

Measurements of associated production at LHCb

Liupan AN, Yanxi ZHANG

Tsinghua University, Beijing Laboratoire de l'Accélérateur Linéaire, Orsay

Charmonium workshop, 16 June 2017

Introduction

• Associated productions probe double parton scattering (DPS), to understand multiple gluon PDF

Example diagrams for SPS and DPS production of 2 J/ψ

- Theoretical formulation for DPS: $\sigma_{\text{DPS}}^{1,2} = \frac{m}{2} \frac{\sigma_1^{\text{inc}} \sigma_2^{\text{inc}}}{\sigma_{\text{eff}}}$
 - $\gg m = 1$ if particles 1 and 2 are identical, otherwise m = 2
 - \succ σ_{eff} non perturbative, related to size of interaction region, $∼r_p^2 ≈ 10$ mb
 - $\succ \sigma_{\rm eff}$ supposed to be process and energy independent
 - Production of particle 1 and 2 are independent

It assumes factorization of multiple parton PDF, breaks down at large x

• SPS/inclusive calculations using QCD-based models: CSM, NRQCD, FONLL ...

Experiments

• DPS identification

> Separation of DPS and SPS relies on inputs of templates for discriminant variables

Experimental status

• Extraction of DPS/SPS yields from templates

DPS: random combination of inclusive productions for processes 1 and 2

- > SPS: theoretical predictions or data driven methods
- A variety of measurements by Tevetron, LHC and others
 - > Jets+jets, γ + jets by AFS, UA2, D0, CDF, ATLAS, CMS
 - ► W/Z+charm/quarkonium by ATLAS, LHCb
 - **Quarkonium pair** by CMS, ATALAS, LHCb D0
 - Charm hadron pair by LHCb
- $\sigma_{\rm eff}$ determination
 - > Multiple jets production : 12 20 mb
 - > Double quarkonia production (GPD): 2 8 mb
 - \succ *J*/ψ + charm hadron (LHCb): ≥ 15 mb
 - → Double charm hadron (LHCb): \geq 20 mb
 - \succ *Z* + *D* production (LHCb): ≥ 20 mb

LHCb and results using jets:

Smaller associated production than DPS predication σ_{eff} not universal, factorization not all correct ^{16/06/2017} Charmonium Workshop

Recent LHCb measurements

 \checkmark Y + D associated production[JHEP 07 (2016) 052] \checkmark J/ ψ pair production[JHEP 06 (2017) 047]

• Full RunI data: 1 fb⁻¹@7TeV + 2 fb⁻¹@8TeV

	$\Upsilon(1\mathrm{S})$	$\Upsilon(2S)$	$\Upsilon(3\mathrm{S})$
D ⁰	980 ± 50	184 ± 27	60 ± 22
D^+	556 ± 35	116 ± 20	55 ± 17
D_s^+	31 ± 7	9 ± 5	6 ± 4
$ \qquad \Lambda_{ m c}^+$	11 ± 6	1 ± 4	1 ± 3

JHEP 07 (2016) 052

• Kinematic distributions: similar to those of inclusive productions

JHEP 07 (2016) 052

JHEP 07 (2016) 052

• $\Delta \phi$ distribution

- > SPS predicts enhancement at $\Delta \phi = \pi$, but enhancement smeared out in k_T or at NLO
- > Flat $\Delta \phi$ distribution prefers DPS contribution, even dominating?

• ~10% of Y production in LHCb acceptance has a D associated

$$\begin{split} R_{\sqrt{s=7\,\text{TeV}}}^{\Upsilon(15)D^{0}} &= \frac{\sigma^{\Upsilon(15)D^{0}}}{\sigma^{\Upsilon(15)}} \bigg|_{\sqrt{s=7\,\text{TeV}}} = (6.3 \pm 0.8 \,(\text{stat}) \pm 0.2 \,(\text{syst})) \,\% \\ R_{\sqrt{s=7\,\text{TeV}}}^{\Upsilon(15)D^{+}} &= \frac{\sigma^{\Upsilon(15)D^{+}}}{\sigma^{\Upsilon(15)}} \bigg|_{\sqrt{s=7\,\text{TeV}}} = (3.4 \pm 0.8 \,(\text{stat}) \pm 0.2 \,(\text{syst})) \,\% \\ R_{\sqrt{s=8\,\text{TeV}}}^{\Upsilon(15)D^{0}} &= \frac{\sigma^{\Upsilon(15)D^{0}}}{\sigma^{\Upsilon(15)}} \bigg|_{\sqrt{s=8\,\text{TeV}}} = (7.8 \pm 0.9 \,(\text{stat}) \pm 0.3 \,(\text{syst})) \,\% \\ R_{\sqrt{s=8\,\text{TeV}}}^{\Upsilon(15)D^{+}} &= \frac{\sigma^{\Upsilon(15)D^{+}}}{\sigma^{\Upsilon(15)}} \bigg|_{\sqrt{s=8\,\text{TeV}}} = (2.5 \pm 0.5 \,(\text{stat}) \pm 0.1 \,(\text{syst})) \,\% \\ \end{split}$$
• Neglecting SPS contribution gives (a lower limit) $\sigma_{\text{eff}}^{1,2} \geq \frac{m}{2} \frac{\sigma_{1}^{\text{inc}} \sigma_{2}^{\text{inc}}}{\sigma_{\text{Asso}}} \\ \tau_{\text{TeV}} & \sigma_{\text{eff}}|_{\Upsilon(1S)D^{0}} = 19.4 \pm 2.6 \,(\text{stat}) \pm 1.3 \,(\text{syst}) \,\text{mb} \\ \sigma_{\text{eff}}|_{\Upsilon(1S)D^{+}} = 15.2 \pm 3.6 \,(\text{stat}) \pm 1.5 \,(\text{syst}) \,\text{mb} \\ \sigma_{\text{eff}}|_{\Upsilon(1S)D^{0}} = 17.2 \pm 1.9 \,(\text{stat}) \pm 1.2 \,(\text{syst}) \,\text{mb} \\ \sigma_{\text{eff}}|_{\Upsilon(1S)D^{+}} = 22.3 \pm 4.4 \,(\text{stat}) \pm 2.2 \,(\text{syst}) \,\text{mb} \\ \text{Combination: } \sigma_{\text{eff}}|_{\Upsilon(1S)D^{0,+}} \geq 18.0 \pm 1.3 \,(\text{stat}) \pm 1.2 \,(\text{syst}) = 18.0 \pm 1.8 \,\text{mb} \\ \text{Consistent with LHCb double charm results} \end{split}$

