Photon detection solutions for next generation experiments

F. Retière (TRIUMF) & U. de Sherbrooke (Sherbrooke, QC) & nEXO collaboration

Motivations. Physics

- Light detection driving discoveries
 - Liquid Xenon scintillation in nEXO
 - Require 4-5 m² of photo-detector area
 - And may be Cerenkov light detection
 - Liquid Argon scintillation light
 - DarkSide-20k require 15 m² of photo-detector area
 - Need 100 m² of photo-detector for a 200-ton single phase detector, while DEAP-3600 is about 8 m²
 - LAB scintillation light in SNO+
 - Enhanced light detection efficiency greatly enhance sensitivity
 - And beyond SNOLAB
 - Cerenkov light in IceCube, Hyper-K,...
 - Liquid Argon scintillation light in DUNE
- Future experiments are requiring ever larger areas, with high efficiency and low radioactivity

Motivation. The PMT shortfalls

- Not very efficient
 - 35% at most at 420nm
- Large gain fluctuations
 - Though mostly a calibration nuisance
- Fairly to very radioactive
- Fragile and bulky
- Don't work well cold
 - Especially at liquid Argon temperature
- Sensitive to magnetic field
 - Need compensating coil
- Expensive > 20\$/cm²
- Some after-pulsing and dark noise

The solution? Single Photon Avalanche Detector?

- Avalanche photo-diode operated above breakdown
 - Runaway avalanche due to impact ionization
- with quenching circuit
 - Passive (resistor)
 - Active (transistor + quenching detection)

The solution. SiPMs? Not really

• Pros

UMF

- Low radioactivity
- High efficiency > 50% at 420nm
 - And improvement foreseen
- Work better cold
 - Gain unaffected down to liquid nitrogen
 - Dark noise rate
 <100Hz/cm² at -100°C,
 <1Hz/cm² at -160°C
- Insensitive to magnetic field, compact, robust

• Cons

- Dark noise rate >1MHz/cm² at room temperature
 - After-pulsing is also significant
- Large capacitance per unit area complicates electronics
- Cost > 100\$/cm²
 - Though this depends on scale

Then what?

- Below <-100°C. SiPMs!
 - Analog SiPMs are the baseline for nEXO and DarkSide-20k
 - Overcoming electronics and cost issue with 3D integrated digital SiPMs
- At room temperature. Be creative
 - Optimize light transport
 - Keep the same photocathode but enhance the collection and gain stages

The digital SiPM concept

PHILIPS

Digital SiPM – The Concept

- Photon to bit conversion
 - As opposed to photon to analog to bit conversion
- Quenching scheme
 - Current sense per diode
 - Quench upon discharge
 - Control quench time
 - Can suppress almost all after-pulses
 - Time tag and count the avalanche

From monolithic digital SiPM to 3DdSiPM

- Monolithic issues
 - Electronics circuit limits the active area
 - Trade off between active area (1b) or performance (1c)
 - Compromise between photo-detector and electronics technology

- 3D solves most issues
- Main challenge
 - Connect each diode on photo-detector chip to quenching electronics chip

Pioneer work at MIT Lincoln Lab

• 25µm pitch

UMF

- 180nm CMOS + custom (APDs)
- 7-bit counter/pixel
- Backside illumination

 10 - 20% detection efficiency (limited by optical cross-talk)

B. Aull et al., IEEE Sensors J., 2015

Pioneer work at MIT Lincoln Lab

Figure 3: GM-APD back-illumination process flow illustrating the major steps to process a wafer of GM-APD devices that has completed front-side processing through to hybridization with a CMOS ROIC. To simplify the illustration, the relative positions of the components of the bonded wafer stack are maintained in all process description panels.

