \frac{3H^2 \gamma^{-1} B}{M^4 C D \kappa^2} \frac{D}{C} \right] \\ &+ \frac{3B \gamma^{-3}}{M^4 C D} \alpha(\varphi) (1 - 3 \tilde{\omega}) + \frac{3H^2 \gamma^{-1} B}{M^4 C D \kappa^2} \frac{D}{C} \left[(\delta(\varphi) - \alpha(\varphi)) \varphi'^2 \right] \end{split}$$

where
$$B \equiv 1 - \frac{M^4 C D \gamma^2}{3(\gamma + 1)} \varphi'^2$$
,

- We cannot take D=0. C&D contribute as a potential term
- How do these change expansion rate and thus relic abundance and cross-section predictions?
- Can we constraint C&D from observation?

The coupled equations to find the scalar evolution and expansion rates is no modified as

$$\begin{split} H' &= -H \left[\frac{3B}{2(1+\lambda)} (1+\omega) + \frac{\varphi'^2 M^4 C D \gamma}{\gamma+1} \right], \\ \varphi'' \left[1 + \frac{3H^2 \gamma^{-1} B}{M^4 C D \kappa^2} \frac{D}{C} \right] + 3 \varphi' \left[\gamma^{-2} - \frac{3H^2 \gamma^{-3} B \tilde{\omega}}{M^4 C D \kappa^2} \frac{D}{C} \right] + \frac{H'}{H} \varphi' \left[1 + \frac{3H^2 \gamma^{-1} B}{M^4 C D \kappa^2} \frac{D}{C} \right] \\ &\quad + \frac{3B \gamma^{-3}}{M^4 C D} \alpha(\varphi) (1 - 3 \tilde{\omega}) + \frac{3H^2 \gamma^{-1} B}{M^4 C D \kappa^2} \frac{D}{C} \left[(\delta(\varphi) - \alpha(\varphi)) \varphi'^2 \right] \\ &\quad + \frac{\kappa^2}{H^2} \frac{C}{2D} \left[\gamma^{-2} \left(5 \frac{C_{\varphi}}{C} - \frac{D_{\varphi}}{D} \right) + \frac{D_{\varphi}}{D} - \frac{C_{\varphi}}{C} - 4 \gamma^{-3} \frac{C_{\varphi}}{C} \right] = 0 \end{split}$$

where
$$B \equiv 1 - \frac{M^4 C D \gamma^2}{3(\gamma + 1)} \varphi'^2$$
,

- We cannot take D=0. C&D contribute as a potential term
- How do these change expansion rate and thus relic abundance and cross-section predictions?
- Can we constraint C&D from observation?

The coupled equations to find the scalar evolution and expansion rates is no modified as

$$\begin{split} H' &= -H \left[\frac{3B}{2(1+\lambda)} (1+\omega) + \frac{\varphi'^2 M^4 C D \gamma}{\gamma+1} \right], \\ \varphi'' \left[1 + \frac{3H^2 \gamma^{-1} B}{M^4 C D \kappa^2} \frac{D}{C} \right] + 3 \varphi' \left[\gamma^{-2} - \frac{3H^2 \gamma^{-3} B \tilde{\omega}}{M^4 C D \kappa^2} \frac{D}{C} \right] + \frac{H'}{H} \varphi' \left[1 + \frac{3H^2 \gamma^{-1} B}{M^4 C D \kappa^2} \frac{D}{C} \right] \\ &\quad + \frac{3B \gamma^{-3}}{M^4 C D} \alpha(\varphi) (1 - 3 \tilde{\omega}) + \frac{3H^2 \gamma^{-1} B}{M^4 C D \kappa^2} \frac{D}{C} \left[(\delta(\varphi) - \alpha(\varphi)) \varphi'^2 \right] \\ &\quad + \frac{\kappa^2}{H^2} \frac{C}{2D} \left[\gamma^{-2} \left(5 \frac{C_{\varphi}}{C} - \frac{D_{\varphi}}{D} \right) + \frac{D_{\varphi}}{D} - \frac{C_{\varphi}}{C} - 4 \gamma^{-3} \frac{C_{\varphi}}{C} \right] = 0 \end{split}$$

where
$$B \equiv 1 - \frac{M^4 C D \gamma^2}{3(\gamma + 1)} \varphi'^2$$
,

- We cannot take D=0. C&D contribute as a potential term
- How do these change expansion rate and thus relic abundance and cross-section predictions?
- Can we constraint C&D from observation?

SUMMARY

- We investigated modifications to standard relic picture due to non-standard early cosmology evolution in scalar-tensor theories with conformal and disformal couplings to matter
- For suitable initial conditions, interesting non-trivial modifications appear in expansion rate and thus in the relic abundance of DM

 We studied a phenomenological scalar-tensor model, as a warm up to understand D-brane induced conformal/ disformal couplings to matter