DQW_SPS_001 Partially Dressed Cavity Cold Test

A. Macpherson, A Castilla, I Ben-Zvi, J. Mitchell

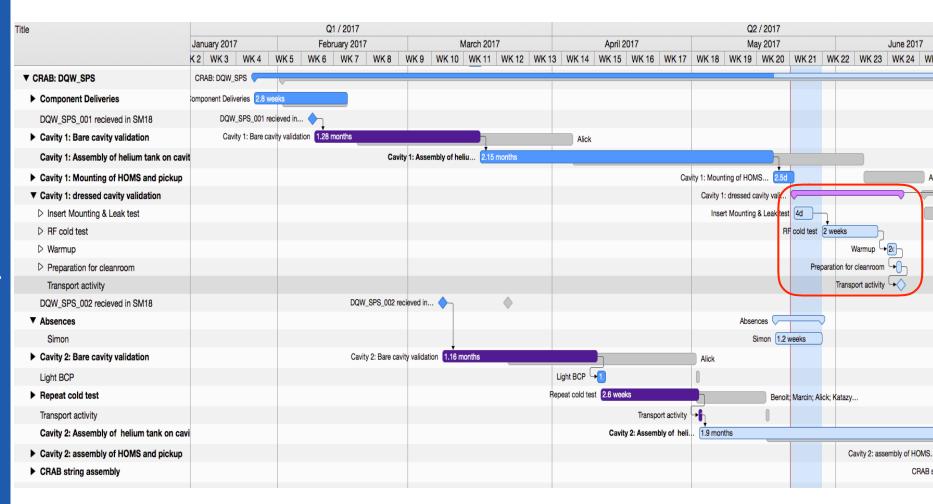
on behalf of SRF Cavity Testing Team

Cold Test of Partially Dressed cavity: EDMS=1807930

Objectives

- Validate Cavity RF Performance
 - Freq shift & RF performance after helium tank assembly.

HOMS Measurements:


- Measure cross coupling and behaviour of HOMS
- Assess cavity/HOMS susceptibility to quenching
- Schedule: Ensure completion on schedule

Entry/Exit Conditions

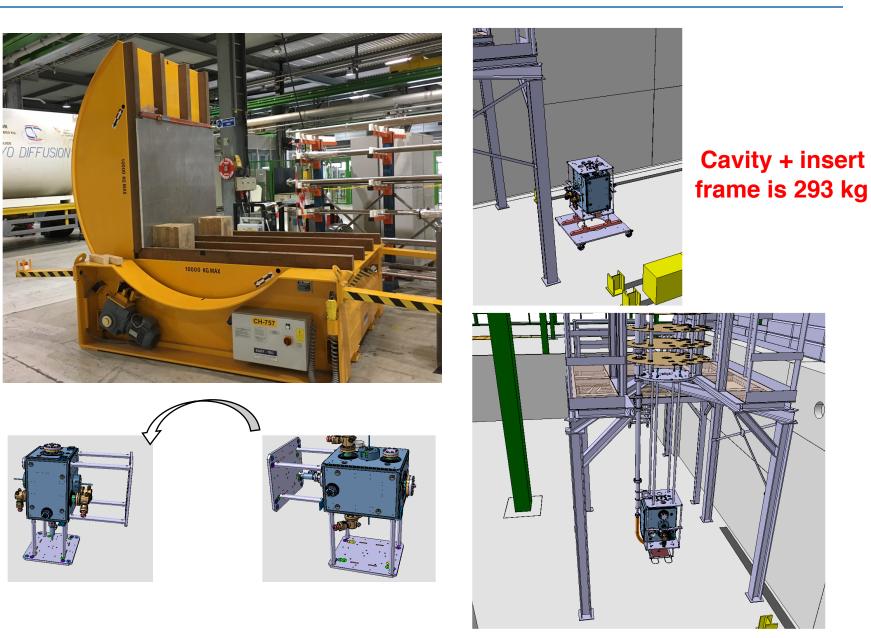
- Entry: cavity under vacuum
- Exit: Cavity vented to 1 Bar with clean N2

Schedule

Preparation of cavity for test

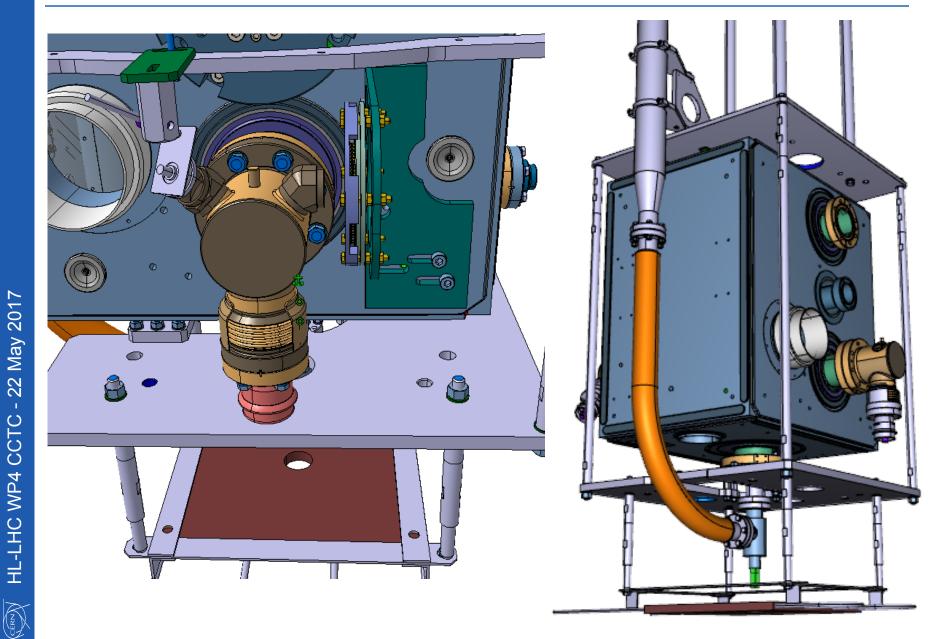
- Handling done with crane and rotation table in SM18
 - Cavity handling choreography in EDMS 1807930
 - Cavity handling tooling same as in workshop
 - Cavity manipulations done with transport team
- Mechanical Constraint
 - Struts proposed to insert frame for coping with weight

