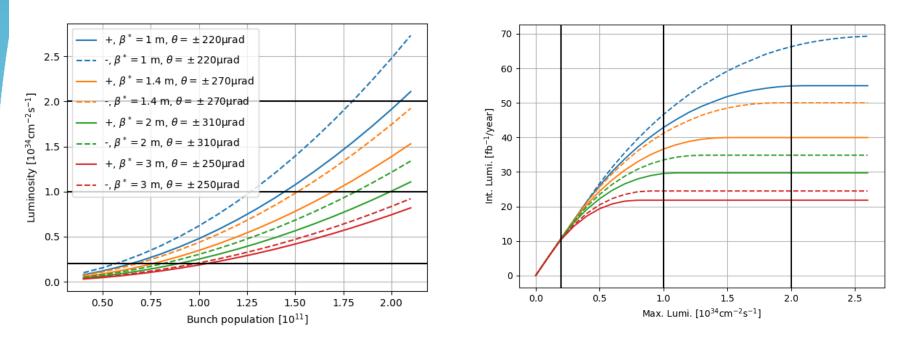

Update of LHCb at High Luminosity

R. De Maria

WP2 Meeting 23/5/2017

LHCb

	Run II	Run III	Run IV	Run V-VI
Duration [years]	3.5	3	3.5	5
L [10 ³² cm ⁻² s ⁻¹]	4	<20	20	100-200
Int. L [fb ⁻¹]	~81)	? ³⁾	50 ²⁾	300 ²⁾
Ppb [10 ¹¹]	1.1	1.1→2.2	2.2	2.2
Bunches in IP8	2036→ 2378	2572 or 2378	2572 or 2378	2572 or 2378
Emit [μm/γ]	2.8	2.8→2.1 2.5→1.7	2.1 or 1.7	2.1 or 1.7



¹⁾Assuming 5.8 fb⁻¹, 2 fb⁻¹ in 2016 with 4 10³² cm⁻²s⁻¹ and 2036 bunches, extrapolating to 2378 bunches and same efficiency.

²⁾ target.

³⁾ Scaling in Run IV gives 35 fb⁻¹, then target in Run III does not need strictly need higher levelled luminosity.

Peak and Integrated luminosity

Estimates for 2.5 $\mu m/\gamma$ and 2378 colliding bunches based on scalings from a 250 fb $^{-1}$ fill for ATLAS and CMS.

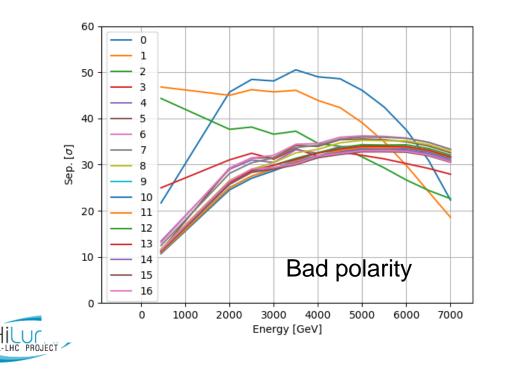
Large impact of spectrometer polarity on luminosity. Difficult to reach the final target of 300 fb⁻¹, unless extending the target of Run IV beyond 50 fb⁻¹.

Aperture and crossing angle

- Horizontal crossing aperture limited by TCDDM (Beam 2) then triplet
- Vertical crossing aperture limited by triplet
- Crossing angle limited by orbit corrector strength to 310 µrad (with 20 µrad margin and repaired MCBY)
- Protected aperture 14.6 σ (best aperture for worst phase advance from MKD)

Maximum crossing angle without or (*) with new TCDDM

β* [m]	H* [µrad]	H [µrad]	V [µrad]
1	±220	±165	±115
1.4	±270	±220	±160
2	±310	±265	±205
3	±310	±310	±250

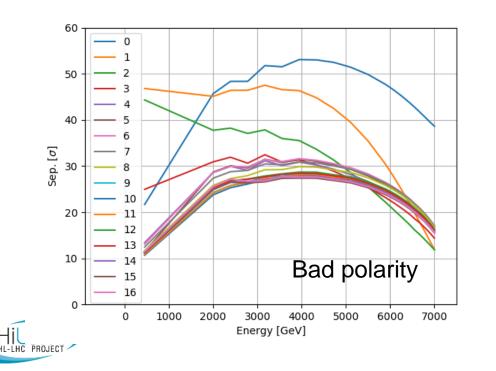


Present ramp and squeeze:

