

IMPACT OF LHCB η_c Measurements on Theory

LHCB MINIWORKSHOP CERN 16 JUNE 2017

LHCB WORKSHOP, CERN

INCLUSIVE QUARKONIUM PRODUCTION NRQCD FACTORIZATION

QUARKONIUM PRODUCTION: INTRODUCTION

- Experiment: easy to measure and many precise data are available
- Theory: various production models
 - Color-Singlet Model (CSM) back in the game
 - Pro: good performance; In the game for the total yields
 - Con: large QCD corrections; Insufficient to explain inclusive onium production (=onium+jet)
 - Color-Octet Mechanism (COM) predicted by (NR)QCD
 - Pro: helps to describe the P_T spectrum of inclusive onium
 - Con: debates on its magnitude; only partially works

inti-red

colour-singlet state

QUARKONIUM PRODUCTION: INTRODUCTION

- Experiment: easy to measure and many precise data are available
- Theory: various production models

LHCB WORKSHOP, CERN

colour-singlet state

QUARKONIUM PRODUCTION: INTRODUCTION

- Experiment: easy to measure and many precise data are available
- Theory: various production models
 - Color-Singlet Model (CSM) back in the game
 - Pro: good performance; In the game for the total yields
 - Con: large QCD corrections; Insufficient to explain inclusive onium production (=onium+jet)
 - Color-Octet Mechanism (COM) predicted by (NR)QCD
 - Pro: helps to describe the P_T spectrum of inclusive onium
 - Con: debates on its magnitude; only partially works

colour-singlet state

- All approaches have troubles in describing the onium inclusive production data
- This motivates the study of new observables which can be more discriminant for specific effects
- Quarkonium production at the LHC remains a very sensitive probe of the gluon density in the proton.

Thursday, June 15, 17

inti-red

- Why we are interested in $\eta_{c,b}$ and $h_{c,b}$?

- Why we are interested in $\eta_{c,b}$ and $h_{c,b}$?
- Test heavy quark spin symmetry Bodwin, Braaten, Lepage, (1995)

$$\begin{split} \eta_{c} &\leftrightarrow J/\psi \qquad h_{c} \leftrightarrow \chi_{c} \\ \langle \mathcal{O}^{\eta_{c}}({}^{1}S_{0}^{[1,8]}) \rangle &= \langle \mathcal{O}^{J/\psi}({}^{3}S_{1}^{[1,8]}) \rangle / 3 \quad \langle \mathcal{O}^{h_{c}}({}^{1}S_{0}^{[8]}) \rangle = 3 \langle \mathcal{O}^{\chi_{c0}}({}^{3}S_{1}^{[8]}) \rangle \\ \langle \mathcal{O}^{\eta_{c}}({}^{1}P_{1}^{[8]}) \rangle &= 3 \langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]}) \rangle \qquad \langle \mathcal{O}^{h_{c}}({}^{1}P_{1}^{[1]}) \rangle = 3 \langle \mathcal{O}^{\chi_{c0}}({}^{3}P_{0}^{[1]}) \rangle \\ \langle \mathcal{O}^{\eta_{c}}({}^{3}S_{1}^{[8]}) \rangle &= \langle \mathcal{O}^{J/\psi}({}^{1}S_{0}^{[8]}) \rangle \end{split}$$

Power counting	η_c, η_b	$J/\psi, \psi(2S), \Upsilon$	h_c, h_b	χ_{cJ}, χ_{bJ}
v^3	${}^{1}\!S_{0}^{[1]}$	${}^{3}\!S_{1}^{[1]}$	_	_
v^5	_	_	${}^{1}\!P_{1}^{[1]}, {}^{1}\!S_{0}^{[8]}$	${}^{3}\!P_{J}^{[1]}, {}^{3}\!S_{1}^{[8]}$
v^7	${}^{1}\!S_{0}^{[8]}, {}^{3}\!S_{1}^{[8]}, {}^{1}\!P_{1}^{[8]}$	${}^{1}\!S_{0}^{[8]}, {}^{3}\!S_{1}^{[8]}, {}^{3}\!P_{J}^{[8]}$	_	_

