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Introduction



LHC successfully started collisions at 7 TeVLHC successfully started collisions at 7 TeV
on March 30th 2010

( )The need of Next to Leading Order (NLO) multi-
particle scattering predictions is more pressing

New ideas in the field of loop corrections are 
giving the possibility to perform the automatic 
generation of NLO predictions for multi-leggeneration of NLO predictions for multi-leg 
processes



Numerical calculations:

EW corr. e+e- > 4 fermionsState of W co . e e e o s
Denner and Dittmaier (2005)

pp > W + 3jets
Ellis et al Berger et al (2009)

S
the art
Analytic calculations:

Ellis et al, Berger et al (2009)

pp > Z + 3jets
Berger et al (2009) 

the art
Analytic calculations:

W/Z/γ+ 2jets Bern et al (1998) pp > ttbb
Bredenstein et al, Bevilacqua
et al (2009)

H  + 2jets (eff. coupling)    
Badger, Berger, Campbell, Del Duca,  
Dixon Ellis Glover Mastrolia

et al  (2009)

pp > tt +2jets Czakon et al   
(2010) Dixon, Ellis, Glover, Mastrolia, 

Risager, Sofianatos, Williams
(2006-2009) pp > 4b Binoth et al (2010)

We combined some of the recent techniques into a new computer program we 

called SAMURAI



Basic features of SAMURAI:

Scattering AMplitudes from Unitarity based 
Reduction Algorithm at Integrand levelReduction Algorithm at Integrand level

• Is a fortran90 library for the calculation of the one loopIs a fortran90 library for the calculation of the one loop 
corrections downloadable at the URL: www.cern.ch/samurai

• Main purpose was to provide a flexible and easy to use tool for p p p y
the evaluation of the virtual corrections

• It works with any number/kind of legs

• Can process integrands written either as numerator of Feynman 
diagrams or as product of tree level amplitudes

• Rational terms are produced together with the cut-constructible 
one



And further:

• SAMURAI can be compiled in 2x or 4x precision

• It has a modular structure that allows for quick local updates

• It could also be useful to perform fast numerical check of 
analytic results

• Details and examples of applications can be found in: 
i 006 07 0arXiv:1006.0710



Methods



SAMURAI: a numerical implementation
of the OPP/D-dimensional generalizedof the OPP/D dimensional generalized 

unitarity cuts technique

OPP polynomials (n-ple cut, n=1,2,3,4) extended to the 
framework of D-dim unitarity [Ellis, Giele, Kunszt, Melnikov]

5-ple cut residue depending only on mu2 [Melnikov, Schultze]

Integrand sampling with DFT for 3-ple and 2-ple cuts 
[Mastrolia, Ossola, Papdopoulos, Pittau]



OPP integrand decomposition: 4-dim
The power of the OPP method is the fact that for each phase space point 
th l i t f th d ti i th k l d f th i lthe only requirement for the reduction is the knowledge of the numerical 
value of the numerator function N for a finite set of values of the loop
momentum variable, solutions of the multiple cut conditions

Any amplitude can be expressed as a linear combination of scalar 
integrals: boxes, triangles, bubbles, tadpoles plus rational terms

At integrand level the structure is enriched by terms that integrate 
to zero



Extension to D-dim
Once fixed a parametrization for the loop momentum in terms of a linearOnce fixed a parametrization for the loop momentum in terms of a linear 
combination of known four-vectors (p0, ei) the vanishing term are 
polynomials of xi and mu2

The problem is to fit the coefficients of the Δ-polynomials

For example the 3-ple cut residue (function of the unfrozen components)For example the 3-ple cut residue (function of the unfrozen components) 
reads:



5-ple cut 
idresidue

Linear dependence

Best choice:

avoid scalar pentagon decomposition
id t bt ti f t d lavoid pentagon subtraction for tadpoles

numerically more stable



Numerical
SamplingSampling

Cut-5: completely frozen

Cut-4: mu2 sampling

Cut-3,2: mu2 sampling + DFT:

Cut 1: trivialCut-1: trivial

• straightforward extension to multi-variate DFT projection
S li diff t i l f t bl l ti• Sampling on different circles for stable solutions

• number of the integrand samplings = number of the unknowns
• dynamical mu2-sampling



Amplitudes &
Master IntegralsMaster Integrals

The sources of rational terms are theThe sources of rational terms are the 
integrals with mu2 powers in the numerator

They are generated by the reduction 
l ith b t ld l b t balgorithm, but could also be present ab
initio in the numerator function as a 
consequence of the algebraic manipulations



Running 
SAMURAISAMURAI



calls:calls

A dedicated module (kinematic) is also available 
in the release that contains useful functions toin the release that contains useful functions to 
evaluate:

Polarization vectors for massless vectors
Scalar and spinor products with both real and 
complex four vectors as argumentscomplex four vectors as arguments



i th ‘di ’f i t d i timeth = diag’for an integrand given as numerator  
of a Feynman diagram

‘tree’for an integrand given as the   
product of tree level amplitudesp p

isca = 1, scalar integrals evaluated with the
QCDLoop package (Ellis and Zanderighi)

2 scalar integrals evaluated with the2, scalar integrals evaluated with the      
AVH-OLO package (van Hameren)

verbosity = 0, nothing is printed by the reduction
1, the coefficients are printed out
2, also the value of the MI are printed out
3, also the results of the tests are printed out

itest = 0, none test
1, global n=n test is performed (not avail. for imeth=‘tree’)
2, local  n=n test is performed