No cavity bakeout:


Just standard connection of pumping line

Insert instrumentation

- Temperature, B-field, cavity vacuum cryostat pressure
- RF Power (PF, PR, PT) + Power on HOMS lines
- Quench detection systems: OST + TES (new)
- Pickup dark current + HOMS 800MHz components

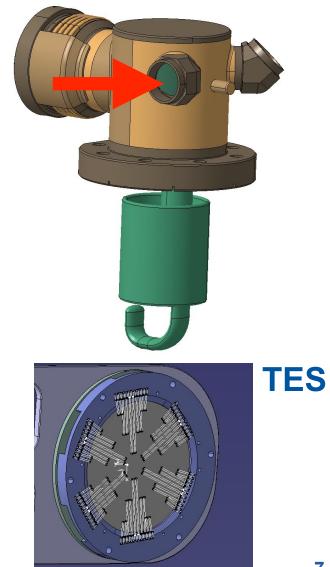

May 2017

Cavity Handling

CERN

HOMS Instrumentation

Temperature sensor


- mounted directly on Nb body of HOMS
- Contact sensor => no glue or adhesive

Quench detection

- Baseline = OST sensors
- FPC-side HOMS fitted with 6 Transition Edge Sensors
 - May give additional quench dynamics data

Cavity Vacuum activity

- Measured at top of cryostat
 - Typical level = 1 e-9 mBar

Constraints

• Requirement:

• Temperature, power, quench monitoring on each HOMS

Cool down Limitations

- Cavity spatial temperature thermal gradient: $\Delta T < 50 \text{ K}$
 - Avoid mechanical stress from thermal contractions

Powering limitations:

- No powering above V_T = 3.4 *1.05 = 3.6MV
 - Avoid risk to HOMS ceramics from electron impacts
- No RF powering above superfluid transition
 - Avoid trapped He gas in HOMS cans

HL-LHC WP4 CCTC - 22 May 2017

Measurement Plan

- Cooldown
 - Track set of frequencies during cool down
 - Frequencies: 400, 586, 963, 1299, 1843 MHz
 - Discrete temperature steps (50K) measure HOMS Couplings
 - S-Parameters for set of modes
 - Frequencies: 746.622, 926.750, 1638.624, 1659.614, 1746.077, 1754.382, 1840.934, 1856.187, 1856.722, 1921.395 MHz

At 4.5 K: No RF Powering

- Avoid risk of trapped Helium gas damaging HOMS
- At 2 K:
 - S-parameter measurements with VNA
 - Pulse mode power scans up to 3.6MV
 - Power scans with (new) Self Excited Loop LLRF

HL-LHC WP4 CCTC - 22

May 2017

RF powering at 2k

Initial powering

- Pulse mode with long pulse period + low duty factor
 - Monitor cavity vacuum: Activity => conditioning/ multipacting
 - Monitor Pickup dark current for electron loading
- Increase input power as conditioning allows
- RF performance scan in pulse mode
 - Transition to pulse periods of ~5s with 50% duty factor
 - Filling time: tau ~ 0.7s
 - Monitor HOMS: look for multipacting at harmonics of 400MHz
 - Temperature monitors on individual HOMS+ beam ports
 - Quench detector on individual HOMS

RF performance scan in CW mode

- Repeat powering scan in CW
- Includes heat run to get a heat load estimate

Warmup

- Cryostat empty of liquid: No significant spatial ΔT
 - Warmup will take ~4 days
 - Track set of frequencies during cool down
 - Frequencies: 400, 586, 963, 1299, 1843 MHz
 - At discrete temperature steps measure HOMS Couplings
 - S-Parameters for set of modes

Executive summary

- Cavity Handling Baseline:
 - Cavity handling done entirely in SM18
- Cooldown:
 - $\Delta T \le 50 K$ will significantly extend cooldown time

• RF Tests

- First: VNA measurements of couplings
- Second: Power scans for cavity + HOMS performance

Power Scans

- Limited to a maximum of 3.6MV
- Pulse mode operation with SEL LLRF

Risk Mitigation

Numerous cross-checks to protect cavity & identify multipacting

HL-LHC WP4 CCTC - 22 May 2017