- Why we are interested in $\eta_{c,b}$ and $h_{c,b}$?
- Test heavy quark spin symmetry Bodwin, Braaten, Lepage, (1995)
- LHCb has measured $\eta_c
 ightarrow p \overline{p}$ Aaij et al., (2014)

- Why we are interested in $\eta_{c,b}$ and $h_{c,b}$?
- Test heavy quark spin symmetry Bodwin, Braaten, Lepage, (1995)
- LHCb has measured $\eta_c
 ightarrow p \overline{p}$ Aaij et al., (2014)
- Would it be possible to measure

$$h_c \to \eta_c + \gamma$$

- Why we are interested in $\eta_{c,b}$ and $h_{c,b}$?
- Test heavy quark spin symmetry Bodwin, Braaten, Lepage, (1995)
- LHCb has measured $\eta_c
 ightarrow p \overline{p}$ Aaij et al., (2014)
- Would it be possible to measure

$$h_c \to \eta_c + \gamma$$

- No promising channel for searching η_b at the LHC ?
 - Looking at it decaying into $D^*D^{(*)}$? Maltoni, Polosa, (2004)

- Why we are interested in $\eta_{c,b}$ and $h_{c,b}$?
- Test heavy quark spin symmetry Bodwin, Braaten, Lepage, (1995)
- LHCb has measured $\eta_c
 ightarrow p \overline{p}$ Aaij et al., (2014)
- Would it be possible to measure

$$h_c \to \eta_c + \gamma$$

- No promising channel for searching η_b at the LHC ?
 - Looking at it decaying into $D^*D^{(*)}$? Maltoni, Polosa, (2004)
- h_b is more challenging

HEAVY-QUARK SPIN SYMMETRY

- HQSS provides approximate relations between matrix elements for the various spin states
- HQSS is a symmetry in the nonrelativistic limit
- The leading violations of HQSS come from spin-flip terms at the relative order \boldsymbol{v}^2

Charmonium: $v^2 \approx 0.3$ Bottomonium: $v^2 \approx 0.1$

- HQSS helps to reduce the number of nonpert.
 LDMEs: predictive power of NRQCD Bodwin, Braaten, Lepage, (1995)
- HQSS implies the wavefunction of η_c and ψ up to corrections of $v^2_{R_{\psi}(r)} = R_{\eta_c}(r) \left(1 + O(v^2)\right)$
- HQSS implies the simple spin counting of P-waves $\langle \mathcal{O}^{\psi}({}^{3}P_{J}^{[8]})\rangle = (2J+1)\langle \mathcal{O}^{\psi}({}^{3}P_{0}^{[8]})\rangle \quad \langle \mathcal{O}^{\chi_{J}}({}^{3}P_{J}^{[1]})\rangle = (2J+1)\langle \mathcal{O}^{\chi_{0}}({}^{3}P_{0}^{[1]})\rangle$

HEAVY-QUARK SPIN SYMMETRY

- HQSS implies the spin-flip is suppressed in polarization observables
- The experimental test of HQSS is mainly in the color-singlet part (and in decay) so far

• LHCb has measured η_{c} production Aaij et al., (2014)

Thursday, June 15, 17

7

- CNIS
- LHCb has measured $\eta_c\,$ production Aaij et al., (2014)
- It triggers several theoretical calculations
 - Hamburg group Butenschoen, He and Kniehl '15: claim nothing work !

- CNIS
- LHCb has measured $\eta_c\,$ production Aaij et al., (2014)
- It triggers several theoretical calculations
 - Hamburg group Butenschoen, He and Kniehl '15: claim nothing work !

- LHCb has measured $\eta_c\,$ production Aaij et al., (2014)
- It triggers several theoretical calculations
 - Hamburg group Butenschoen, He and Kniehl '15: claim nothing work !
 - Other groups Han et al. '15; Zhang et al. '15 NRQCD still works with another tunning !

- Messages from η_c production:
 - CS contribution already saturates the yields
 - In CO contributions, the only possible relevant one is $^3S_1^{[8]}$
 - Feeddown from h_c is quite irrelevant

- Messages from η_c production:
 - CS contribution already saturates the yields
 - In CO contributions, the only possible relevant one is $^3S_1^{[8]}$
 - Feeddown from h_c is quite irrelevant

INCLUSIVE CHARMONIUM PRODUCTION

• Test the consistence in J/ψ production

INCLUSIVE CHARMONIUM PRODUCTION

- Test the consistence in J/ψ production
- Reduce the uncertainty from CO LDMEs

THE SAME GAME FOR 25 STATES ?

