

Measurements of charmonia production in b-hadron inclusive decays in LHCb

A. Usachov

Mini-workshop on charmonium production at LHCb June 16, 2017

Introduction

- Test of NRQCD factorization framework
 - Universality assumption: long-distance hadronization of *cc̄* pair to charmonium is independent from the way *cc̄* pair was produced
 => long-distance matrix elements (LDME) are the same for prompt and b-decays production
 - Spin symmetry:
 => linked LDMEs parameters for J/ψ and η_c(1S)
 => linked LDMEs parameters for χ_{c0,1,2} and h_c
- Powerful tests of FONLL using $b \rightarrow J/\psi X$
- Nice to measure production of other states
- Mass and natural width of η_c(1S)
 The most precise measurements of mass and natural width of η_c(1S) were performed using η_c produced in radiative decays (PRL 108, 222002)
 -> significant asymmetry in the lineshapes was observed [PRD 73, 054005]
 -> the most precise BES results shifted world average of Γ(η_c(1S)) by > 2σ
 Description:
 Note: Produce (PRL 108, 222002)
 The most precise BES results shifted world average of Γ(η_c(1S)) by > 2σ
 Description:
 De
- Properties of $\eta_c(2S)$ are not well studied

Decays of charmonia								
	μμ	J/ψγ J/ψπ⁺π⁻	pp	φφ	ppπ ⁺ π [−]	φf ₀ (980)	$\phi f_2(1545)$	baryons
η _c (1S)	forb.	-	0.15%	<u>0.18%</u>	0.5%			~0.1%
J/ψ	6%	-	<u>0.2%</u>	forb.	0.6%	0.03%	~0.1%	~0.1%
Xc0	forb.	1.3%	0.02%	0.08%				~0.04%
X _{c1}	forb.	34%	0.01%	0.04%	0.05%			~0.01%
h _c	forb.		<0.015%	forb.	?			?
X _{c2}	forb.	19%	0.1%	0.01%	0.1%			~0.01%
η _c (2S)	forb.		<0.1%	?	?			?
ψ(2S)	0.8%		0.03%	forb.	0.06%			~0.02%

- The most precise studies were performed for J/ψ (and $\psi(2S)$) using clean $\mu\mu$ channel
- χ_{c1} and χ_{c2} are accessed using $J/\psi\gamma$ channel
- Use charmonia decays to hadrons to measure production of other charmonium states ($\eta_c(1S)$, $\eta_c(2S)$, h_c ?, χ_{c0})
 - LHCb is well suited to measure charged hadron final states

ΛΛ

ΞΞ

 $\Sigma\Sigma$

J/ψ production in inclusive b-decays

• Simultaneous **invariant mass** and **pseudo-proper decay time** t_z fit to separate prompt J/ψ and J/ψ from b-decays $t_z = \frac{(z_{SV} - z_{PV}) \times M_{J/\psi}}{p_z}$

Results:

• Differential cross-section measurement described by FONLL prediction

$\psi(2S)$ production in inclusive b-decays

• Simultaneous **invariant mass** and **pseudo-proper decay time** fit to separate prompt $\psi(2S)$ and $\psi(2S)$ from b-decays

$$\frac{\mathcal{B}(b \to \psi(2S)X)}{\mathcal{B}(b \to J/\psi X)} = 0.235 \pm 0.005 \text{ (stat)} \pm 0.015 \text{ (syst)},$$

$$\mathcal{B}(b \to \psi(2S)X) = (2.73 \pm 0.06 \text{ (stat)} \pm 0.16 \text{ (syst)} \pm 0.24 \text{ (BF)}) \times 10^{-3}$$

J/ψ production in inclusive b-decays

Measurements were performed for $\sqrt{s} = 2.76, 7, 8, 13 TeV$

Ratio of 13 TeV/8 TeV production:

- Powerful test of FONLL: experimental and theoretical uncertainties partially cancel

6

 $\eta_c(1S)$ production in inclusive b-decays using $p\bar{p}$ at $\sqrt{s} = 7,8 TeV$

