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Outline

This is not a com/orehensive discussion
This is not a talk about BLM scale choice

| assume that everybody knows CKKW/MM procedure
| assume that everybody enjoys hearing about NLO QCD

compu'l'a'fions once again
The main point:

— when we do NLO/LO comparisons, it is mis/eading to use LO
with fixed renormdlization/factorization scales

— dynamical scales in LO computations typically compare well with
NLO computations for “energy-related " distributions

— for spin correlations and azimuthal ang/e distributions, | am not
aware of any argument to this effect



CKKW [/ MM

e CKKW/MILM procedure sets a new standard for LO calculations.

. Em/o/oyed exfensively in experimen'l'a/ ana/ysis in recent years.

e What are its limitations?
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The need for the NLO

An obvious drawback of CKKW/MLM is that it is a LO procedure

and there is no mechanism in /olace to guarantee that the final result
is independen'l' of the renormalization and factorization scales

This is a troublesome feature, especia//y if there are many external
Par‘l’ic/es

0o,
oy ~ as(p)" & ALQa—NZ ~ nfocs(1)on (1)

The uncertainty can easi/y be a factor 2 to 4

CKKW typically does somewhat better than that but | do not know
if this is controllable or “just so’’



Rates and shapes

We like to disfinguish between normalizations and sha/aes since

e normalization can be fixed in “control’’ phase—space regions

. shapes are obtained using control regions as boundary conditions
for tuning theoretical tools

This Procedure can be prob/emaﬁc if tools are too simp/iS'I'ic

Avai/abi/ify of NLO QCD predictions for a given process gives the
cross-check of the extrapolation because dll the relevant scales in
this case are generated dynamically

NLO QCD caleulations can fail at very small and at very large
momentum



W+3 jets @ NLO

e Predictions for W+3jet cross-sections at the LHC are uncertain at
LO and nearly perfect at NLO

e Do small corrections to cross-sections guarantee small changes in
shapes? The answer is no, we need to choose scales wise/y if we
want to describe distributions well
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The residual uncertainty s about ten percent for both W+ and W-



Choice of scales

Any collider physics is very multi-scale — even a single observable
may be sensitive to a variety of physics effects

Any generic argument for choosing a renormadlization/factorization scale
should relate to the location of a given event in the phase—space
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Choice of scales reshapes the distributions

e DBauer and Lange showed that choosing the scale of the strong
coup/ing constant leads to important effects.
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CKKW and the scdle setting

o The Dauer-Lange analysis works well because it respects a well-
known feature of how QCD partons multiply

Prob(a — bc) ~ as(py)
e The CKKW/MLM procedure respects this choice and, in fact, does

more local scale adjustment. Should work well!  The scales are
chosen on an even'l'—by—even'f basis by iden'l'ifying most probable
“hisfory" of a given event

. i+era1'ive/y cluster /oar'l'ic/es that are closest according to some
measure (usually, k, dlgorithm is used).

o for each node, choose the relative momentum of the daugh'fers as
the scale for the strong cou/o/ing constant — this is the parton
shower choice. N
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W+3 jets @ NLO

Small corrections to total cross-sections do not guarantee that
corrections to tails of kinematic distributions are also small. DBut

CKKW/MM procedure does a very good jobs in describing shapes.
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In the right Pane/, we see that ALPGEN/HERWIG does a much better job. The
reason is that CKKW or MM procedures as well as parton showers have
correct scales for the strong cou/o/ing constant imlo/emen'l'ed.



Comparisons for W3 jets

e Dedicated comparisons between Rocket/ B/ackha++5herpa/ Sherpa

W* 4+ 3 jate incl. production : p_ 1=t jat W*+ 3 jets incl. production : 1 18t jet

= T =TT TTT"T T™T=TT T™TTT T™TTT ™TTT = 12 R ) PR TR R R EhEA ) e I R LR ) RO R A e I S R
= ] ] ] ] 1 ] ] =4
- 1+ —— ElackHatSherpa, soole =I'==|r — —_— & ——  BlwckHa t+Ehenpa, scale = F, 7
1] Roowel scale = p? =)t 3 T - — PBocket scale = {p' +rm)" E
E b --o- EhErpa. MEATS (M T=24d) 7 = 10 . Sherpa, MESTE (M--"=2+4) =

— - m Eherpa, BEATS (M =244), MESevel - = B = 7]

= [ nn ] - -
o {=] I~ =
o= _ o = 2
5 107'F | — = E p ]
E F i —™ 3 2 - E
5 ey - = gk =

E N e I 1 B |
=] B ]

[
A

—;|||||||||=||||||=||||||||||||||||

< 107 1+ I = 4 ———— =
z_ Il = : : = 2 o2 [ : 5=
= E 1 —— 3 = g T YEToT: e . | &
S T B = E E °F TR 3
O —0.2F - [ ]
E SN N AN T U T N T T T N T T T N T T AN T TN T N TN WO N W = E _0'2-_| e I E o oo T oo e Pat TRt D I E T A | T FLaT Pt B Do I T
50 100 150 200 250 300 A50 -3 -2 -1 [1] 1 2 3
Poq [GeV] n,
" £ G % W™+ 3 jets incl. production :n 3rd jet
W* s+ 3 jeta incl. production : p_3rd jet ST TR e et oy e sttt s TR
=) LI L e B e e e = N 5
o 1E —— BlackHat:Sherpa, soale =FA = gL EeaoicHn t+Enerpa, ?E.'_':=H1
g E —_ Rooket, scale =ip? _-mi)"? 3 = ‘i [ - Shorpa, MESTS (M™"=22) ]
= . Eherpa, ME&ATS m_':':z-.q.] ] E B E
[, Bherpa. MIEATS (M) *"=2+3). CTEQBL - o - -
= E (=] B —
o ——— . -—
= o o
s 107'F = = B .
o 3 2 3 %
o 3 = i 1
- 7 s A
= ] H ]
]
& B 5
ARTE 3 . 5
LHS 10 TeN = |--eee I i
i
5 107 E 4 =
= oz} e e N = :
2 o : T e = g o T = N 3
i E E [ ]
L = (4] L -
O 0.2 — = -
E = = —0.2f ]
E Ey Ly v g vy s by v g by s by s by ger by v by v 14 e T ] R P ot NN 5 7l o, o] ] o o et ol i e
40 &0 80 1oo 1280 140 180 180 200 —3 —2 -1 o 1 2 S
n
pr.z [GeV] 3

S. Hoche, J. Huston D. Maitre, J. Winter, G. Zanderighi



Com/oarisons for WH+jets

e For the total transverse enerqy, the story is slightly less
satisfactory — NLO caleulations exhibit stronger dependence on
scales than CKKW-based leading order results!

W~ & 3 jets incl. production : H-nm W* + 3 jets incl. production : HT
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Conclusions

CKKW/MM procedures employ dynamical scales consistent with the
QCD dynamics

Leading order calculations with dynamically-adjusted scales compare
very well with NLO computations, shape-wise

Indication that sha/oes — to a /arge extent — can be understood as
a consistent descrip'l'ion of brcmching processes

In the limit when kinematic invariants become /arge, there still can

be (relatively) strong scale dependences of NLO QCD results - in
fact stronger than indicated by CKKW/MLM

F or experimentalists, the message is that CKKW/MLM  works
better than (at least |) expected and this seems to be a generic,
Process—independen'l' feature
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