Future Ideas for SuperCDMS at SNOLAB

Wolfgang Rau
Queen’s University

for the SuperCDMS Collaboration
SuperCDMS Collaboration

University of California, Berkeley
University of Colorado, Denver
University of Florida
University of Minnesota
University of South Dakota
University of Toronto

Southern Methodist University
Stanford University
Texas A&M
University of British Columbia/TRIUMF

Fermi National Accelerator Laboratory
NISER
NIST
Northwestern University
PNNL
Queen’s University
Santa Clara University
SLAC/KIPA
South Dakota School of Mines & Technology
SNOLAB

California Institute of Technology
CNRS/LPN
Durham University

NIST
Northwestern University
PNNL
Queen’s University
Santa Clara University
SLAC/KIPA
South Dakota School of Mines & Technology
SNOLAB
SuperCDMS Technology

The SuperCDMS SNOLAB Project

Long-term goals

Potential detector developments

Other ideas
Detectors

Phonon Readout:
Tungsten TES

Semiconductor operated at few 10s of mK

Add: charge readout (few V)
Background discrimination
Threshold < 10 keV

< 1 background event for whole exposure

Electron recoils: background
Nuclear recoils: signal

Ionization vs Recoil for a Ge ZnIP : ^{55}Cf
Detectors

Semiconductor operated at few 10s of mK

Phonon Readout:
Tungsten TES

Add: charge readout (few V)
Background discrimination
Threshold < 10 keV

< 1 background event for whole exposure

Electron recoils: background
Nuclear recoils: signal

Phonon signal
Charge signal

Ionization vs Recoil for a Ge ZIP: 252Cf
Neganov-Luke Effect

Electron gains kinetic energy
\(E = q \cdot V \rightarrow 1 \text{ eV for } 1 \text{ V potential}\)

Deposited energy in crystal lattice:
Negovan-Luke phonons
\(\propto V, \# \text{ charges}\)

- Luke phonons mix charge and phonon signal \(\rightarrow\) reduced discrimination
- Apply high voltage \(\rightarrow\) large final phonon signal, measures charge!!
- ER much more amplified than NR
 \(\rightarrow\) gain in threshold; dilute background from ER

Phonon Readout:
Tungsten TES

Add: charge readout (few V)
Background discrimination
Threshold < 10 keV

Neganov-Luke Effect

- In Vacuum
 - iZIP
 - Electron

- In Matter
 - Deposited energy in crystal lattice: Neganov-Luke phonons
 \(\propto V, \# \text{ charges}\)
 - Luke phonons mix charge and phonon signal \(\rightarrow\) reduced discrimination
 - Apply high voltage \(\rightarrow\) large final phonon signal, measures charge!!
 - ER much more amplified than NR
 \(\rightarrow\) gain in threshold; dilute background from ER

SuperCDMS SNOLAB - W. Rau - TAUP 2017
Detectors

- **Phonon Readout:** Tungsten TES
 - Add: charge readout (few V)
 - Background discrimination
 - Threshold < 10 keV
 - Remove surface background
 - < 1 background event for whole exposure

- **Phonons from drifting charges**
 - Threshold < 0.1 keV (phonon)
 - Effective threshold: few hundred eV (NR)

- **Electron recoils:** background
- **Nuclear recoils:** signal

- **Charge signal:**
 - Ionization vs Recoil for a Ge Zn: 552Cf

- **Semiconductor operated at few 10s of mK**

- **iZIP**

- **HV**
Implementation (SNOLAB setup)

6 detectors → 1 tower
Implementation (SNOLAB setup)

- Fridge to provide <15 mK at the detector
- Mounted on spring-loaded platform (seismic isolation)
- Detector volume (space for up to 31 “towers”)
- Signal vacuum feedthroughs
- Cold finger
- 6 detectors → 1 tower
- Initial Payload:
 - 1 Ge iZIP tower (6 Ge)
 - 1 Ge/Si iZIP tower (4 Ge/2 Si)
 - 2 HV towers (4 Ge/2 Si each)
- Additional cooling (50 K/4 K)

Future Plans for SuperCDMS - W. Rau - SNOLAB Future Workshop 2017
Tentative Schedule

2019
SuperCDMS construction

2020
New Detector R&D
Neutron veto R&D (?)

2021
Acquire funding
(Canada/US/?)

2022
Build and test
new detectors

2023

2024

2025
Prepare for
next phase

Start of SuperCDMS Operations

Start next phase

- Start operations of SuperCDMS SNOLAB in 2020
- Parallel to Operations:
 - develop improved detectors
 - acquire funding
 - produce new detectors, readout electronics etc.
- Conclusion SuperCDMS SNOLAB presently planned for 2025
- BUT: installation of improved detectors possible much earlier (e.g.: present HV detectors are expected to be background limited after about 2 year; may replace them if we have better ones by then)
Goal

Future Plans for SuperCDMS - W. Rau - SNOLAB Future Workshop 2017
Detector Developments – Re-gain Discrimination

- Combine ideas of iZIP and HV detectors:
 Electric field configuration as in iZIP, but pure phonon readout

![iZIP](image1)
![HV](image2)

Diagram showing:
- Primary phonons
- Phonon sensors
- Detector
- Interaction
Detector Developments – Re-gain Discrimination

- Combine ideas of iZIP and HV detectors:
 Electric field configuration as in iZIP, but pure phonon readout