Aug 17, 2017

And in Canada

Scanning Electron Microscope Image

- U.Sherbrooke (QC, Canada)
 - Photo-detector tier design
 - Electronics tier design
 - 3D assembly
- In collaboration with Teledyne-DALSA (Bromont, QC, Canada)
 - Photo-detector fabrication
 - 3D assembly
 - (CMOS chip made by TSMC)

SHERBROOKE

©2016 Jean-François Pratte

31

It works! Sherbrooke's proof of concept

RIUMF

Development of 3DdSiPMs for LXe and LAr applications in Canada

- Expertise in Canada
 - Sherbrooke + TRIUMF
- Facilities in Canada
 - Teledyne-DALSA
 - U.Sherbrooke C2MI, 3IT
 - CMC
 - SFU 4Dlabs?
- Funding
 - NSERC through EXO
 - CFREF through Queens
 - CFI through M.Boulay's LAr/Lxe development infrastructure Aug 17, 2017

Parameters	Requirement	Comments		
nEXO barrel photo-detectors	Specifications at -104 °C			
Photo-detection efficiency at 175nm	>15%	Hamamatsu VUV4 MPPC (analog SiPM)		
		~23%. Specification assumes SiPMs reflects		
		about 60% of the VUV photons		
Correlated avalanche rate (0-1µs)	<20%	Achieved by FBK and Hamamatsu though		
		limit the over-voltage		
Dark noise rate	<50Hz/mm ²	Achieved by FBK and Hamamatsu		
Readout electronics power dissipation	$<20W/m^{2}$	Conceptually possible for analog SiPMs		
		with µs scale shaping and large gain		
Time sampling	<1µs			
Radioactivity (Combined Th and U)	<10nBq/cm ²	Achieved by unpackaged FBK SiPMs		
Single channel area	<100cm ²	Assembly of several SiPMs		
Total area	$4-5m^2$			
nEXO-EL end-cap photo-detectors	Same as nEX	O barrel photo-detector except		
Correlated avalanche rate (0-2µs)	<5%			
Time sampling	50ns			
Granularity	$5 \times 5 \text{mm}^2$			
Total area	$\sim 1 \text{m}^2$			
nEXO-ELT (Cerenkov)	Upgrade of the	nEXO barrel and end-cap photo-detectors		
Time sampling	1ns			
Granularity	1 cm ²			
DEAP-200t (200ton LAr)	Specifications	at -186 °C		
Photo-detection efficiency at 125nm	>15%	Hamamatsu VUV4 MPPC (analog) ~10%		
Photo-detection efficiency at 420nm	>40%	Require a VUV to blue wavelength shifter		
Correlated avalanche rate (0-5µs)	<10%	For PSD		
Dark noise rate	<0.1Hz/mm ²	For triggering and PSD		
Time sampling	5ns	For PSD		
First photon timing resolution	250ps	For position resolution with time of flight		
Radioactivity (Combined Th and U)	?	Driven by neutrons		
Granularity	1 cm^2	For position reco. especially on surface		
Total area	$150m^2$			

R&D towards nEXO

- Tailor photo-detector tier for VUV detection
- Demonstrate scalability
 - In particular power dissipation
- Demonstrate cost <2M\$/m²
- CFI funds for R&D secured through M.Boulay at Carleton

DdSIPM3DdSIPM <th< th=""><th><u> </u></th><th></th><th></th><th></th><th>~106</th><th>mm</th><th></th><th></th><th></th><th></th></th<>	<u> </u>				~106	mm				
DadsipmSDdSiPM <t< th=""><th></th><th></th><th>1</th><th></th><th>0</th><th></th><th>_</th><th></th><th></th><th>_</th></t<>			1		0		_			_
IndsiPMSDdSiPM <t< td=""><td>IDdSiPM</td><td>3DdSiPM</td><td>3DdSiPM</td><td>3DdSiPM</td><td>3DdSiPM</td><td>3DdSiPM</td><td>3DdSiPM</td><td>3DdSiPM</td><td>3DdSiPM</td><td>3DdSiPM</td></t<>	IDdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM
DdSIPM3DdSIPM <th< td=""><td>DdSIPM</td><td>3DdSiPM</td><td>3DdSiPM</td><td>3DdSIPM</td><td>3DdSiPM</td><td>3DdSiPM</td><td>3DdSiPM</td><td>3DdSiPM</td><td>3DdSiPM</td><td>3DdSiPM</td></th<>	DdSIPM	3DdSiPM	3DdSiPM	3DdSIPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM
ADdSiPM3DdSiPM <t< td=""><td>DdSiPM</td><td>3DdSiPM</td><td>3DdSiPM</td><td>3DdSiPM</td><td>3DdSiPM</td><td>3DdSiPM</td><td>3DdSiPM</td><td>3DdSiPM</td><td>3DdSiPM</td><td>3DdSiPM</td></t<>	DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM
indsipm 3ddsipm 3ddsipm Addsipm 3ddsipm 3ddsipm Addsipm 3ddsipm	8DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM
iddsipm 3ddsipm 3ddsipm iddsipm 3ddsipm 3ddsip	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM
iddsipm 3ddsipm 3ddsipm iddsipm 3ddsipm	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM
iddsipm 3ddsipm	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM
iDdSiPM 3DdSiPM 3DdSiPM 3DdSiPM 3DdSiPM 3DdSiPM 3DdSiPM 3DdSiPM 3DdSiPM 3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3Dd5iPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM
	BDdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3Dd5iPM	3DdSiPM
IDdSIPM 3DdSIPM	BDdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM	3DdSiPM
Electronic Substrate		Electronic S	iubstrate) (= c	ontroller			

