

Northern Ontario School of Medicine École de médecine du Nord de l'Ontario P·∇∩ ^ d²U≥b L°"PP· ∆ ∆°d₂.∆°

REPAIR Project

Researching the Effects of the Presence and Absence of Ionizing Radiation

> Chris Thome, Doug Boreham Northern Ontario School of Medicine Laurentian University

SNOLAB Future Projects Workshop August 17, 2017

Research group

Principal Investigator Dr. Douglas Boreham Professor and Division Head of Medical Sciences – NOSM Adjunct Professor – McMaster University Principal Scientist – Bruce Power

Research Focus:

- Low-dose radiation biology
- Diagnostic imaging
- Cancer therapy

Research group

Collaborators

Dr. T.C.Tai

Professor (Physiology and pharmacology) – NOSM

Dr. Simon Lees

Associate Professor (Physiology and cell biology) – NOSM

Dr. Neelam Khaper

Associate Professor (Physiology) – NOSM

Dr. Zacharias Suntres

Professor (Pharmacology and toxicology) - NOSM

Dr. John Gunn

Professor (Aquatic biology) – Laurentian University

Dr. Joanna Wilson

Associate Professor (Aquatic biology) – McMaster University

Dr. Marc Mendonca

Professor (Radiation oncology) – Indiana University School of Medicine

Research group

Post-doctoral Fellows Dr. Chris Thome Dr. Suji Tharmalingam

Doctoral Students Jake Pirkkanen Andrew Zarnke

Technologists Mary Ellen Cybulski Taylor Laframboise

Bruce Power industrial support

- 2015: \$85,000
- 2016-2020: \$1,000,000 (\$200,000 per year)

NSERC discovery

• 2015-2020: \$190,000 (\$38,000 per year)

Mitacs Accelerate

• 2015-2017: \$330,000

NSERC CRD (under review)

• 2017-2020: \$1,000,000 (\$200,000 per year)

- Ionizing radiation is ubiquitous for all living organisms on earth
- There is increasing concern over radiation exposure from medical diagnostic procedures
- The effects from these exposures still remains largely unknown
- Limited epidemiological data exists in the low-dose region (< 100 mGy)
- There is growing evidence to suggest that low-dose radiation may provide beneficial effects to living systems

REPAIR

CT scan (10 mGy) increased mean survival time and increased tumor latency time in cancer prone mouse model

Lemon et al 2017, Radiat Res, 188

Low-dose chronic gamma ray exposure stimulated growth in developing lake whitefish embryos

Thome et al 2017, Radiat Res, 188

 Removal of natural background radiation impairs growth. Growth rates are restored once radiation is artificially reintroduced

 Removal of natural background radiation impairs growth. Growth rates are restored once radiation is artificially reintroduced

Paramecium shielded with lead (Planel et al 1976)

 Removal of natural background radiation impairs growth. Growth rates are restored once radiation is artificially reintroduced

Blue-green algae (*Synechococcus lividus*) shielded with lead (Conter *et al* 1983)

 Removal of natural background radiation impairs growth. Growth rates are restored once radiation is artificially reintroduced

Yeast (*Saccharomyces cerevisiae*) shielded with lead/cadmium (Gajendiran and Jeevanram 2002)

1. Removal of natural background radiation impairs growth. Growth rates are restored once radiation is artificially reintroduced

Bacteria (*Deinococcus radiodurans*) grown in Waste Isolation Pilot Plant (WIPP) (Smith *et al* 2011)

 Removal of natural background radiation impairs growth. Growth rates are restored once radiation is artificially reintroduced

Mouse lymphoma L5178Y cells shielded with lead or iron (Taizawa *et al* 1992, Kawanishi *et al* 2012)

2. Removal of natural background radiation reduces repair capacity towards induced damage

2. Removal of natural background radiation reduces repair capacity towards induced damage

Survival fraction in yeast (*Saccharomyces cerevisiae*) shielded with lead/cadmium (Gajendiran and Jeevanram 2002)

2. Removal of natural background radiation reduces repair capacity towards induced damage

Background/induced mutation rate in Chinese hamster V79 cells grown in Gran Sasso Underground Laboratory (LNGS) (Satta *et al* 2002)

2. Removal of natural background radiation reduces repair capacity towards induced damage

Micronuclei formation and ROS scavenging in human lymphoblastoid TK6 cells grown in LNGS (Carbone *et al* 2010)

Hypothesis and objectives

Hypothesis:

Natural background radiation is essential for life and maintains genomic stability in living organisms

Prolonged exposure to sub-background radiation environments will be detrimental to biological systems

Objectives:

Examine the effects of incubation in SNOLAB compared to surface control laboratory using two model systems

- Whole organism Lake Whitefish embryonic development
- Cell culture CGL-1 cell line

Why lake whitefish?

- 200+ day developmental period (protracted exposure)
- Embryogenesis: sensitive to ionizing radiation exposure
- Easy to raise, low maintenance
- Clear chorion visual markers of development rate
- Relatively non-technical endpoints (e.g. weight, morphometrics)

Experimental design

	2015-2016	2016-2017
In-vitro fertilization	December 1	November 10
Embryos transported to Sudbury	December 2	November 16
Embryos transported to SNOLAB	December 2	November 17

2015-2016

	LWL	LWL	SNO	SNO
Temperature	5°C	3°C	5°C	3°C
Dishes*	39	38	43	42
Embryos	1,950	1,911	2,150	2,100

*50 embryos per dish

2016-2017

	LWL	SNO
Temperature	3°C	3°C
Dishes*	64	64
Embryos	3,200	3,200

*50 embryos per dish

REPAIR

Laboratory setup

Lake whitefish (Corgonus clupeaformis)

Embryo survival

2015-2016

2016-2017

REPAIR

Development rate

Date

REPAIR

*

*

SNO LWL SNO LWL

5°C 5°C 3°C 3°C

80%

Morphometric measurements

Cell culture

What is cell culture?

Individual cells are isolated from a known specimen then grown in suspension or in mono-layers on the surface of a flask in nutrient rich media.

Why do we use cell culture as a model system?

- •Environmental variables are easily controlled and manipulated
- •Produces consistent and reproducible results
- •Allows for a high throughput of experiments
- •Specific pathways can be studied and results can be compared to the whole organism

Low radon glovebox

Basic growth characteristics

Growth kinetics

Growth curve analysis

•During the log phase doubling time can be calculated

•We can compare doubling time between different radiation environments

Time (days)

Percent survival

•Compare survival in different radiation environments

DNA damage sites

Micronucleus assay

CGL1 cell line

Non-tumorigenic cell lines

Stanbridge et al. 1981

Transformation frequency

Redpath JL et al. 2000

REPAIR

Acknowledgements

REPAIR