Ratio of signals gives information about ratio of primary to NL phonons

Phonon sensors – biased

Strong field region

Detector

Weak field region
Detector Developments – Re-gain Discrimination

- Single Electron-hole Pair Luke gain (SEPL) method
- Need excellent energy resolution ($\ll e \times \text{bias voltage}$)

Graph showing energy levels:
- $\mathcal{O}(1 \text{ eV})$ Electron Recoil (1 eh pair)
- Few eV Electron Recoil (2 eh pairs)
- +100 eV (Luke Gain)
- +200 eV (Luke Gain)
Detector Developments – Re-gain Discrimination

- Single Electron-hole Pair Luke gain (SEPL) method
- Need excellent energy resolution (≪ e × bias voltage)
Detector Developments – Re-gain Discrimination

- Single Electron-hole Pair Luke gain (SEPL) method
- Need excellent energy resolution ($\ll e \times \text{bias voltage}$)
Detector Developments – Re-gain Discrimination

• Single Electron-hole Pair Luke gain (SEPL) method
• Need excellent energy resolution (≪ e × bias voltage)

Possible issues:
• Spontaneous release of trapped charges (either electrons or holes)
• Impact ionization of shallow states in the bulk
Detector Developments – Re-gain Discrimination

- Single Electron-hole Pair Luke gain (SEPL) method
- Need excellent energy resolution ($\ll e \times \text{bias voltage}$)

Possible issues:
- Spontaneous release of trapped charges (either electrons or holes)
- Impact ionization of shallow states in the bulk
Detector Developments – Neutron Veto

- If ER background is removed, we need to worry again about neutrons
- Replace inner neutron shield by **active veto detector**

- Most important role: tag neutrons from inner part of experiment
- Additional role: tag residual neutrons from outside; muon veto
- Boron or Gadolinium loaded scintillator
- Readout with SiPM + fiber (for low radioactivity)
- Some R&D work on B-loaded scintillator is already completed
Detector Developments – Neutron Veto

- Modular tanks, LAB (organic scintillator), loaded with \(\sim 30\% \) trimethyl borate (TMB)
- Readout: wavelength shifting fibers coupled to SiPM (\(\sim 1000\); 4 fibers/SiPM)

- Prototype (1/4 scale) built at Fermilab
- Performance very promising
- Alternative designs are being considered (Gd loaded liquid scintillator; solid scintillator)
Electron Interacting Dark Matter

- With single eh-pair sensitivity we can search for Electron Interacting Dark Matter:
 - Maximum velocity of the electron: $2 \times v_{\text{escape}} \approx 1200 \text{ km/s} = 4 \times 10^{-3} c$
 - Maximum kinetic energy: $E_e = \frac{1}{2} m_e v_e^2 = 4 \text{ eV}$
 - Real world more complicated:
 - Moderately higher energy transfer possible
 - Requires very low leakage current (injected charge carriers look like single eh pairs) and ER background

Electron Interacting Dark Matter

- Maximum velocity of the electron: $2 \times v_{\text{escape}} \approx 1200 \text{ km/s} = 4 \times 10^{-3} c$
- Maximum kinetic energy: $E_e = \frac{1}{2} m_e v_e^2 = 4 \text{ eV}$
- Real world more complicated:
 - Moderately higher energy transfer possible
 - Requires very low leakage current (injected charge carriers look like single eh pairs) and ER background

Electron Interacting Dark Matter

- Maximum velocity of the electron: $2 \times v_{\text{escape}} \approx 1200 \text{ km/s} = 4 \times 10^{-3} c$
- Maximum kinetic energy: $E_e = \frac{1}{2} m_e v_e^2 = 4 \text{ eV}$
- Real world more complicated:
 - Moderately higher energy transfer possible
 - Requires very low leakage current (injected charge carriers look like single eh pairs) and ER background

Future Plans for SuperCDMS - W. Rau - SNOLAB Future Workshop 2017
Electron Interacting Dark Matter

- Search for DM particles down to the MeV scale:

- Sensitivity depends on mediator mass
- Also sensitive to dark photons, axion like particles etc.
Other Detector Types

- Still in discussions with EDELWEISS and CRESST for the potential to include their detectors into the SuperCDMS setup

 CRESST III: CaWO4, scintillating cryo-detector
 24 g/detector; cryogenic light detector
 lowest energy threshold achieved so far: 20 eV
 Presently at Gran Sasso; default plan is to continue, but may join if there are show-stoppers

- New idea: scintillator with low band gap (GaAs(Si)) + single photon detector (setup very similar to CRESST)
 - Similar threshold as Ge/Si
 - No issue with leakage current
 - Penalty: scintillation efficiency, photon collection efficiency (factor of a few)

- Other ideas are out there – SuperCDMS is modular and adaptable to the change in the scientific landscape
Cryogenic Underground TEst facility (CUTE)

- Well shielded test facility, next to SuperCDMS
- Presently under construction
- Expected background $\mathcal{O}(5)$ events/keV/kg/day below ~ 10 keV

- Test all new detector concepts in low-background environment before installing in SuperCDMS
- Minimizes down-time of the experiment
Conclusions

- **SuperCDMS SNOLAB**: small payload, about an order of magnitude shy of the neutrino floor
- **BUT**: has extra capacity (up to 200 kg)
- Detector improvements may allow us to re-gain ER/NR discrimination at very low energy
- This will allow us to reach the neutrino floor (need large payload)
- At the same time: reach to lower energies and thus lower mass WIMPs
- Search for electron-interacting DM
- Discussions with EDELWEISS/CRESST about joining forces
- New detector ideas for very low mass reach, search for dark photons ...