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Overview

• What is BlackHat.

• Brief overview of techniques used and 
their implementation.

• Speed and Numerical stability studies.



• Three pieces are needed for an NLO 
computation

• I will focus on the virtual piece here. 

• Specifically the automated One-loop 
computation package BlackHat.

• The remainder of the NLO computation is done 
with SHERPA. [Gleisberg,	  Hoeche,	  Krauss,	  Schoenherr,	  Schumann,	  
Siegert,	  Winter]
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BlackHat

• Automated one-loop amplitude 
computation.

• Uses recent developments in unitarity & 
on-shell methods.

• c++ framework.

 [Berger, Bern, Dixon, DF, Febres Cordero, Ita, Kosower, Maître]



Typical Computing Load 

• In an NLO computation we must compute the real and the 
virtual part, time spent is usually split evenly.

• Typically this means that we evaluate at (e.g. Z+3 jets at NLO)

• Real: ~108 points.

• Virtual: ~106 points.

• Virtual is about ~103 times slower per point. 

• Typical running time for Z+3 jets for an LHC study is about a 
day on ~200 cores.

• Use n-tuples to reduce this computing load for further study. 



• Split the computation of the amplitude into two parts, 
choose the optimal technique for each piece.

Anatomy of a One-Loop Amplitude

Rational 
terms 

Log’s, 
Polylog’s, 

etc. 

Loop 
amplitude 

D-Dimensional Unitarity
or on-shell recursion

4-Dimensional 
Unitarity

Numerical application of generalized unitarity 
techniques



• Eliminates the need for tensor reductions.

• Performing a cut reduces the number of integrals. 

• e.g. for a triangle, using a specific loop momentum 
parameterisation we have, [DF]

• Remove the poles of the higher order terms (e.g. Boxes).

• Then extract the coefficient (e.g. C0) from the series.

Generalized Unitarity
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• Extract a particular coefficient of the integrand.

• Extract using a discrete Fourier projection.

• Sample at least as many points as there are possible 
coefficients. This gives an exact result up to 
numerical stability issues.

Numerical Direct Extraction
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• Advantage to sampling more points is that you can 
compute as many coefficients as you have sampled 
points. 

• So extra sampling means we can test higher 
coefficients.

• Higher coefficients should vanish. 

• How close they approach zero is a very good test of 
numerical accuracy, e.g. t4=10-8⇒~8 digits.

Numerical Stability



Minimal Re-Computation
• Error handling strategy,

• If a coefficient fails a test recompute it in higher precision.

• Currently use the qd package for double-double and quad-
double types.

• Minimizes the amount of time spent using higher precision, 
this can be a factor of 10 or more slower than double 
precision. 

• Very rarely need to recompute entire amplitude e.g. only 
when cut part and rational part are very large and cancel or 
when the IR and UV singularities do not come out right. 



Numerical Stability
• Check at a significant number of points the numerical 

accuracy.

• Testing over 105 actual phase space points for two Z+3 
jets sub processes gives

• Extremely good control over numerical stability.
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Effect on Timing

• Investigate how much extra time is spent computing 
an amplitude as we demand more precision.
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Timing for Gluons

• Average computation time of a single colour ordered 
amplitude for a specific helicity configuration.

• ~50 times faster than initial code 2 years ago.

Timing (ms) no 
checks

Timing (ms) 4 
digits accuracy

6 Gluons

7 Gluons

8 Gluons

1.6 (0.95) 2.2 (1.2)

5.9 11

15 50

All timing on a Core 2 Duo 2.93Ghz

Use on-
shell 

recursion 
when it is 

faster.



Timing for W+3jets

• Average computation time of a single colour ordered 
amplitude for a specific helicity configuration.

• Additional time spent depends upon the process.

Timing (ms) no 
checks

Timing (ms) 4 
digits accuracy

qqgggll (LC)

qqgggll (SLC)

qqQQgll
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Actual Runtime

• For each point we do not compute every sub process.

• Split up the amplitude into Leading Colour and Sub-Leading 
Colour pieces.

• Sub leading colour is much slower ~7 times, but contributes 
~10 times less.

• For a particular statistical error need only call it ~1/100 of 
the time.

• In practice to be conservative we call it ~1/10 of the time.

• This only doubles the total running time.



Where is the Computation 
Time Spent?

• Comparing the speed of the equivalent tree to the 
one-loop amplitude we see ~103 speed difference.

• Number of trees computed in a one-loop amplitude 
computation ~103. 

• Profiler output tells us that ~80-90% of the time is 
spent computing trees.

• Main area to focus on is speeding up the trees.



Using Analytic Formulae

• BlackHat uses on-shell recursion to compute trees, our 
experience has shown that for up to 8-9 legs this gives the 
best results. (see also [Dinsdale,Ternick,Weinzierl])

• Increase speed by using analytic formulas wherever possible.

• BlackHat automatically uses any analytic formula added to its 
libraries for,

• Trees.

• Rational and cut parts.

• Trivial to add new processes, general interface for doing this. 



Conclusion

• BlackHat is now a mature one-loop-amplitude code.

• Numerical instabilities are well understood and 
controlled.

• The efficiency of the code has increased dramatically 
and we hope to continue improving in the future.


