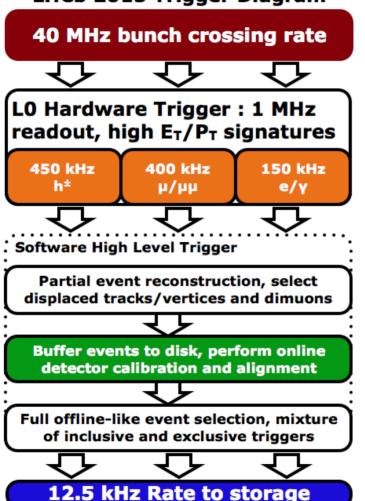
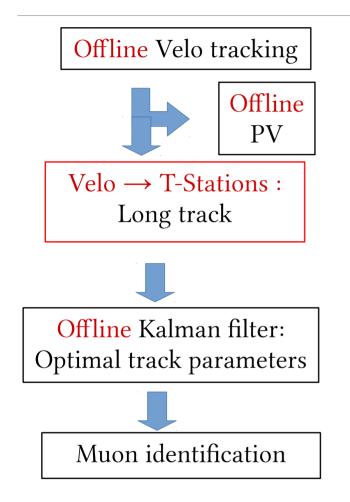
Triggering on charmonia decaying to hadrons

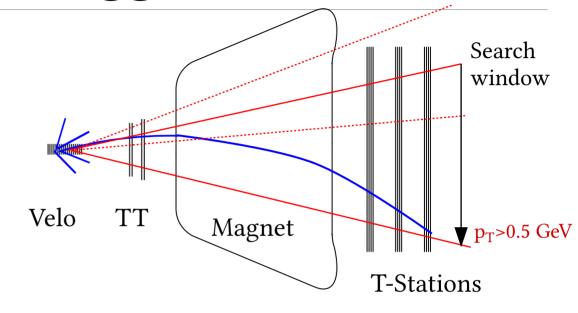

Sascha Stahl, CERN

Mini-workshop on charmonium production at LHCb

16/06/2017

HLT layout





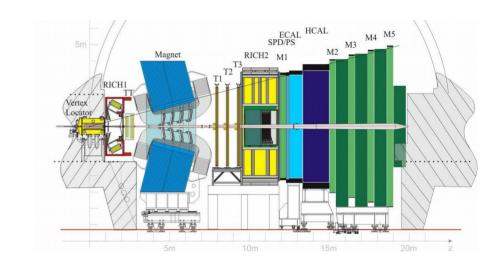
Line	Threshold
L0DiMuon	1.8 ² GeV ²
L0Muon	1.9 GeV
L0Photon	3.1 GeV
L0Electron	2.7 GeV
L0Hadron	3.9 GeV

Except L0DiMuon all lines cut on the number of charged particles in event (SPD hits < 450)

HLT1 trigger

- Long tracks with pt>500 MeV
- Muon ID

HLT1 trigger



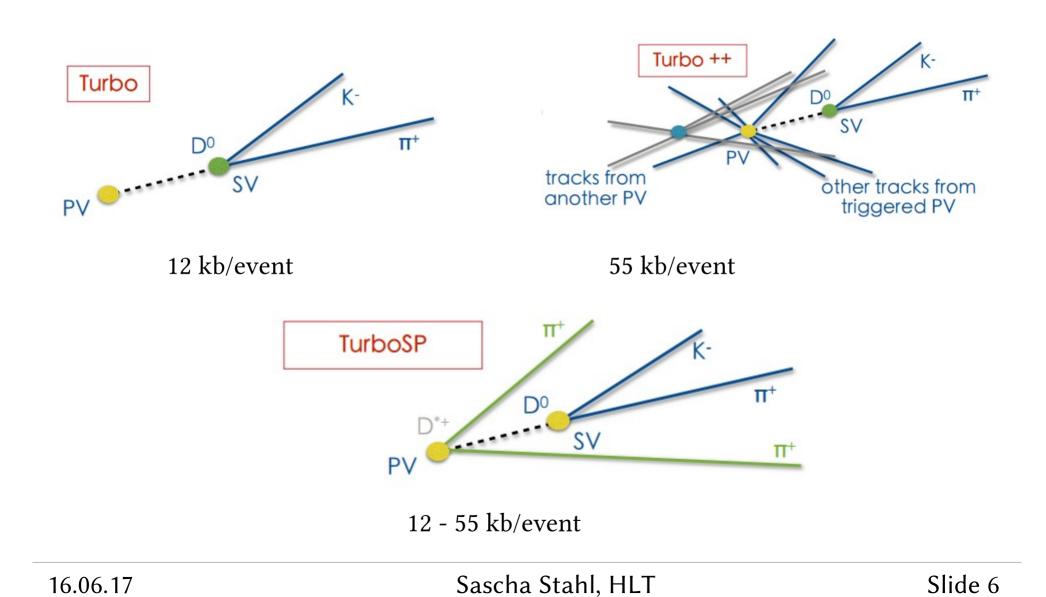
- Inclusive charm and beauty triggers:
 - Single and two track selections
 - \rightarrow ~90 kHz
- Inclusive muon triggers:
 - Single and dimuon selections
 - Special low p_T track reconstruction
 - $\rightarrow \sim 20 \text{ kHz}$
- Exclusive triggers:
 - Lifetime unbiased trigger selections,
 DiProton selection ...

