

Measurements of charmonia production in b-hadron inclusive decays in LHCb

A. Usachov

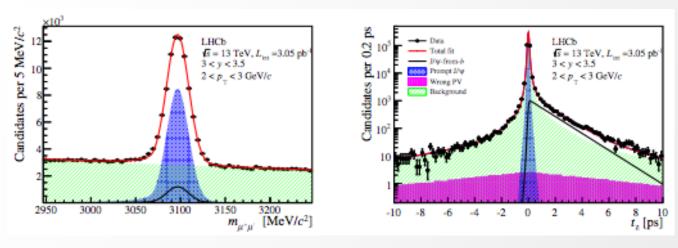
Mini-workshop on charmonium production at LHCb June 16, 2017

Introduction

- Test of NRQCD factorization framework
 - Universality assumption: long-distance hadronization of $c\bar{c}$ pair to charmonium is independent from the way $c\bar{c}$ pair was produced
 - => long-distance matrix elements (LDME) are the same for prompt and b-decays production
 - Spin symmetry:
 - => linked LDMEs parameters for J/ψ and $\eta_c(1S)$
 - => linked LDMEs parameters for $\chi_{c0,1,2}$ and h_c
- Powerful tests of FONLL using $b \to J/\psi X$
- Nice to measure production of other states
- Mass and natural width of $\eta_c(1S)$ The most precise measurements of mass and natural width of $\eta_c(1S)$ were performed using η_c produced in radiative decays (PRL 108, 222002)
 - -> significant asymmetry in the lineshapes was observed [PRD 73, 054005]
 - -> the most precise BES results shifted world average of $\Gamma(\eta_c(1S))$ by $> 2\sigma$
- Properties of $\eta_c(2S)$ are not well studied

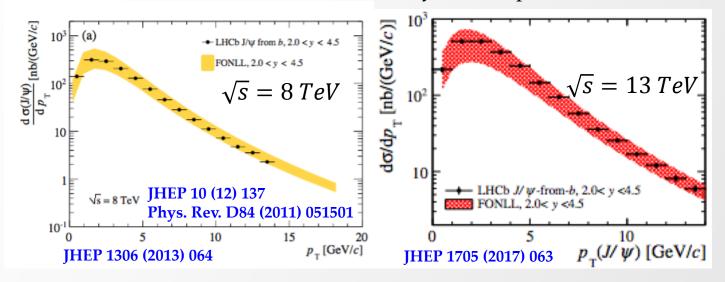
Decays of charmonia									
	μμ	J/ψγ J/ψπ ⁺ π ⁻	pp	фф	p p π ⁺ π [−]	фf ₀ (980)	φf ₂ (1545)	baryons	
η _c (1S)	forb.	-	0.15%	0.18%	0.5%			~0.1%	
J/ψ	6%	-	0.2%	forb.	0.6%	0.03%	~0.1%	~0.1%	
χ _{c0}	forb.	1.3%	0.02%	0.08%				~0.04%	
Xc1	forb.	34%	0.01%	0.04%	0.05%			~0.01%	
h _c	forb.		<0.015%	forb.	?			?	
X _{c2}	forb.	19%	0.1%	0.01%	0.1%			~0.01%	
η _c (2S)	forb.		<0.1%	?	?			?	
ψ(2S)	0.8%		0.03%	forb.	0.06%			~0.02%	

• The most precise studies were performed for J/ψ (and $\psi(2S)$) using clean $\mu\mu$ channel


ΛΛ ΞΞ ΣΣ

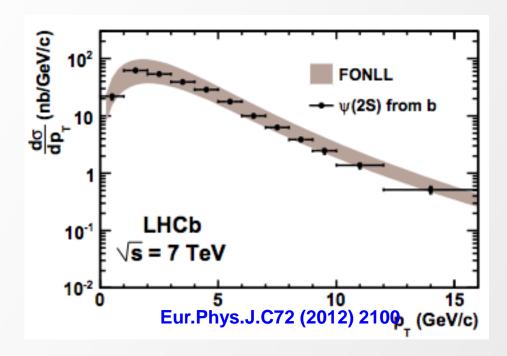
- χ_{c1} and χ_{c2} are accessed using $J/\psi \gamma$ channel
- Use charmonia decays to hadrons to measure production of other charmonium states ($\eta_c(1S)$, $\eta_c(2S)$, h_c ?, χ_{c0})
 - LHCb is well suited to measure charged hadron final states

