Prompt production of charmonium states at LHCb

Lucio Anderlini on behalf of *The LHCb Collaboration*

Charmonium Workshop at LHCb

16 / 06 / 2017

June 16th

Non-relativistic QCD as a theoretical framework

Great improvements in the understanding of charmonium production in the last year.

Predicts (or take as input in global fits):

- Charmonium Production in hadroproduction, photoproduction, e⁺e⁻ annihilation...
- ➡ Charmonium polarization

The LHCb Detector

Lucio Anderlini (INFN Firenze)

The LHCb data processing

Trigger in three layers:

- ら Hardware (LO)
- S Partially reconstructed (HLT1)
- Fully reconstructed (HLT2)

Dedicated dimuon lines at all layers.

Challenges of the hardware level.

Hadron trigger relies on HCAL.

Photon trigger, based on ECAL, works better for high-energy photons (less well for charmonium transitions).

Since Run2, tighter multiplicity cut at L0 to ease reconstruction in higher levels.

The 1⁻⁻ states are "privileged" by photon interaction

J/ψ double-differential production cross-section

J/ψ double-differential production cross-section

• the increase in cross-section due to the increase in \sqrt{s}

 $p_{_{\mathrm{T}}}(J/\psi)$ [GeV/c]

J/ ψ polarization

Coordinate system:

Several choices are possible for the *z*-axis.

In the helicity frame, z is the direction of the boost between the quarkonium rest frame and the lab.

Azimuthal and Polar angles are defined.

The probability of a decay as a function of $\pmb{\theta}$ and ϕ is expressed as

J/ ψ production in jets

The fraction of the jet transverse momentum carried by the J/ψ meson,

 $z \equiv p_T(J/\psi) / p_T(jet),$ is measured using jets with

 $p_{\tau}(jet) > 20$ and $2.5 < \eta(jet) < 4.0$.

The result for $b \rightarrow J/\psi X$ decays agrees with pythia predictions.

The results for prompt J/Ψ production do not agree with predictions based on fixed-order non-relativistic QCD.

J/ψ polarization

Polarization parameters are extracted through an unbinned maximum likelihood fit.

Large simulated samples are used to compute the efficiency and the normalization.

Decays of longitudinal-polarized J/ ψ produced in B⁺ \rightarrow J/ ψ K⁺ are used as cross-check.

J/ψ polarization

For polarization, theoretical model seems more dependent on the underlying assumptions.

ψ (2S) production

Feed-down complicates the description of the production mechanism. Production of excited states is important to pin down the theory.

To reduce the statistical uncertainty decay modes

 $\begin{array}{ll} \Rightarrow & \psi(2\mathsf{S}) \to \mu\mu \\ \Rightarrow & \psi(2\mathsf{S}) \to \mathsf{J}/\psi \ \pi \ \pi \\ & & \searrow & \mathsf{J}/\psi \to \mu\mu \end{array}$

are combined.

ψ (2S) polarization

Similar picture for the ψ (2S) as for the J/ ψ polarization.

$\chi_{\rm c}$ production

 χ_c production is described by the same models (NRQCD) testing the same assumptions:

- G→ factorization
- ➡ universality

but it is much cleaner

- less parameters to be extracted from experiment
- it's basically free from feed-down decays

Using photons converted into electron pairs in the detector improves the mass resolution.

Charmonium Production Workshop at LHCb, 2017

 $\chi_{\rm c}$ production

Results are consistent with NRQCD (lower p_{τ} region is known to be more difficult)

Results are consistent with other experiments at LHC and TeVatron.

χ_{c0} production

In the same work, first evidence of χ_{c0} decays.

