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What is DEMO?

 Step between ITER and a commercial power plant

 Net electricity production of a few hundreds MW

 DEMO construction has to start in the early 2030s to 

achieve fusion electricity by 2050

DEMO - a prototype fusion power plant [1]

[1] Romanelli F., Barabaschi P., et al., A roadmap to the realisation of fusion electricity. EFDA  2012



DEMO Toroidal Field (TF) coils  
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Three designs of LTS winding pack of the DEMO TF         

coil,  namely WP#1, WP#2 and WP#3, were          

developed by EPFL-SPC (Switzerland) [1], ENEA –

Frascati (Italy) [2] and CEA (France) [3], respectively. 

Most recently a new DEMO TF winding pack concept 

based on REBCO HTS conductors was proposed by KIT [4]

[1] K. Sedlak, et al., Fus. Eng. Des., vol. 124, pp. 110-113, Nov. 2017.

[2] L. Savoldi, et al., Fusion Eng. Des., vol. 124, pp. 45-48, Nov. 2017.

[3] A. Torre, et al., IEEE Trans. Appl. Supercond., vol. 27, no. 4, Jun. 2017, Art. no. 4900705.

[4] M.J. Wolf, et al., IEEE Trans. Appl. Supercond., vol. 26, no. 2, Mar. 2016, Art. no. 6400106
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Our study is focused on the thermal-hydraulic analysis of the two

most recent iterations of the KIT design (Option 8 and 9) using the

simplified models developed by our team and the THEA code by 

CryoSoft . It was aimed at:

 assessment of the maximum total mass flow rate in the TF coil,

 verification if the proposed designs fulfill the acceptance criteria:

◦ minimum DTmarg > 1.5 K

◦ Tjacket max  < 150 K,  Tstrands max  < 250 K 

The analysis included the following stages:

 hydraulic analysis,

 heat removal analysis,

 assessment of the maximum hot spot temperature during

quench.

Goal of the present study

quench quench
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Composition of conductor and winding pack (I)

 6 CrossConductor (CroCo ) monolithic strand located
around a copper core and embeded in a SS jacket

 Layer wound winding pack (12 layers)

◦ Option 8: 1-in-hand winding (25 turns, Iop = 46 711 A)

◦ Option 9: 2-in-hand winding (2 x 12 turns, Iop = 49 595 A)

Parameter Unit Value

Diameter mm 10.4

width tape_1 mm 4

width tape_2 mm 3

Number of tapes _1 - 30

Number of tapes_2 - 10

A_Cu_tapes mm2 6

A_Cu_total Mm2 68.05

A_Hastelloy mm2 7.50

A_REBCO mm2 0.20

A_Ag mm2 0.60

A_solder mm2 9.40

Ic of tape (12 T, 4.2 K) A/mm 67

Ic of CroCo (12 T, 4.2 K) A 10050

Parameter Unit Value

Number of CroCo’s - 6

Cable space diameter mm 31.2 

Central core diameter mm 10.4

A_Cu in CroCo’s mm2 408.28

A_Cu in core mm2 84.95

A_Solder mm2 56.41

A_REBCO mm2 1.21

A_Ag mm2 3.60

A_Hastelloy mm2 45.00

A_He mm2 165.4

A_Jacket mm2 954.85 (L1)

Ic (12 T, 4.2 K) A 72850

Iop/Ic - 0.65

CroCo characteristics                        Cable characteristics                          
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Composition of conductor and winding pack (II)

 Cable design is the same for different layers  (no grading), due 
to large size of CroCo

 Jacket thickness increases in the radial direction and remains 
constant (6.95  mm) in the toroidal direction

Layer

Conductor size 

non-insulated

(mm x mm)

Jacket 

radial 

thickness

(mm)

Option 8 

Cable

length

(m)

Option 9 

Cable

length

(m)

1 45.1 x 38.2 3.5 1096 2 x 526

2 45.1 x 38.2 3.5 1105 2 x 530

3 45.1 x 42.2 5.5 1113 2 x 534

4 45.1 x 42.2 5.5 1122 2 x 538

5 45.1 x 44.2 6.5 1130 2 x 542

6 45.1 x 44.2 6.5 1138 2 x 546

7 45.1 x 46.2 7.5 1146 2 x 550

8 45.1 x 46.2 7.5 1154 2 x 554

9 45.1 x 48.2 8.5 1161 2 x 557

10 45.1 x 48.2 8.5 1169 2 x 561

11 45.1 x 50.2 9.5 1176 2 x 564

12 45.1 x 50.2 9.5 1182 2 x 567

Turn insulation 1.5 mm

Layer insulation 2 mm

Ground insulation 10 mm
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Basic assumptions

[5] D. S. Beard, W. Klose, S. Shimamoto, and G. Vecsey, “The IEA Large Coil Task development of

superconducting toroidal field magnets for fusion power,” Fusion Eng. Des., vol. 7, no. 1/2, pp. 1–230, 1988.

 Operating conditions:

Tin = 4.5 K,  pin = 6 bar, Dp = 1 bar

 Fanning friction factor correlation developed for the

EURATOM  LCT conductor [5]:
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Conductors of this type have not been tested for pressure drop yet.

Predicitve capability of the friction factor correlation should be 

verified experimentally.
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Hydraulic analysis - model
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momentum balance equation for uncompressible flow

.