J/ψ production in inclusive b-decays

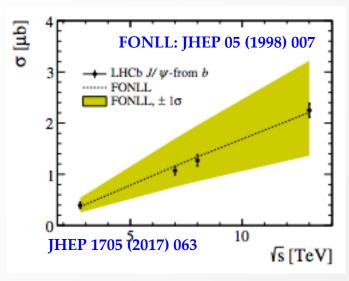

• Simultaneous **invariant mass** and **pseudo-proper decay time** t_z fit to separate prompt J/ψ and J/ψ from b-decays

$$t_z = \frac{(z_{SV} - z_{PV}) \times M_{J/\psi}}{p_z}$$

Results:


Differential cross-section measurement described by FONLL prediction

$\psi(2S)$ production in inclusive b-decays


• Simultaneous **invariant mass** and **pseudo-proper decay time** fit to separate prompt $\psi(2S)$ and $\psi(2S)$ from b-decays

$$\frac{\mathcal{B}(b \to \psi(2S)X)}{\mathcal{B}(b \to J/\psi X)} = 0.235 \pm 0.005 \text{ (stat)} \pm 0.015 \text{ (syst)}.$$

$$\mathcal{B}(b \to \psi(2S)X) = (2.73 \pm 0.06 \text{ (stat)} \pm 0.16 \text{ (syst)} \pm 0.24 \text{ (BF)}) \times 10^{-3}$$

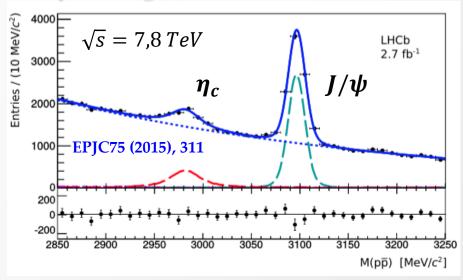

J/ψ production in inclusive b-decays

Measurements were performed for $\sqrt{s} = 2.76, 7, 8, 13 \, TeV$

Ratio of 13 TeV/8 TeV production:

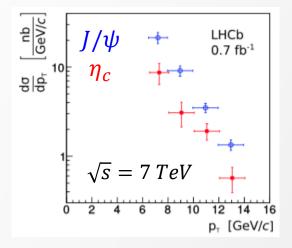
- Powerful test of FONLL: experimental and theoretical uncertainties partially cancel

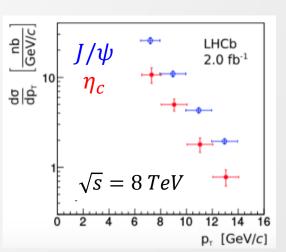
$\eta_c(1S)$ production in inclusive b-decays using $p\bar{p}$ at $\sqrt{s}=7.8~TeV$

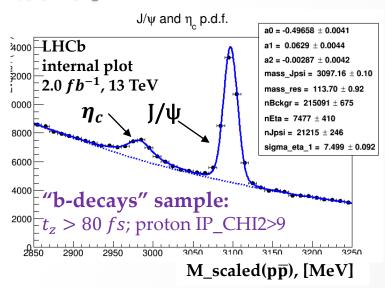

 Hadronic charmonia decays give access to non 1⁻⁻ charmonia

Analysis:

- Normalization channel: $J/\psi \rightarrow p\overline{p}$
- Prompt and b-decays charmonia separated by t_z cut

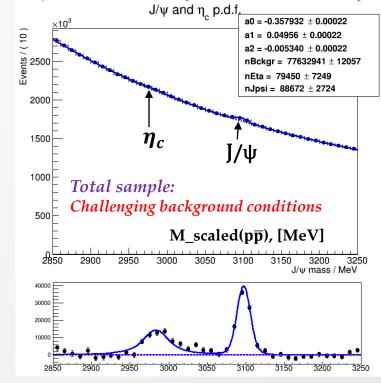

Results:

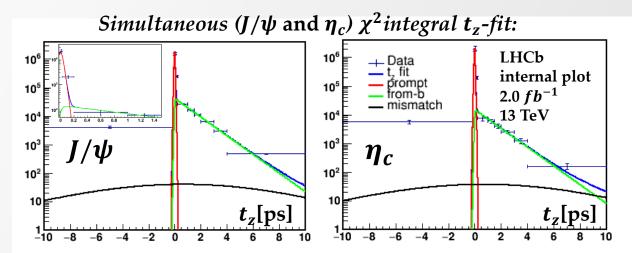

• First measurement of η_c production in inclusive b-decays:


$$\mathcal{B}(b \to \eta_c(1S)X)/\mathcal{B}(b \to J/\psi X) = 0.421 \pm 0.055 \pm 0.025 \pm 0.045_{\mathcal{B}_c}$$