β*

- H Crossing $-170 \mu rad \rightarrow -250 \mu rad [0.45 \rightarrow 7 TeV]$
- V Separation $-3.5 \text{ mm} \rightarrow -1 \text{ mm} [2 \rightarrow 7 \text{TeV}]$
- V Angle offset $-40 \mu rad \rightarrow 0 [2 \rightarrow 7 TeV]$

 $10 \text{ m} \rightarrow 3 \text{ m} [2 \rightarrow 7 \text{TeV}]$

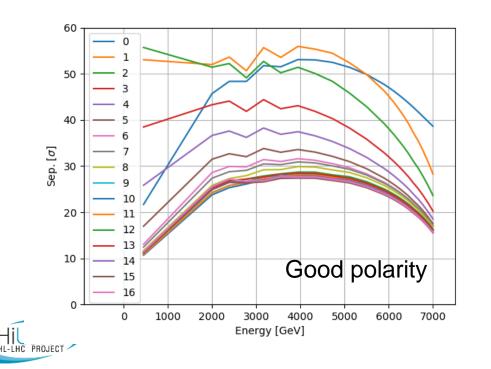

Most of the LR above 30σ , Minimum is still about 20σ

Pushed case $\beta^*=1$, ramp and squeeze:

β*

- H Crossing $-170 \mu rad \rightarrow -220 \mu rad [0.45 \rightarrow 7 TeV]$
- V Separation $-3.5 \text{ mm} \rightarrow -1 \text{ mm} [2 \rightarrow 7 \text{TeV}]$
- V Angle offset -40 μ rad \rightarrow 0 [2 \rightarrow 7TeV]

 $10 \text{ m} \rightarrow 1 \text{ m} [2 \rightarrow 7 \text{TeV}]$

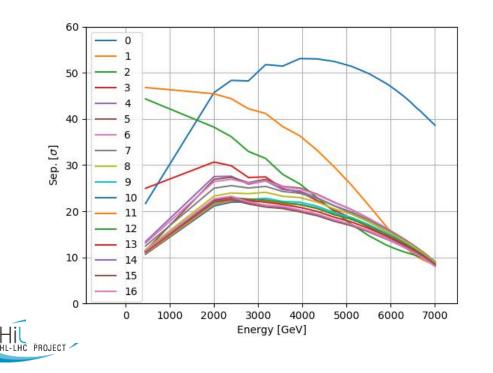

All LR in between 12 and 18 σ

Pushed case $\beta^*=1$, ramp and squeeze:

β*

- -170 μ rad \rightarrow -220 μ rad [0.45 \rightarrow 7TeV]
- V Separation $-3.5 \text{ mm} \rightarrow -1 \text{ mm} [2 \rightarrow 7 \text{TeV}]$
- V Angle offset $-40 \mu rad \rightarrow 0 [2 \rightarrow 7 TeV]$

 $10 \text{ m} \rightarrow 1 \text{ m} [2 \rightarrow 7 \text{TeV}]$

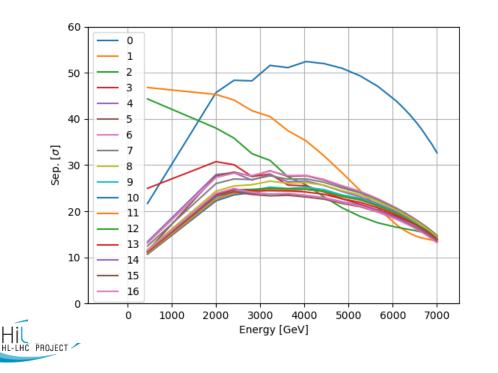


All LR in above 16 σ

Vertical crossing $\beta^*=1$, ramp and squeeze:

- Crossing $-170 \mu rad \rightarrow -115 \mu rad$
 - Separation $-3.5 \text{ mm} \rightarrow -0.5 \text{ mm} [2 \rightarrow 7 \text{ TeV}]$
- Crossing plane $0 \rightarrow 90^{\circ}$ [from $2 \rightarrow 7$ TeV]
- - V Angle offset $-40 \mu rad \rightarrow 0$ [from $2 \rightarrow 7$ TeV]
- β*

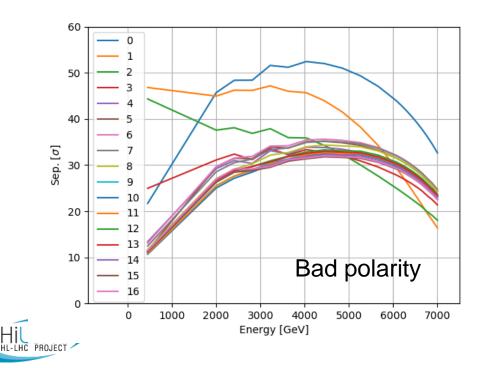
Previous case required exchange of TCDDM, however now all LR around 10 σ .