- What about $\eta_c(2S)$?
- The question is: which decay mode can be measured ?

HQSS: $\langle \mathcal{O}^{\eta_c(2S)}({}^{3}S_1^{[8]}) \rangle = \langle \mathcal{O}^{\psi(2S)}({}^{1}S_0^{[8]}) \rangle$

Disparate extractions:

LHCB WORKSHOP, CERN

HUA-SHENG SHAO

THE SAME GAME FOR 2S STATES ?

- What about $\eta_c(2S)$?
- The question is: which decay mode can be measured ?

HQSS: $\langle \mathcal{O}^{\eta_c(2S)}({}^{3}S_1^{[8]}) \rangle = \langle \mathcal{O}^{\psi(2S)}({}^{1}S_0^{[8]}) \rangle$

Disparate extractions:

THE SAME GAME FOR 2S STATES ?

- Different predictions for $\eta_c(2S)$ Lansberg, Shao, Zhang, to be submitted

THE SAME GAME FOR 2S STATES ?

- Different predictions for $\eta_c(2S)$ Lansberg, Shao, Zhang, to be submitted
- A possibly reasonable assumption: Similar as IS, 2S is also saturated by CS contribution
- The potential to constrain $\langle \mathcal{O}^{\eta_c(2S)}({}^3S_1^{[8]})\rangle \simeq \langle \mathcal{O}^{\psi(2S)}({}^1S_0^{[8]})\rangle$

On the importance of Low $P_T \chi_{Q1}/\chi_{Q2}$ measurements LHCb, JHEP 10(2013)115 & JHEP 1410 (2014) 88 ; CMS, EPJC, 72, 2257 (2012); ATLAS, JHEP 07(2014)154

- At low P_T , test of χ_{Q1} suppression following the Landau-Yang theorem
- At larger P_T , test of production mechanism of χ_{QJ} (not of J/ψ or Υ)

- The Landau-Yang suppression shows up for χ_c in the Low P_T/m_Q region; signs that the quantum # still matter
- Testable with χ_{c0} and h_c using the hadronic decays

Jean-Philippe's slide

Low P_T quarkonia and Transverse Momentum Dependent distributions

- Low P_T C-even quarkonium production is a good probe of h₁^{⊥g}
 [distribution of linearly polarised gluons]
- In general, heavy-flavor prod. selects out gg channels
- Affect the low P_T spectra: $\frac{1}{\sigma} \frac{d\sigma(\eta_Q)}{d\mathbf{q}_T^2} \propto 1 - R(\mathbf{q}_T^2) \& \frac{1}{\sigma} \frac{d\sigma(\chi_{Q,0})}{d\mathbf{q}_T^2} \propto 1 + R(\mathbf{q}_T^2)$ $(R = \frac{C[w_0^{hh} h_1^{\perp g} h_1^{\perp g}]}{C[f_1^g f_1^g]})$
- Low P_T: Experimentally very challeging

Being able to look at all the states in the same hadronic decay channel and at lower P_T would be very useful

Jean-Philippe's slide

HUA-SHENG SHAO

p. [GeV/c]

BACK UP SLIDES

LHCB WORKSHOP, CERN

CO LDME fit philosophy: pick your favorite data

• World yield data before 2011 Butenschon and Kniehl'11

✓• Driven by low- and medium-pt data 3 GeV<pt<20 GeV @ pp1 GeV<pt<10 GeV @ γp , $\gamma \gamma$

CO LDME fit philosophy: pick your favorite data

• World yield data before 2011 Butenschon and Kniehl'11

 \checkmark Driven by low- and medium-pt data 3 GeV<pt<20 GeV @ pp 1 GeV<pt<10 GeV @ $\gamma p, \gamma \gamma$

 Agreement with e+e- and ptintegrated

CO LDME fit philosophy: pick your favorite data

• World yield data before 2011 Butenschon and Kniehl'11

V• Driven by low- and medium-pt data
 3 GeV<pt<20 GeV @ pp
 I GeV<pt<10 GeV @γp,γγ