 $\mathcal{B}(b \to \eta_c(1S)X) = (4.88 \pm 0.64 \pm 0.29 \pm 0.67_{\mathcal{B}}) \times 10^{-3}$

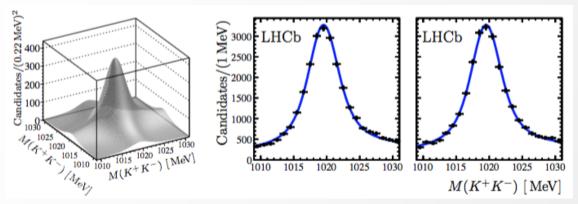
Differential production cross-section:

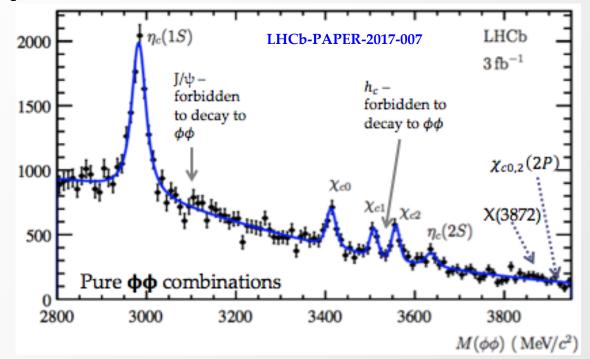



 $\eta_c(1S)$ production in inclusive b-decays using $p\bar{p}$ at $\sqrt{s}=13~TeV$ (internal results)

Strategy:

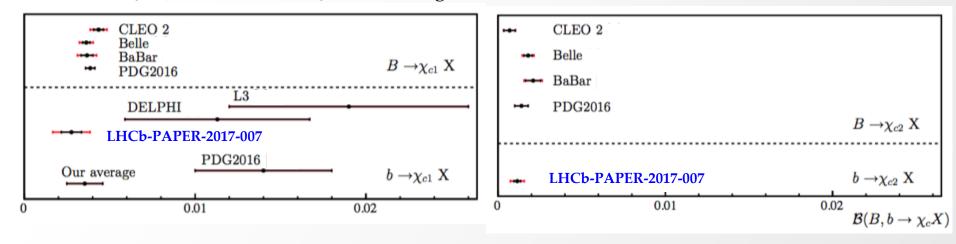
- 1. Use "b-decays" sample to determine masses and resolution parameter
- 2. Perform invariant mass fit in bins of t_z
- 3. t_z fit to separate prompt from b-decays
- 4. Measure differential production in PT bins



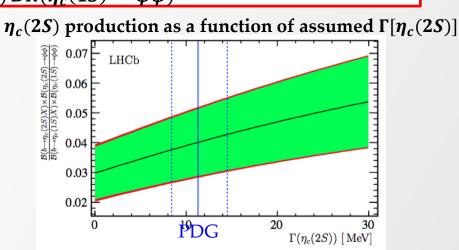

Agreement between Run I and Run II measurements

 χ_c and $\eta_c(2S)$ production in inclusive b-decays using $\phi\phi$ at $\sqrt{s}=7.8$ TeV

- Normalization channel: $\eta_c(1S) \rightarrow \phi \phi$
- Prompt charmonia removed by flight distance cut
- 2D fit of $M(K^+K^-_1) \times M(K^+K^-_2)$ in bins of M(KKKK) to remove ϕKK and KKKK backgrounds



• Invariant mass spectrum of true $\phi\phi$ combinations:


χ_c and $\eta_c(2S)$ production in inclusive b-decays using $\phi\phi$ at $\sqrt{s}=7.8~TeV$