#	Regex	Inclusive		
		[kHz]	[MB/s]	[kB/event]
1	<u>Hlt1.*</u>	123.0 ± 1.9	7003.7	58.3
2	Hlt1.*TrackMVA.*	88.7 ± 1.6	5330.3	61.6
3	$\underline{Hlt1(Di[Multi)Muon.*}$	13.0 ± 0.7	875.1	68.9
4	Hlt1LowMult.*	11.0 ± 0.6	267.7	25.0
5	<u>Hlt1TrackMuon.*</u>	9.6 ± 0.6	569.0	60.7
6	Hlt1CalibTracking.*	5.9 ± 0.4	351.0	60.9
7	Hlt1DiProton.*	2.7 ± 0.3	129.8	49.2
8	Hlt1B2.*	2.1 ± 0.3	134.7	65.7
9	Hlt1SingleMuon.*	1.9 ± 0.3	105.4	56.8
10	Hlt1IncPhi.*	1.4 ± 0.2	89.1	65.2
11	<u>Hlt1.*Electron.*</u>	1.1 ± 0.2	62.0	57.7
12	<u>OTHER</u>	1.0 ± 0.2	48.5	51.4

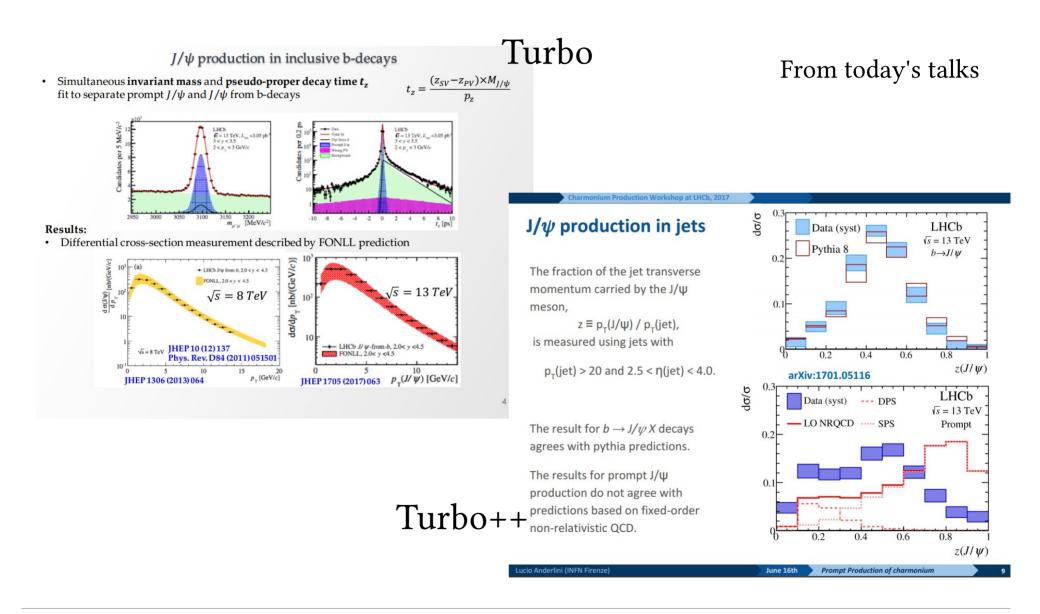
HLT2

- Full event reconstruction available like offline
 - >400 different selections
- Biggest constraint is output bandwidth (~800 MB/s)

Selections

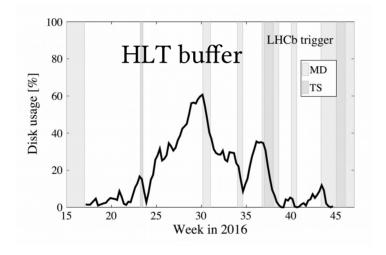

- Two paths
 - Full stream: With raw event(~60 kb/event), offline processing needed
 - Turbo stream: Save trigger candidate and trigger reconstruction (10 – 60 kb/event)

CcDiHadron	~ 120 Hz
JPsi (2016)	~ 350 Hz


Rate

→ ideal for high rate channels

Turbo stream options



Turbo analyses

Questions

- Which Hlt1 selections would improve your efficiency?
 - New selections should not exceed O(kHz).

- RICH in Hlt1 to reduce rate? See here, Chris Jones
 - Would require a clear use case and persons willing to work on this

Questions

- Hlt2:
 - Any selections missing?
- Better use of Turbo stream?
 - Had Jpsi line in Turbo stream with 350 Hz (used for jet analysis)
 - Moved back to Full stream with down scaled rate.
 - TurboSP gives a lot of flexibility