 Agreement with e+e- and ptintegrated

CO LDME fit philosophy: pick your favorite data

• World yield data before 2011 Butenschon and Kniehl'11

- ✓• Driven by low- and medium-pt data 3 GeV<pt<20 GeV @ pp 1 GeV<pt<10 GeV @ γp , $\gamma \gamma$
- Agreement with e+e- and ptintegrated
- \times Tension with $\gamma\gamma$ data

CO LDME fit philosophy: pick your favorite data

• World yield data before 2011 Butenschon and Kniehl'11

- ✓• Driven by low- and medium-pt data 3 GeV<pt<20 GeV @ pp 1 GeV<pt<10 GeV @ γp , $\gamma \gamma$
- Agreement with e+e- and ptintegrated
- \times Tension with $\gamma\gamma$ data
- X• Deviation with larger-pt data Argument: need to resume $\log \frac{p_T^2}{M^2}$

CO LDME fit philosophy: pick your favorite data

• World yield data before 2011 Butenschon and Kniehl'11

- $\sqrt{}$ Driven by low- and medium-pt data
 - 3 GeV<pt<20 GeV @ pp1 GeV<pt<10 GeV @ γp , $\gamma \gamma$
- Agreement with e+e- and ptintegrated
- \times Tension with $\gamma\gamma$ data
- X• Deviation with larger-pt data Argument: need to resume $\log \frac{p_T^2}{M^2}$
- X• Contradiction with polarization data

CO LDME fit philosophy: pick your favorite data

• World yield data before 2011 Butenschon and Kniehl'11

- ✓• Driven by low- and medium-pt data 3 GeV<pt<20 GeV @ pp 1 GeV<pt<10 GeV @ γp , $\gamma \gamma$
- Agreement with e+e- and ptintegrated
- \times Tension with $\gamma\gamma$ data
- X• Deviation with larger-pt data Argument: need to resume $\log \frac{p_T^2}{M^2}$
- X• Contradiction with polarization data
- X• Tension with η_c data

Assumption: heavy-quark spin symmetry

CO LDME fit philosophy: pick your favorite data

• World data at $p_T \ge (2 \sim 3) \times M_{\text{onium}} \simeq \Pr \text{data}$ Chao et al. '11-15; Gong et al. '13; Bodwin et al. '14-16 Argument: reduce the nonperturbative effects and/or factorization breaking effects

Driven by medium- and large-pt data 7 GeV<pt<20 GeV @ pp

CO LDME fit philosophy: pick your favorite data

• World data at $p_T \ge (2 \sim 3) \times M_{\text{onium}} \simeq \Pr \text{data} \stackrel{\text{Chao et al.'II-I5; Gong et}}{al.'I3; Bodwin et al.'I4-I6}$ Argument: reduce the nonperturbative effects and/or factorization breaking effects

- Driven by medium- and large-pt data
 7 GeV<pt<20 GeV @ pp
- $\sqrt{\cdot}$ Prediction larger-pt data

CO LDME fit philosophy: pick your favorite data

• World data at $p_T \ge (2 \sim 3) \times M_{\text{onium}} \simeq \Pr \text{data} \stackrel{\text{Chao et al.'II-I5; Gong et}}{\text{al.'I3; Bodwin et al.'I4-I6}}$ Argument: reduce the nonperturbative effects and/or factorization breaking effects

- Driven by medium- and large-pt data 7 GeV<pt<20 GeV @ pp</p>
- $\sqrt{\cdot}$ Prediction larger-pt data
- X• Contradiction with low-pt data Argument: NP or factorization breaking

• CO LDME fit philosophy: pick your favorite data

• World data at $p_T \ge (2 \sim 3) \times M_{\text{onium}} \simeq \Pr \text{data} \stackrel{\text{Chao et al.'II-I5; Gong et}}{\text{al.'I3; Bodwin et al.'I4-I6}}$ Argument: reduce the nonperturbative effects and/or factorization breaking effects

- Driven by medium- and large-pt data 7 GeV<pt<20 GeV @ pp</p>
- \checkmark Prediction larger-pt data
- ו Contradiction with low-pt data Argument: NP or factorization breaking

