

Advances in Radiation-Hard Monolithic Pixel Detectors

Technology Overview

Schematic cross-section of CMOS pixel sensor (ALICE ITS Upgrade TDR)

What this presentation is about

- Potentially, not everyone already has a background in radiation-hard CMOS detectors
- Therefore: briefly recall
 - potential radiation environments to be endured
 - the differences between "classical" tracking detectors and CMOS detectors
 - advantages of CMOS detectors in particular if monolithic
 - branches of CMOS/terminology:
 - HV-CMOS
 - HR-CMOS
 - DMAPS
 - fill factors
 - radiation tolerance and peculiarities of CMOS detectors

One example: ATLAS HL-LHC Upgrade

- Main challenges:
 - occupancy
 - radiation damage
 - data rate/trigger rate
- Components needing upgrades:
 - TRT
 - occupancy-limited beyond about 10³⁴ cm⁻² s⁻¹ (40% occ.@ inner radii)
 - → replace by all-silicon inner tracker

- radiation damage limited (p-in-n sensors collect holes → n-in-p to collect e-)
- occupancy limited (long strips → replace inner layers by short strips)
- Pixel
 - data rate limited (inefficiency expected in b-layer above 3 · 10³⁴ cm⁻² s⁻¹)
 - → replace with new readout chip
 - better resolution for pile-up rejection

How to replace? ITK

- Favoured layout: "FullyInclined"
 - ~165 m² of silicon strips (short and long), up to 14 m² of pixels → cost!

echnology Overvie

Lancaster University

Expected Radiation Damage

- integrated luminosity: 4000 fb⁻¹
- including a safety factor of 2 to account for all uncertainties this yields for ATLAS:
 - at 4 cm radius:
 - ~1.2 10¹⁶ n_{eq} cm⁻²
 - ~950 MRad
 - (exchange after 2000 fb⁻¹)
 - at 30 cm radius (outermost pixel)
 - ~2.2 · 10¹⁵ n_{eq} cm⁻²
 - ~110 MRad
 - several m² of pixel detectors
 - strip region
 - up to ~1.5 · 10¹⁵ n_{eq} cm⁻²
 - up to ~60 MRad
 - ~160 m² of silicon
- new ID sensors need to be more radhard and cheaper at the same time (more area to cover)

z [cm]

Lancaster University

Classical tracking detectors

- Sensor volume and readout electronics separated
- one side is patterned, many strip/pixel electrodes
- apply electric field over bulk
- charges drift and induce signal on electrodes
- small signal, needs amplification
 - dedicated readout ASICs
 - connection with sensors via wirebonds (strips)
 or bump-bonding (pixels) → modules

Silicon sensors and radiation damage

Very briefy: The silicon crystal gets damaged by radiation – lattice atoms get moved around...

There are 3 different effects all caused by radiation-induced damage to the crystal lattice:

- charge-carrier trapping (main effect at high fluences)
 - localised trapping centers
 - thermal de-trapping timescale much longer than charge collection time
 - loss of induced charge → reduction of signal
- leakage current
 - thermal generation of charge carriers → more noise
 → more cooling required
- change of N_{eff}/V_{dep} (main effect at low fluences)
 - the material usually behaves effectively more "p-type" which leads to increasing full depletion voltages
 → higher bias voltages
- The usual unit for radiation damage is the particle fluence normalised to 1-MeV-equivalent neutrons
- Also Total Ionising Dose (TID) is relevant (oxide charges, electronics)

- Pixel radii@HL-LHC: Different regimes
- Inner layers
 - ~1 · 10¹⁶ n_{eq}/cm²
 - Trapping becoming the dominant effect
 - data indicates not a real issue for hybrid detectors with thinned sensors
 - comparatively small area cost not dominant requirement
 - might profit from smaller pixel sizes limited by hybridisation

- Rad-hardness up to 2·10¹⁵ n_{eq}/cm² at 600V bias voltage was already established for current ATLAS Pixel Detector
 - rad-hardness not an issue
- But: Costs? 1.8 m² → ~10+ m²
 - bump-bonding large fraction of the cost (1/3 to 1/2)
 - could be avoided by monolithic detectors

Lancaster

Technology Overview

Improving cost and granularity

- Use
 - industrialised processes
 - large wafer sizes
 - cheap (or no) interconnection technologies
 - no interconnection would also help to reduce pixel size CLIC development limited by bump-bonding requirement
- Idea: explore industry standard CMOS processes as sensors
 - commercially available by variety of foundries
 - application of drift field required for sufficient rad-hardness
 - 8" to 12" wafers
 - wafer thinning quite standard
- Basic requirement: Deep n-well (→ allows high(er) substrate bias)
 - existing in many processes
 - usually deepest in HV-CMOS → highest possible bias
 - also existing in specialised imaging processes → HR-CMOS

A CMOS sensor...