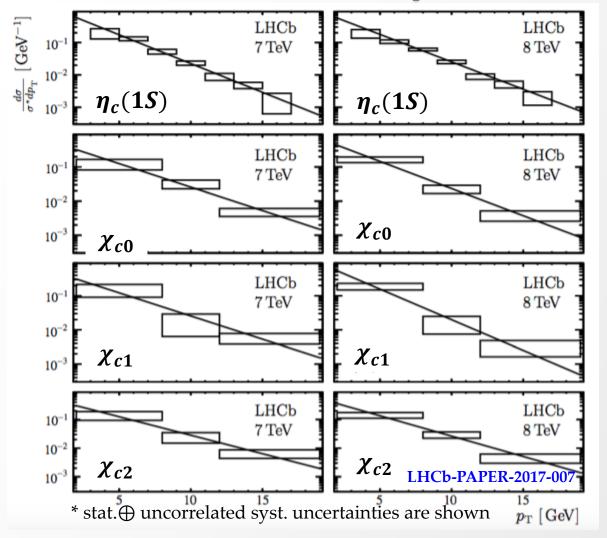
- First measurement of χ_{c0} production in inclusive b-decays
- The most precise measurements of $BR(b \to \chi_{c1}X)$ and $BR(b \to \chi_{c2}X)$
- $BR(b \to \chi_{c1}X)$ and $BR(b \to \chi_{c2}X)$ are in agreement with measurements at B-factories

• First measurement of $\eta_c(2S)$ production in inclusive b-decays; first evidence of $\eta_c(2S) \to \phi \phi$

$$\frac{BR(b \to \eta_c(2S)X)}{BR(b \to \eta_c(1S)X)} \frac{BR(\eta_c(2S) \to \phi\phi)}{BR(\eta_c(1S) \to \phi\phi)} = 0.040 \pm 0.011 \pm 0.004$$
 (3.7 σ significance)

Search for X(3872), X(3915) and $\chi_{c2}(2P)$ in inclusive b-decays using $\phi\phi$ at $\sqrt{s} = 7.8 \, TeV$

• Bayessian upper limits on the X(3872), X(3915) and $\chi_{c2}(2P)$ production rates:

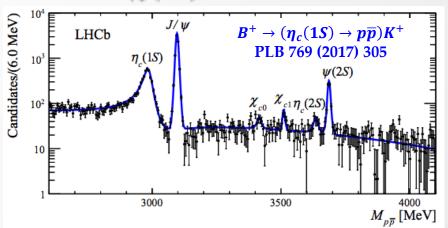

$$\frac{\mathcal{B}(b \to X(3872)X) \times \mathcal{B}(X(3872) \to \phi\phi)}{\mathcal{B}(b \to \chi_{c1}X) \times \mathcal{B}(\chi_{c1} \to \phi\phi)} < 0.39(0.34), \qquad @ 90(95)\% \text{ CL}$$

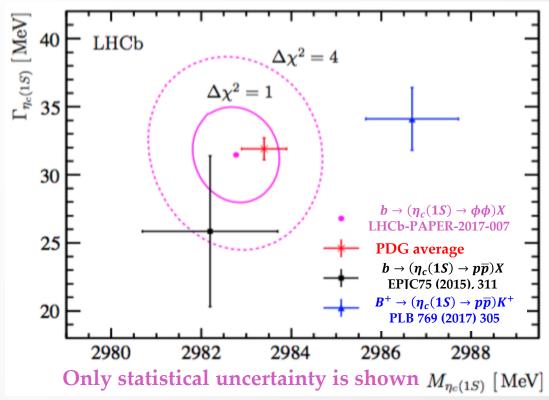
$$\frac{\mathcal{B}(b \to \chi_{c0}(2P)X) \times \mathcal{B}(\chi_{c0}(2P) \to \phi\phi)}{\mathcal{B}(b \to \chi_{c0}X) \times \mathcal{B}(\chi_{c0} \to \phi\phi)} < 0.14(0.12),$$

$$\frac{\mathcal{B}(b \to \chi_{c2}(2P)X) \times \mathcal{B}(\chi_{c2}(2P) \to \phi\phi)}{\mathcal{B}(b \to \chi_{c2}X) \times \mathcal{B}(\chi_{c2} \to \phi\phi)} < 0.20(0.16)$$

$$\mathcal{B}(b \to X(3872)X) \times \mathcal{B}(X(3872) \to \phi\phi) < 4.5(3.9) \times 10^{-7},$$
 @ 90(95)% CL
 $\mathcal{B}(b \to \chi_{c0}(2P)X) \times \mathcal{B}(\chi_{c0}(2P) \to \phi\phi) < 3.1(2.7) \times 10^{-7},$
 $\mathcal{B}(b \to \chi_{c2}(2P)X) \times \mathcal{B}(\chi_{c2}(2P) \to \phi\phi) < 2.8(2.3) \times 10^{-7}.$