CO LDME fit philosophy: pick your favorite data

• World data at $p_T \ge (2 \sim 3) \times M_{onium} \simeq pp$ data ^{Chao et al. '11-15; Gong et} Argument: reduce the nonperturbative effects and/or factorization breaking effects

- Driven by medium- and large-pt data 7 GeV<pt<20 GeV @ pp</p>
- $\sqrt{}$ Prediction larger-pt data
- X• Contradiction with low-pt data Argument: NP or factorization breaking

• CO LDME fit philosophy: pick your favorite data

• World data at $p_T \ge (2 \sim 3) \times M_{\text{onium}} \simeq \Pr \text{data} \stackrel{\text{Chao et al.'II-15; Gong et}}{al.'I3; Bodwin et al.'I4-16}$ Argument: reduce the nonperturbative effects and/or factorization breaking effects

- Driven by medium- and large-pt data 7 GeV<pt<20 GeV @ pp</p>
- $\sqrt{}$ Prediction larger-pt data
- ו Contradiction with low-pt data Argument: NP or factorization breaking
 - Better with LHC polarization data

• CO LDME fit philosophy: pick your favorite data

• World data at $p_T \ge (2 \sim 3) \times M_{\text{onium}} \simeq \Pr \text{data} \stackrel{\text{Chao et al.'II-15; Gong et}}{_{al.'I3; Bodwin et al.'I4-16}}$ Argument: reduce the nonperturbative effects and/or factorization breaking effects

- Driven by medium- and large-pt data 7 GeV<pt<20 GeV @ pp</p>
- $\sqrt{\cdot}$ Prediction larger-pt data
- X• Contradiction with low-pt data Argument: NP or factorization breaking
- \checkmark Better with LHC polarization data
- X• Tension with CDF polarization data Argument: doubt on CDF measurement

CO LDME fit philosophy: pick your favorite data

• World data at $p_T \ge (2 \sim 3) \times M_{\text{onium}} \simeq \Pr \text{data} \stackrel{\text{Chao et al.'II-I5; Gong et}}{\text{al.'I3; Bodwin et al.'I4-I6}}$ Argument: reduce the nonperturbative effects and/or factorization breaking effects

- ✓ Driven by medium- and large-pt data 7 GeV<pt<20 GeV @ pp</p>
- $\sqrt{}$ Prediction larger-pt data
- X• Contradiction with low-pt data Argument: NP or factorization breaking
- \checkmark Better with LHC polarization data
- X• Tension with CDF polarization data Argument: doubt on CDF measurement
- \checkmark Agreement with η_c data Assumption: heavy-quark spin symmetry Note: only one survives Chao et al.'11-15

INCLUSIVE CHARMONIUM PRODUCTION NEW HANDLES

• Quarkonium in the jet: new handles with jet substructure Mehen et al. '14-17

INCLUSIVE CHARMONIUM PRODUCTION NEW HANDLES

Associated quarkonium production

• Only one fit results in positive cross section Chao et al. '11-15

		Shao, Zhang '16								
	Experiment	CSM								
		DR	LI	EW		INTER				
	D0: $27 \pm 42.2\%$	$0.0146^{+233\%}_{-66.6\%}$	$0.229^{+264\%}_{-70.4\%}$	$0.065^{+75.5\%}_{-46.6\%}$		$-0.068^{+162\%}_{-62.2\%}$				
	LHCb	$0.255^{+391\%}_{-79.7\%}$	$6.05^{+436\%}_{-82.2\%}$	1.71	$^{+135\%}_{-65.2\%}$	$-3.23^{+2629}_{-75.9}$	%)%			
1										
	COM									
	Set I	Set II	Set I	Set III		Set IV				
	$2.96^{+135\%}_{-56.2\%}$	$1.41^{+160\%}_{-77.6\%}$	1.80^{+14}_{-58}	$1.80^{+143\%}_{-58.0\%}$		$0.418^{+144\%}_{-58.3\%}$				
	$38.8^{+238\%}_{-73.0\%}$	$21.2^{+243\%}_{-73.6\%}$	28.1^{+24}_{-73}	43% 3.8%	$6.57^{+243\%}_{-73.9\%}$					

 $J/\psi + \Upsilon$

- CO > CS in SPS
- Larger disparate CO SPS
- Need to suppress DPS first