3DdSiPM "schematics"

- •About 1x1cm²
- •Wired-OR
- Parallel adder provides the number of SPAD fired upon interposer request
- Low power digital asynchronous logic (no clock)

Power consumption

- The proposed 3DdSiPM has a total area of 1 cm² and is composed of three modules.
 - 40 000 quenching circuits to individually quench the SPAD
 - A wired-or for the flag
 - A parallel adder for the sum
- Power consumption of the 3DdSiPM depends on the event rates
 - Power consumption evaluated for a DCR of 5k s⁻¹/cm²
- <u>So... for 4 m², the digitization cost ~0.7 W! About x20 less than estimates for</u> <u>analog SiPMs</u>

Consumption per 3DdSiPM (1 cm ²)						
	Static (µW)	Dynamic (μW)	Total (μW)			
Quenching circuit (40k)	10	1	11			
Wired-OR	0.3	1.3	1.6			
Adder	5.2	1E-3	5.2			
Total	15.5	2.3	17.8			

UMF

RIUM

Other advantages of 3DdSiPMs in LXe and LAr

- Timing resolution < 1ns (towards 10ps) overall large area
 - Without huge power dissipation
 - May allow separating Cerenkov and scintillation photons
 - Possible background rejection handle in $0\nu\beta\beta$ experiment
- Fine granularity (at no extra cost)
 - mm² scale possible
 - Combined with electro-luminescence allows exquisite charge cloud reconstruction in liquid Xenon. Another possible background rejection handle in $0\nu\beta\beta$ experiment
 - Allow tagging activity on the photo-detector surface
- Zero after-pulsing due to active quenching
 - Enhance energy resolution and pulse shape discrimination
 - Though does not eliminate cross-talk (including delayd cross-talk)
- Push cost down to allow >100m² coverage for ~10M\$

UMF

Further challenge. VUV issue 1.

Metal-dielectric UV bandpass filters

- Conventional low-loss dielectric filters are not available in this wavelength range
 - Lack of high refractive index transparent materials
- Bandpass filters in this range are metal dielectric (aluminum)
 - Commercial filters have peak transmission ~30-35%
- High Si UV reflectance now beneficial

silicon APD

19

Further challenge. VUV issue 2.

Silicon attenuation length very short in VUV Two-dimensional doping by MBE

- Delta doping and superlattice doping optimizes surface band structure
- Stable, uniform back surface passivation
- 100% internal QE, 100% fill factor, low dark current
- Ultrathin back surface contact

IUMF

Caltech / JPL / RMD Si APDs

5

IUMF

Thin-Film Interference Filter

Harnessing the power of interference filters

Unfiltered Light Input

Refraction and Reflection in Optical Coatings

Reflection and Transmission by Interference Filters

Use this technique to separate scintillation and Cerenkov light in liquid Xenon?