 Hadronic charmonia decays give access to non 1⁻⁻ charmonia

Analysis:

- Normalization channel: $J/\psi \rightarrow p\overline{p}$
- Prompt and b-decays charmonia separated by t_z cut

Results:

• First measurement of η_c production in inclusive b-decays:

• Differential production cross-section:

Strategy:

- 1. Use "b-decays" sample to determine masses and resolution parameter
- 2. Perform invariant mass fit in bins of t_z
- 3. t_z fit to separate prompt from b-decays
- 4. Measure differential production in PT bins

Simultaneous $(J/\psi \text{ and } \eta_c) \chi^2$ integral t_z -fit:

Agreement between Run I and Run II measurements

 χ_c and $\eta_c(2S)$ production in inclusive b-decays using $\phi\phi$ at $\sqrt{s} = 7,8 TeV$

- Normalization channel: $\eta_c(1S) \rightarrow \phi \phi$
- Prompt charmonia removed by flight distance cut
- 2D fit of $M(K^+K^-_1) \times M(K^+K^-_2)$ in bins of M(KKKK) to remove ϕKK and KKKK backgrounds

• Invariant mass spectrum of true $\phi\phi$ combinations:

 χ_c and $\eta_c(2S)$ production in inclusive b-decays using $\phi\phi$ at $\sqrt{s} = 7,8 TeV$

- First measurement of χ_{c0} production in inclusive b-decays
- The most precise measurements of $BR(b \rightarrow \chi_{c1}X)$ and $BR(b \rightarrow \chi_{c2}X)$
- $BR(b \rightarrow \chi_{c1}X)$ and $BR(b \rightarrow \chi_{c2}X)$ are in agreement with measurements at B-factories

• First measurement of $\eta_c(2S)$ production in inclusive b-decays; first evidence of $\eta_c(2S) \rightarrow \phi \phi$

Search for X(3872),X(3915) and $\chi_{c2}(2P)$ in inclusive b-decays using $\phi\phi$ at $\sqrt{s} = 7,8 TeV$

• Bayessian upper limits on the X(3872), X(3915) and $\chi_{c2}(2P)$ production rates:

$$\frac{\mathcal{B}(b \to X(3872)X) \times \mathcal{B}(X(3872) \to \phi\phi)}{\mathcal{B}(b \to \chi_{c1}X) \times \mathcal{B}(\chi_{c1} \to \phi\phi)} < 0.39(0.34), \qquad @ 90(95)\% \text{ CL}
\frac{\mathcal{B}(b \to \chi_{c0}(2P)X) \times \mathcal{B}(\chi_{c0}(2P) \to \phi\phi)}{\mathcal{B}(b \to \chi_{c0}X) \times \mathcal{B}(\chi_{c0} \to \phi\phi)} < 0.14(0.12),
\frac{\mathcal{B}(b \to \chi_{c2}(2P)X) \times \mathcal{B}(\chi_{c2}(2P) \to \phi\phi)}{\mathcal{B}(b \to \chi_{c2}X) \times \mathcal{B}(\chi_{c2} \to \phi\phi)} < 0.20(0.16)$$

$$\begin{split} \mathcal{B}(b \to X(3872)X) \times \mathcal{B}(X(3872) \to \phi\phi) < 4.5(3.9) \times 10^{-7}, & @ \ 90(95)\% \ \mathrm{CL} \\ \mathcal{B}(b \to \chi_{c0}(2P)X) \times \mathcal{B}(\chi_{c0}(2P) \to \phi\phi) < 3.1(2.7) \times 10^{-7}, \\ \mathcal{B}(b \to \chi_{c2}(2P)X) \times \mathcal{B}(\chi_{c2}(2P) \to \phi\phi) < 2.8(2.3) \times 10^{-7}. \end{split}$$

 χ_c and $\eta_c(2S)$ production in inclusive b-decays using $\phi \phi$ at $\sqrt{s} = 7,8 TeV$. Normalized differential production

Exponential slopes of normalized differential prodcution cross-section are extracted:

	$\eta_c(1S)$	χ_{c0}	χ_{c1}	χ_{c2}	
$\sqrt{s} = 7 \mathrm{TeV}$	0.41 ± 0.02	0.32 ± 0.04	0.31 ± 0.06	0.30 ± 0.05	12
$\sqrt{s} = 8 \mathrm{TeV}$	0.39 ± 0.02	0.37 ± 0.04	0.41 ± 0.06	0.33 ± 0.04	12

Mass and natural width of $\eta_c(1S)$

LHCb measurements:

- $b \to (\eta_c(1S) \to p\bar{p})X$
- $b \to (\eta_c(1S) \to \phi \phi) X$
- Another determination from exclusive $B^+ \rightarrow (\eta_c(1S) \rightarrow p\overline{p})K^+ \rightarrow$

Status of charmonia production measurements						
	Prompt hadroproduction	$BR(B^0 B^{\pm} b - baryons \rightarrow (c\bar{c})X)$	$BR(B^{0} B^{\pm} \rightarrow (c\bar{c})X)$ (B-factories)			
η _c (1S)	LHCb - pp	(4.88 ± 0.96)×10 ⁻³ LHCb - pp	<u> </u>			
J/ψ	LHCb, ATLAS, CMS -μμ	$(1.16 \pm 0.10) \times 10^{-3}$ LEP - <i>ll</i>	$(1.094 \pm 0.032) \times 10^{-2}$ direct : $(7.8 \pm 0.4) \times 10^{-3}$ BABAR, CLEO - <i>ll</i>			
Xc0	-	$(3.02 \pm 0.47 \pm 0.23 \pm 0.94B) \times 10^{-3}$ LHCb - $\phi\phi$	-			
Xc1	ATLAS, LHCb, CMS - J/ψγ	$(1.4 \pm 0.4) \times 10^{-2}$ LEP - J/ $\psi \gamma$ (2.76 ± 0.59 ± 0.23 ± 0.89B)×10 ⁻³ LHCb - $\phi\phi$	$(3.86 \pm 0.27) \times 10^{-3}$ direct: $(3.24 \pm 0.25) \times 10^{-3}$ BABAR, Belle, CLEO -J/$\psi \gamma$			
h _c	-	-	-			
Xc2	ATLAS, LHCb, CMS -J/ψγ	$(1.15 \pm 0.20 \pm 0.07 \pm 0.36B) \times 10^{-3}$ LHCb - $\phi\phi$	$(1.4 \pm 0.4) \times 10^{-3}$ direct: $(1.65 \pm 0.31) \times 10^{-3}$ BABAR, Belle -J/$\psi \gamma$			
η _c (2S)	-	LHCb - $\phi\phi$ BR($\eta_e(2S) \rightarrow \phi\phi$) was not measured	-			
ψ (2S)	LHCb, ATLAS, CMS -μμ	(2.83 ± 0.29)×10 ⁻³ LHCb, CMS - μμ	$(3.07 \pm 0.21) \times 10^{-3}$ BABAR, CLEO - <i>ll</i>			

Ctatus of charmonia production magazinements

Summary

- LHCb measured J/ψ production in inclusive b-decays in complementary PT and rapidity range to ATLAS and CMS
 - Differential cross-section is in agreement with FONLL prediction
 - The ratio $R_{13/8}$ is a powerful test of FONLL
- LHCb is well suited to measure hadronic final states to access non 1⁻⁻ charmonia
 - First measurement of $BR(b \rightarrow \eta_c X)$ using $\eta_c \rightarrow p\bar{p}$
 - First measurement of BR($b \rightarrow \chi_{c0}X$), BR($b \rightarrow \eta_c(2S)X$) and the most precise BR($b \rightarrow \chi_{c1,2}X$) using decays to $\phi\phi$
 - Mass measurements for $\eta_c(1S)$
- Still no measurements of $BR(b \rightarrow h_c X)$

- Determination of mass width and resolution for further prompt measurements
- Tempting to simultaneous constraint LDMEs by both prompt and b-decays measurements