Statistics is only sufficient for integrated production measurement in range

 $4.0 < p_{T}(J/\psi) < 20 \text{ GeV}/c$

 $\sigma(\chi_{c0})/\sigma(\chi_{c2}) = 1.19 \pm 0.27 \,(\text{stat}) \pm 0.29 \,(\text{syst}) \pm 0.16 \,(p_{\text{T}} \,\text{model}) \pm 0.09 \,(\mathcal{B}),$

The result is consistent with NRQCD:

$$\sigma(\chi_{c0}) / \sigma(\chi_{c2}) = 0.62 \pm 0.10 \quad \text{arXiv:} 1002.3987$$

$$\sigma(\chi_{c0}) / \sigma(\chi_{c2}) = 0.53 \pm 0.02 \quad \text{arXiv:} 1305.2389$$

The challenge of non-dimuon final states

Given the overwhelming **pion background**, pure identification is crucial.

Detachment from the primary vertex can also reduce combinatorial background.

The LHCb muon system is

built to be read in the hardware trigger stage, increasing selection efficiency.

$\eta_{\rm c}$ production

Using dedicated Software-level trigger lines including experimental support to hadron identification.

The efficiency-corrected yield ratios are

$$\begin{split} & \left(\sigma_{\eta_{\rm c}(1S)}/\sigma_{J/\psi}\right)_{\sqrt{s}=7~{\rm TeV}} = 1.74 \pm 0.29 \pm 0.28 \pm 0.18_{\mathcal{B}}, \\ & \left(\sigma_{\eta_{\rm c}(1S)}/\sigma_{J/\psi}\right)_{\sqrt{s}=8~{\rm TeV}} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17_{\mathcal{B}}, \end{split}$$

and converted to cross-sections using the LHCb measurements with J/ $\psi \rightarrow \mu\mu$ decays read:

$$(\sigma_{\eta_c(1S)})_{\sqrt{s}=7 \text{ TeV}} = 0.52 \pm 0.09 \pm 0.08 \pm 0.06_{\sigma_{J/\psi}, \mathcal{B}} \ \mu \mathrm{b},$$

$$(\sigma_{\eta_c(1S)})_{\sqrt{s}=8 \text{ TeV}} = 0.59 \pm 0.11 \pm 0.09 \pm 0.08_{\sigma_{J/\psi}, B} \ \mu b,$$

η_c production comparison with theory (NRQCD)

DESY 14-219 November 2014 ISSN 0418-9833

η_c production at the LHC challenges nonrelativistic-QCD factorization

Lucio Anderlini (INFN Firenze)

arXiv:1411.7350

η_c production at LHC and implications for the understanding of J/ψ production

20

Impact of η_c hadroproduction data on charmonium production and polarization within NRQCD framework

Hong-Fei Zhang¹, Zhan Sun², Wen-Long Sang³, and Rong Li⁴

Department of Physics, School of Biomedical Engineering,

Third Military Medical University, Chongging 400038, China.

² Department of Physics, Chongqing University, Chongqing 401331, P.R. China

³ School of Physical Science and Technology, Southwest University, Chongqing 400700, China

⁴ Department of Applied Physics, Xi'an Jiaotong University, Xi'an 710049, China

Lucio Anderlini (INFN Firenze)

Towards an η_c production measurement at $\sqrt{s} = 13$ TeV

Renewed Strategy

Future possible improvements

The LHCb trigger has evolved in Run-2:

- □ Colline Offline-quality reconstruction allows exploitation of the RICH in the trigger.
- Refined DiProton Line to increase the selection efficiency

Current trigger scheme:

An important limitation comes here:

two prompt tracks with an invariant mass of 3 GeV is a too loose requirement.

> only J/ ψ and $\eta_{\rm c}$ can be selected.

Investigation on selecting $\phi\phi$ final states.

Fast RICH reconstruction algorithms, originally developed for the upgrade, can be used here "already" as further improvement.

Conclusive remarks and outlook

After several years of "confusion" around quarkonium production, a huge improvement was made with theoretical predictions,

- improving the description of the non-perturbative contributions
- exploring heavy quark spin symmetry and velocity scaling rules

More to be done experimentally especially in the fields of

- Polarizations
- Associative production (covered later)
- Higher states, much cleaner theoretically

Close interaction with theory community is obviously crucial in this field! We (as experimentalists) are very happy of your indications on priorities!