TRIUM

At room temperature, Winston cone + dichroic mirror + wavelength shifter

- Concept patented by RIKEN
 - Let UV/Blue light through
- Reflect reemitted blue or green lighthroic Mirror Visible Light Fluorescent Dye PMT window Buffer Layer (UV absorptive) GaAsP M. Takeda et al., proc of the 28th Int. Cosmic Ray conf. Photoelectron Transmittance [%] 70⁸⁰90 40⁵⁰60⁷⁰Angle [deg] 10²⁰ Incident Angle [deg] 20 0 300 350 400 450 Aug 17, 2017 500 550 Wavelength [nm]

- This concept for large area
 - Reemitted light is completely trapped
 - Focus the light to PMT using Winston cone
 - Make the cone of acrylic for radioactivity shielding
 - Use SiPM rather than PMT?

Photon trap for large area

- Configuration investigated for Hyper-K by simulations
 - Aim of reducing cost

UMF

 Using a realistic dichroic mirror from Iridian SpectralTechnologies (Ottawa, Canada)

C. Rott, S. In, F.R., P. Gumplinger, arXiv:1708.01702

	Relative detection efficiency						
Configuration	Primary	Internal	External	Total			
Case 1	1.000	0	0	1.000			
Case 2	0.379	0.358	0	0.737			
Case 3	0.378	0.396	0.099	0.874			
Case 4	0.316	0.412	0.344	1.071			

At room temperature: the Digital Hybrid Photo-Detector

Analog HPD from Hamamatsu, Tokyo & Kyoto University

The digital HPD

- Use 3D Geiger-mode avalanche diode array for gain stage
 - Size 0.1-1 cm² with photocathode 100-1000cm²
- May be cheaper than very large 3DdSiPM plane
 - 1/1000 reduction of Si area
- Dark noise
 - Not an issue cold, e.g. in LAr
 - Need to play some tricks at room temperature. Same as detecting charge particles
- Development foreseen in collaboration with U.Alberta

Summary

- Compelling physics goals demand new technologies
 - Enhance overall light collection in SNO+
 - High spatial granularity and timing resolution while decreasing radioactivity content for DEAP
- Compelling technologies to meet physics demand
 - 3D integrated digital SiPMs
 - Hybrid photo-detectors using an electron detector relying on 3D integratedd technology
 - Interference filters and wavelength shifters
- Compelling technologies "benefitting Canadians" and beyond
 - Time of flight PET
 - LIDAR systems

Long term outlook

A more sobering outlook

• Where are we?

IUMF

Technology life-cycle curve

- Mitigating risks through an expanded collaborative effort?
- Some independent challenges:
 - 3D integration
 - Delta doping (for VUV)
 - Interference filter (and Atomic Layer Deposition facility)
 - Wavelength shifter

Thank you

Tile for coincidence and triggering

- Adjustable coincidence window
- Adjustable threshold
- A trigger is generated when:
 - Flag count > threshold
 - Inside the coincidence window
- The parallel adder of each 3DdSiPM is activated for the duration of the scintillation
- Data transmission logic

RIUMF

3 dimensional digital SiPM for nEXO

30

Motivation. nEXO

- 4-5 m² SiPM
 - Single VUV photon sensitive
 - >15% efficiency
 - Very low radioactivity
 - Silicon is generally very radiopure
- SiPM electronics in liquid Xenon
 - Power dissipation < 100W
 - Challenging to achieving noise < 0.1PE per channel of 1-10cm² because of large capacitance
 - With analog electronics need to limit bandwidth
 - Digital SiPM promise better performance and lower power

Prototyping the buffer stage

• Avalanche pulses visible!

"Regulated common-base"

RIUMF

Dark noise issue

Issues

- Through Silicon Via backside isolation with substrate
- Under bump metallization connection to TSV end cap (Ti/Cu interface)

3D integration process related: will not be an issue when process moved to C2MI

...

Other applications of 3DdSIPMs

- TOF PET revolution
 - 10 ps ~ few mm
- Many particle physics applications
 - Plastic scintillator
 - Calorimeters with inorganic scintillators
- Lidar

IUMF

- High precision (10ps~mm)
- High rate
- Possible imaging capabilities
- Huge market: self driving cars, ...