JHEP 07 (2016) 052

- Run II data at 13 TeV, \approx 280 pb⁻¹
 - > Signal yields ≈ 1000

2 < y < 4.5 , $p_T < 10 {
m ~GeV}$

 $\sigma(J/\psi J/\psi) = 15.2 \pm 1.0 \,(\text{stat}) \pm 0.9 \,(\text{syst}) \,\text{nb}$

Compared to inclusive cross-section of $\sigma(J/\psi) = 14.94 \pm 0.02 \,(\text{stat}) \pm 0.91 \,(\text{syst}) \,\mu\text{b}$

$$\sigma_{\rm eff} \geq \frac{1}{2} \frac{\sigma(J/\psi)^2}{\sigma(J/\psi J/\psi)} = 7.3 \pm 0.5 \, ({\rm stat}) \pm 1.0 \, ({\rm syst}) \, {\rm mb}$$

Charmonium Workshop

Large variations of SPS calculations in theoretical predictions due to parameters: **both shapes and absolute scales** Data prefer large $< k_T >$

Charmonium Workshop

- Data driven method to obtain DPS fraction, templates fit
 - > DPS: shape obtained from random combination of inclusive productions
 - > SPS: using theoretical calculations, varying parameters

Variable	LOCS	$LO k_{T}$	$\rm NLO^* CS'$	$\mathrm{NLO}\ \langle k_\mathrm{T} angle = 2\mathrm{GeV}/c$	$0^{*} \mathrm{CS''} \ \langle k_{\mathrm{T}} angle = 0.5 \mathrm{GeV}/c$	NLO CS	
no $p_{ m T}(J\!/\!\psiJ\!/\!\psi){ m cut}$							
$p_{ m T}(J\!\!/\psiJ\!\!/\psi$) —	78 ± 3		88 ± 56	81 ± 7		
$y(J\!/\!\psiJ\!/\!\psi)$	83 ± 39			75 ± 37	68 ± 34		
$m(J/\psi J/\psi)$	$) 76 \pm 7$	74 ± 7		78	± 7	77 ± 7	
$ \Delta y $	59 ± 21	61 ± 18		63 ± 18	61 ± 18	69 ± 16	
$p_{\rm T}(J\!/\!\psiJ\!/\!\psi) > 1{\rm GeV}/c$							
$y(J\!/\!\psiJ\!/\!\psi)$			75 ± 24	71 ± 38	68 ± 34		
$m(J\!/\psiJ\!/\psi$) —	73 ± 8	76 ± 7	88	± 1		
$ \Delta y $		57 ± 20	59 ± 19	60 ± 18	60 ± 19		
$p_{ m T}(J\!/\!\psiJ\!/\!\psi)>3{ m GeV}/c$							
$y(J/\psi J/\psi)$			77 ± 18	64 ± 38	64 ± 35		
$m(J\!/\!\psiJ\!/\!\psi$) —	76 ± 10	84 ± 7	87	± 2		
$ \Delta y $		42 ± 25	53 ± 21	53 ± 21	53 ± 21		

Always large DPS contributions; measured $\sigma_{eff} = 10 - 12.5$ mb

- $\succ \sigma_{\rm eff}$ larger than those determined by other experiments
- $\triangleright \sigma_{\rm eff}$ smaller than LHCb $\Upsilon + D$ and double charm results

Prospects

Evidence of $\Upsilon + J/\psi$ in Run I data And now new data!

> Could we measure other combinations, for example $J/\psi + \eta_c$, $J/\psi + \chi_c$... No problem of trigger for then at LHCb

Very interesting to see DPS in heavy ion collisions, expected to enhanced

Summary

- Associated production is hot to study QCD
- DPS production mechanism: factorization assumption $\sigma_{\text{DPS}}^{1,2} = \frac{m \sigma_1^{\text{inc}} \sigma_2^{\text{inc}}}{2 \sigma_{\text{off}}}$
- Various results for associated production, $\sigma_{\rm eff}$ close but not universal
 - ▶ Results from jets and LHCb different from quarkonia at GPD
 - \succ Factorization breaks down?
- LHCb measurement of $\Upsilon + D$ suggests large contribution of DPS, but still less than expected (or much larger σ_{eff})
- LHCb double J/ψ measurement also requires strong contribution of DPS, a moderate $\sigma_{\rm eff}$ obtained by SPS+DPS fit
- Looking forward to new measurements

Backups

$\Upsilon + D$

• Multiple PV background reduction

$\Upsilon + D$

• Kinematic distributions of pairs

$\Upsilon + D$

Double J/ψ