Vertical crossing $\beta^*=1.4$, ramp and squeeze:

- Crossing $-170 \mu rad \rightarrow -160 \mu rad$
 - Separation $-3.5 \text{ mm} \rightarrow -0.5 \text{ mm} [2 \rightarrow 7 \text{ TeV}]$
- Crossing plane $0 \rightarrow 90^{\circ}$ [from $2 \rightarrow 7$ TeV]

β*

V Angle offset $-40 \mu rad \rightarrow 0$ [from $2 \rightarrow 7$ TeV]

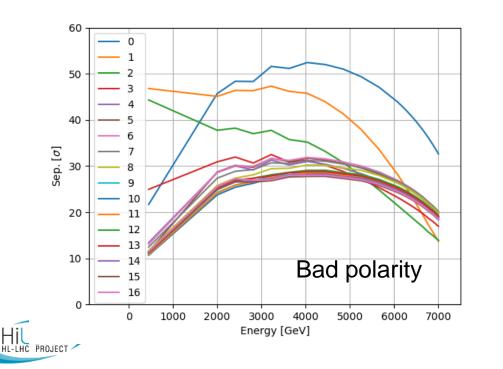

Increasing to $\beta^*=1.4$, put LR to about 14 σ .

Overall vertical crossing does not seem too advantageous.

However one needs to solve the TCDDM problem.

Pushed case $\beta^*=1.4$, ramp and squeeze:

- H Crossing $-170 \mu rad \rightarrow -270 \mu rad [0.45 \rightarrow 7 TeV]$
- V Separation $-3.5 \text{ mm} \rightarrow -1 \text{ mm} [2 \rightarrow 7 \text{TeV}]$
- V Angle offset -40 μ rad \rightarrow 0 [2 \rightarrow 7TeV]
 - $10 \text{ m} \rightarrow 1.4 \text{ m} \text{ [2} \rightarrow 7 \text{TeV]}$



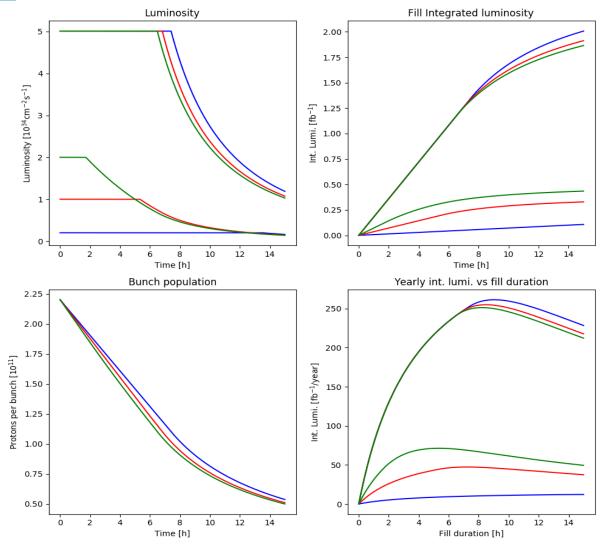
Most LR above 22 σ . Assuming new TCDDM.

β*

Pushed case $\beta^*=1.4$, ramp and squeeze:

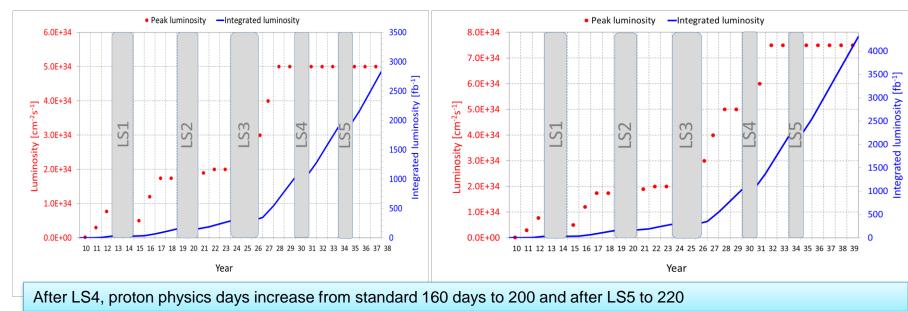
- H Crossing $-170 \mu rad \rightarrow -220 \mu rad [0.45 \rightarrow 7 TeV]$
 - V Separation $-3.5 \text{ mm} \rightarrow -1 \text{ mm} [2 \rightarrow 7 \text{TeV}]$
- V Angle offset -40 μ rad \rightarrow 0 [2 \rightarrow 7TeV]
 - $10 \text{ m} \rightarrow 1.4 \text{ m} \text{ [2} \rightarrow 7 \text{TeV]}$

Most LR above 19 σ. With present TCDDM.


One could look at flat beams for higher luminosity

β*

Luminosity scenarios



Scenario with large (2.7 10³⁴ cm⁻²s⁻¹)IP8 virtual luminosity

Small impact on Atlas/CMS

HL-LHC Targets

HL-LHC: mid 2026 to end 2039 after LS4

- Reach ≥ 3000 fb⁻¹ by
 - Maximize availability, levelled luminosity per bunch, number of bunches, bunch population, brightness.
 - Crab-cavities to alleviate geometric reduction factor to small β* and long bunches and pile-up density.

Injector Brightness and LHC Filling Schemes

Production scheme	ppb [10 ¹¹]	ε [µm]	lnj.	BPI	Colliding 1,5/2/8
Standard	1.3→2.3	2.8→2.1	13	288	2748/2494/2572
BCMS 1.3	1.3→2.3	2.5→1.7	20	144	2544/2205/2308
	1.3→2.3		12	288	2736/2258/2378
8b+4e STD	1.6→2.5	2.4→2.1	13	144	1960/1163/1806*
8b+4e BCMS	1.6→2.5	1.2→1.8	20	96	1696/1470/1538*
0.04	1.3→2.3	1.3→2.1	14	240	2732/2476/2549
80b			12	320	2800/2246/2606
50 ns	1.8	1.8	13	144	1374/1247/1286
Single	>3.0	>1.5	n/a	1	n/a
$RunII \rightarrow HL-LHC$					*scaling

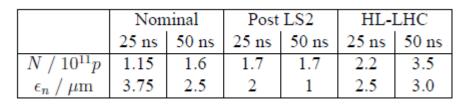
New scheme thanks to 200 ns rise time, BCMS very close to standard for IP1/5. 288bpi BCMS and 320bpi 80b cannot be tested in Run II due to transfer line limitations.

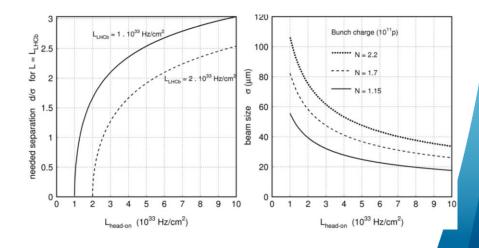
Will always short non-colliding train be needed, can they at least collide?

H. Bartosik, G. Iadarola, X. Buffat, C. Schwick

Velo upgrade references

2013, Velo TDR LHCb Tracker Upgrade TDR 20/7/2014, Velo Approval Table 1: Overview of global upgrade settings for simulation.


Beam energy	$7~{ m TeV}$
Number of bunches colliding at IP8	2400
Bunch z RMS	$90\mathrm{mm}$
Half angle horizontal	$135\mu rad$
Half angle vertical	$120 \mu rad$
Luminosity	$2 \times 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
Bunch charge	1.2×10^{11} protons
ν (# interactions per crossing)	7.6 (for $\sigma_{\rm tot} = 102.5 {\rm mb}$)
μ (# visible interactions per crossing)	5.2 (for $\sigma_{\rm vis} = 70.6 \rm{mb}$)
Bunch x, y RMS	37.70 μm
z RMS luminous region $\sigma_{\rm lumi}$	$63\mathrm{mm}$


M. Giovannozzi, Velo aperture, 9th TREX

<u>5/11/2015</u>

<u>R. Appleby et, al, VELO aperture</u> considerations for the LHCb Upgrade, <u>CERN-ATS-Note-2012-101</u>

Neglects crossing angle effects, assume levelling but also 1.7 10¹¹ for run III