 χ_c and $\eta_c(2S)$ production in inclusive b-decays using $\phi\phi$ at $\sqrt{s}=7.8$ TeV. Normalized differential production


Exponential slopes of normalized differential prodcution cross-section are extracted:


	$\eta_c(1S)$	χ_{c0}	χ_{c1}	χ_{c2}
$\sqrt{s} = 7 \text{TeV}$	0.41 ± 0.02	0.32 ± 0.04	0.31 ± 0.06	0.30 ± 0.05
$\sqrt{s} = 8 \text{TeV}$	0.39 ± 0.02	0.37 ± 0.04	0.41 ± 0.06	0.33 ± 0.04

Mass and natural width of $\eta_c(1S)$

LHCb measurements:

- $b \to (\eta_c(1S) \to p\bar{p})X$
- $b \to (\eta_c(1S) \to \phi\phi)X$
- Another determination from exclusive $B^+ \to (\eta_c(1S) \to p\overline{p})K^+ \to$

Precision of η_c mass is competitive to PDG

Status of charmonia production measurements

	Prompt hadroproduction	$BR(B^0 B^{\pm} b-baryons \rightarrow (c\overline{c})X)$	$BR(B^0 B^{\pm} \to (c\overline{c})X)$ (B-factories)	
η _c (1S)	LHCb p p	$(4.88 \pm 0.96) \times 10^{-3}$ LHCb - p \overline{p}	_	
J/ψ	LHCb, ATLAS, CMS -μμ	$(1.16 \pm 0.10) \times 10^{-3}$ LEP - ll	$(1.094 \pm 0.032) \times 10^{-2}$ direct : $(7.8 \pm 0.4) \times 10^{-3}$ BABAR, CLEO - ll	
χ _{c0}	-	$(3.02 \pm 0.47 \pm 0.23 \pm 0.948) \times 10^{-3}$ LHCb -$\phi\phi$	<u>-</u>	
X _{c1}	ATLAS, LHCb, CMS -J/ψγ	$(1.4 \pm 0.4) \times 10^{-2}$ LEP - J /ψ γ	$(3.86 \pm 0.27) \times 10^{-3}$ direct: $(3.24 \pm 0.25) \times 10^{-3}$	
		$(2.76 \pm 0.59 \pm 0.23 \pm 0.898) \times 10^{-3}$ LHCb- $\phi\phi$	BABAR, Belle, CLEO -J/ψγ	
$h_{\mathbf{c}}$	-	-	-	
X c2	ATLAS, LHCb, CMS -J/ψγ	$(1.15 \pm 0.20 \pm 0.07 \pm 0.36B) \times 10^{-3}$ LHCb - $\phi\phi$	$(1.4 \pm 0.4) \times 10^{-3}$ direct: $(1.65 \pm 0.31) \times 10^{-3}$ BABAR, Belle -J/$\psi \gamma$	
$\eta_c(2S)$	-	LHCb - $\phi\phi$ BR($\eta_c(2S) \rightarrow \phi\phi$) was not measured	<u>-</u>	
ψ (2S)	LHCb, ATLAS, CMS -μμ	$(2.83 \pm 0.29) \times 10^{-3}$ LHCb, CMS - μμ	$(3.07 \pm 0.21) \times 10^{-3}$ BABAR, CLEO - <i>ll</i>	

Summary

- LHCb measured J/ψ production in inclusive b-decays in complementary PT and rapidity range to ATLAS and CMS
 - Differential cross-section is in agreement with FONLL prediction
 - The ratio $R_{13/8}$ is a powerful test of FONLL
- LHCb is well suited to measure hadronic final states to access non 1⁻⁻ charmonia
 - First measurement of BR($b \to \eta_c X$) using $\eta_c \to p\bar{p}$
 - First measurement of BR($b \to \chi_{c0} X$), BR($b \to \eta_c(2S) X$) and the most precise BR($b \to \chi_{c1,2} X$) using decays to $\phi \phi$
 - Mass measurements for $\eta_c(1S)$
- Still no measurements of BR($b \rightarrow h_c X$)

- Determination of mass width and resolution for further prompt measurements
- Tempting to simultaneous constraint LDMEs by both prompt and b-decays measurements