No heat deposition in conductors  (isenthalpic flow),  D p = 1 bar

where helium properties are calculated at the reference conditions:
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Heat removal analysis – model 

- heat deposition rate per unit length of conductor (W/m)
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Heat removal analysis – heat deposition

Expected value of the nuclear heat (NH) load, deposited in the TF case and in 

the WP due to neutron irradiation, was estimated by integrating the formula [6]:

PNH1 = 50 W/m3∙exp(-rcase/0.140 m) (1)

[6] L. Zani, U. Fischer, “Advanced definition of neutronic heat load density map on DEMO TF coils,” Memo 

for WPMAG-MCD-2.1/2.2/ 3.3, v. 1.0, 2014, https://idm.euro-fusion.org/?uid=2MFVCA 

[7] M. Coleman, “Advanced definition of neutronic heat load density map on DEMO TF coils,” Memo for 

WPMAG-MCD-2.1/2.2/3.3, v.2.0, 2016,  https://idm.euro-fusion.org/?uid=2MFVCA

Eq. (1) served as a reference for the 

present WP designs, so it was retained 

as a basic approach in our analysis. 

However, the most recent neutronic 

study, provided the new more advanced 

formula for NH load in the WP [7]:
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Heat removal analysis – Tcs calculation 

critical current density

Scaling law for REBCO [8]:

critical magnetic flux density 

For a given operating current density Jop we computed Tcs as a 

function of B by solving the equation:
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A = 1.82962·108 A/(m2 T1)       B0  132.5 T     T0  90 K

 = 1.54121  = 1.96679       p = 0.5875         q = 1.7

[8] R. Heller, et al., IEEE Trans. Appl. Supercond., vol. 26, No. 4, Jun. 2016, Art. No. 4201105



Heat removal analysis – calculation of DTmarg

In our earlier studies, e.g. [9], the minimum DTmarg for the layer wound 

coils was estimated conservatively in the simplified way as: 

DTmarg min = Tcs (Bmax) – Tout .
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In the present work we introduced to the heat removal model the 

computed effective magnetic field profiles along the cables and  

DTmarg min was found as the minimum of Tcs (B(x)) – T(x).

[9] M. Lewandowska, et al., IEEE Trans. Appl. Supercond., vol. 26, no. 4, Jun. 2016, Art. no. 4205305

Magnetic field profiles 

along the selected cables 

computed with the M’C 

code from CryoSoft.
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THEA model 

 Coupling  Th1-Th2 and Th1-Th3 via thermal 
resistances R=1/(hp), where h = 500 W/(m2K)

 Full cable length carrying 46 711 A (opt 8) / 
49 595 A (opt 9) subjected to the expected 
effective magnetic field and NH load was simulated.

 The adiabatic and fixed pressure (infinite reservoir) boundary conditions 
were imposed at both ends of each cable.

 The obtained steady state temperature, pressure and mass flow profiles 
served as the initial conditions for the subsequent quench simulation.

 Quench was initiated by a heat disturbance of length 10 cm and duration 
100 ms imposed at one of the DTmarg minima. The disturbance energy was 
planned to be 2 x MQE.

 In quench simulation we used refined initial mesh with automatic 
adaptivity. In the 1 m long refined region around the disturbance location 
the distance between nodes was 2 cm, in the rest of a cable – 25 cm.

 The quench detection threshold is set at 0.1 V, with an additional delay of 
1.1 s before the start of exponential current dump with the characteristic 
time t = 27 s.
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Results – heat deposition in conductors
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For comparison: 

In LTS TF coils at no heat load:

MIN total massflow: 57 g/s (WP#2)

MAX total massflow: 203 g/s (WP#3)

Option

Total mass flow rate (g/s)

No heat load QNH1
QNH2

8 72.9 72.0 70.6

9 226.6 225.9 224.9

Results - hydraulic analysis
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Results – heat removal analysis (I)

Option 9, L1, QNH1

• Steady state temperature, 

pressure and DTmarg

profiles obtained with

THEA and with the

simplified model agree

very well 

• Minimum of DTmarg is 

typically located at one of 

the Tcs minima in one of 

the last turns.

Option 9, L1, QNH1
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Results - heat removal analysis (II)

Minimum DTmarg  is much larger than the 1.5 K criterion and much 

larger than DTmarg in all LTS WP#1-WP#3 conductors.
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Results - quench analysis (I)

„false positive” 

quench detection

CroCo
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Results - quench analysis (II)
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 Thermal-hydraulic analysis of the DEMO TF coil design based on the HTS 

CroCo conductors was performed using simplified models and the THEA code.

 Predictive capability of the friction factor correlation used in the analysis should 

be verified experimentally. 

 The maximum total mass flow rate in the TF coil was assessed to be 73 g/s 

(Option 8), and 227 g/s (Option 9). 

 The computed temperature margin obtained for both considered NH load 

maps varied in the range 11.6 – 24.5 K, which is much larger than in all the 

LTS TF coil designs.

 MQE assessment was problematic due to the occurence of „false positive” 

quench detections 

 MQE value was very sensitive to the choice of the MaximumStep value.

 The value of the maximum hot spot temperature was sensitive to the choice of 

integration method and MaximumStep value.

 The maximum hot spot temperature significantly increases with the 

disturbance energy (for comparison: in the LTS WP#1 L1 cable the Tmax

increased only about 10 K, when Qpulse varied in the range 340 – 5e4 W/m [1])  

 Ideas how to reliably estimate the hot spot temperature are very welcome.

Summary and conclusions
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Question Time