- is essentially a standard n-in-p sensor
- standard HV-CMOS: substrates ~20 Ohm*cm
 - depletion zone ~10-20 µm: signal in the order of 1-2ke⁻¹
 - challenging for hybrid pixel readout electronics
- HR-CMOS: up to kOhm*cm
 - alternative vendor even for passive hybrid sensors

The depleted high-voltage diode used as sensor (n-well in p-substrate diode)

Add circuits: HV/HR-CMOS

- Choices: implementation of
 - only first amplifier stages e.g. for CCPD sensors for CLIC
 - additional cuircuits: discriminators, impedance converters, logic, ... CCPD
 - all readout circuits: DMAPS (Depleted MAPS)

CMOS electronics placed inside the diode (inside the n-well)

Lancaster University

Nomenclature

 Amplification enables AC coupling (by gluing) of CMOS sensor and readout chip → Capacitively Coupled Pixel Detector (CCPD)

■ Monolithic Active Pixel Sensors (MAPS, e.g. Mimosa) historically relied on diffusion for charge collection → too slow, not radiation-hard (cannot cope with trapping)

 Use Depleted MAPS (DMAPS) to collect charge by electric field

Schematic cross-section of CMOS pixel sensor (ALICE ITS Upgrade TDR)

Nomenclature: several dimensions

HV vs. HR CMOS: low vs. high resistive substrate (historically!)

CCPD vs. DMAPS: level of integration – separate readout chip or not

small vs. large fill factor: size of collection electrode → input capacitance → noise

Technology Overview

Lancaster University

Irradiation effects: dose

- "Deep sub-micron" processes have potential to be rad-hard (thin oxide
 - → oxide charges can tunnel)
- Still rad-hard design required
 - e.g. enclosed transistors
- Most visible analogue effect: changes in amplification
 - can be managed

Irradiation effects: fluence

- Numerically, depletion depth for 10 Ohm*cm substrate is about 10 µm at 100V of bias
 - Classically, this should yield less than 800 electrons of collected charge
 - Yet ~1500-1900 e⁻ are observed before irradiation large diffusion component?
- Characterised with Edge-TCT method
 - reduction for small fluences (< 5e14 neq/cm2) → loss of diffusion</p>
 - increase (!) up to a factor 6 (!!) in collected charge for higher fluences
 - larger depleted zone thanks to acceptor removal, stronger for p-irradiation
 - note that even 2e16 neq/cm2 has reasonable CC, but cuircits might be an issue...

Lancaster University

Recent trends

- Merging of HV and HR CMOS
 - Some HV-CMOS foundries offered to use higher resistive substrates while keeping the same (HV) process
 - high resitive substrates only loose resistivity
 - medium resistive substrates are "more stable"
 - might be an advantage as sensor behaviour changes less
 - Some HR-CMOS (imaging/CIS) processes allow the application of a (certain) bias voltage to the bulk
- Good CCPD results encouraged fully monolithic designs
 - several different processes, partially CCPD and monolithic on the same reticule for comparison
 - several different approaches

H35DEMO

DMAPS types

Many processes more and more similar, main differences start to be design-related:

- simple pixel vs. complex pixel
 - the simple pixel approach has only (analogue) amplifier in-pixel, digital circuits are moved to periphery (à la LePix/MuPix) → less cross-talk, allows for small pixel, requires many traces to periphery and has potentially larger inactive edge area
 - complex pixel has comparator and potentially storage in-pixel → more potential for cross-talk, allows for bus to periphery
 - many different readout/bus architectures currently being explored!
- large fill factor vs. small fill factor
 - large fill factor has a large collection well → short drift distance, but large(r) capacitance
 - small fill factor has only a small collection well and hides other circuits behind deep p-wells → longer drift path, potential issues with lateral depletion, but less capacitance

Summary

- CMOS detectors essentially n-in-p sensors that integrate the readout electronics on the same wafer
- Enabling technologies: deep n-wells, processing of high resistive wafers possible, triple/quadruple wells to shield circuits from depletion zone
- Several processes could be used and are actively explored see later talks today
- Radiation hardness enabled thanks to drift (bias voltage), deep submicron process (thin oxide) and excellent threshold values achievable thanks to in-pixel amplifiers → low signal levels can be coped with
- Main differences:
 - applicable bias voltage (HV/HR-CMOS)
 - small/large fill factor → input capacitance, drift length, lateral depletion
 - comparator/circuitery in-pixel or in periphery
 - readout scheme (a)synchronous, bus-based, column-drain, ...
- Very active and fast-moving field!

Lancaster 35 University

99.9

Testbeam data

- CCPDv4 glued to FE-I4
- Very high efficiencies possible even after irradiation: >99.7% (!!)
- "valley of tears" at lower fluences
 - trapping kicks in
 - depletion depth not yet bigger
 - → go for higher resistivity values

FE-I4 telescope - SPS data 2016 (π^+ , 180 GeV)

Bias = 85 [V]; Threshold = 0.080 [V]

AMS-H18, CCPDv4 neutron irradiated 10¹⁵ n_{ec}/cm²