( ‘ ’)3, power      test is performed (not avail. for imeth=‘tree’)
new – based on the mismatch of the polynomial degree of the    

given integrand and the reconstructed one



Optionally, to fill the denominators

msq(2)

Pi(2,:)=v2
nleg is the number 
of legs attached msq(2)of legs attached 
to the loop

msq(1) msq(3)Pi(1,:)=v1 Pi(3,:)=v3

msq(0)

Pi(0 ) 0Pi(0,:)=v0

Denominator(j) = [ q + Pi(j :) ]^2 m 2 msq(j)Denominator(j) = [ q + Pi(j,:) ]^2 – mu2 – msq(j) 



xnum [i]=  the name of the function to reduce with arguments xnum(cut, q, mu2)
for imeth=tree the cut play a selective role to use the relative
tree product

tot [o] =  contains the result of the reduction convoluted with the MI

totr [o]= contains the rational part only

rank [i] = the rank of the numerator useful to speed up the reductionrank [i] = the rank of the numerator, useful to speed up the reduction

istop [i] = when stop the reduction, i.e. after pentuple cut (5) quadruple (4)…

scale2 [i] = the value of the renormalization scale (square)

ok [o] = a logical variable giving the result of the test if they are evaluated



About the 
precisionprecision

Gram Determinant -> induce large cancellations between contributions from the MI 
that carry such a factor (the tests coded in SAMURAI detect the associated 
instabilities)

Big cancellations between diagrams -> on-shell methods seems to be the best option

If running with big internal masses -> big cancellations between cut-constructible 
and rational term

Quadruple precision solves these issues, but is time consumingQuadruple precision solves these issues, but is time consuming

For numerical studies and checks SAMURAI compiles also in quad



Examples



Note:

• Are chosen to address some typical technical issues that one 
encounter performing one loop virtual calculation

• Should show the flexibility of the framework

• Are part of the release and could also be used as templates p p
for other calculations



4-photons • imeth=‘diag’
• nleg = 4, rank = 4
• 6 permutations, only 3 relevantp p p , y

L3

p3 p4

L2 L4

L1
p1p2p2

Denominators:

• mu2 terms give zero contribution
2 α β l i th

Results numerically checked vs. Gounaris et al (1999)

• mu2 qαqβ cancel in the sum
• mu22 gives rise to the correct rational part



6-photons
• imeth =‘diag’
• nleg = 6, rank = 6
• 120 permutations, only 60 relevant

Bernicot et al (2007 2008)Bernicot et al (2007,2008)

SAMURAI with istop=2

PS point as in Nagy and Soper (2006)

SAMURAI with istop=3, subtracting totr

Results numerically checked vs. Bernicot et al (2007,2008)



8-photons
• imeth =‘diag’
• nleg = 8, rank = 8
• 5040 permutations, only 2520 relevant
• sampling set as in Gong et al (2008)

MHV result numerically checked vs. Mahlon (1993)



8-photons • imeth =‘diag’
• nleg = 8, rank = 8
• 5040 permutations only 2520 relevant• 5040 permutations, only 2520 relevant
• sampling set as in Gong et al (2008)

NMHV result (new) numerically confirm the structure  
in Badger et al (2009)
The points in quadruple precision (x) have   p q p p ( )
been calculated with istop=2, i.e. retaining   
all the cut constructible and rational pieces



8-photons
• imeth =‘diag’
• nleg = 8, rank = 8
• 5040 permutations, only 2520 relevant
• sampling set as in Gong et al (2008)

NNMHV result (new) numerically confirm the structure  
in Badger et al (2009)
The points in quadruple precision (x) have   
been calculated with istop=2 i e retainingbeen calculated with istop=2, i.e. retaining   
all the cut constructible and rational pieces



Drell-Yan
If one want to consider regularization schemesIf one want to consider regularization schemes 
giving rise to O(ε) terms and reduce them, then 
one needs to process N0 and N1 below separately

d=4     -> Dim Red
d=4-2ε -> CDR

• imeth =‘diag’
l 3 k 2 d=4 2ε > CDR• nleg = 3, rank = 2

Denominators:

• msq = { 0, 0, 0}

• Pi = { 0 p p + p + p }• Pi = { 0, pu, pu + pe- + pe+ }

• N1 generate a rational term = - gs
2 CF LO



VB+1j: leading color

i th ‘di ’• imeth = diag

• 1 Box nleg=4, rank=3
4 Tri nleg=3, rank=2g
2 Bub nleg=2, rank=1

• Diagrams can be collected on a common 
box denominatorbox denominator

• Studing Left-handed current needs of 
a prescription for gamma5:
adopting DR w/anticommuting gamma5
we added –Nc/2 times the Tree Level 
amplitude 

Results numerically checked vs. Bern et al (1997)



6-quarks amplitudes

Fortran Code generation 
completely automatedcompletely automated 
thanks to an 
infrastructure derived 
from Golem 2 0from Golem-2.0

… see Thomas Reiter talk



5 and 6-gluons all plus: massive scalar loop
i h ‘ ’• imeth=‘tree’

• nleg = 6, rank = 6

For this helicity choice the result is purely rational

Results numerically checked vs. Badger’s table



Conclusions

• We wrote a fortran90 library we called SAMURAI for theWe wrote a fortran90 library we called SAMURAI for the 
automatic evaluation of the NLO virtual correction to 
scattering processes, once the integrand is given in 
th f f F di d t f tthe form of Feynman diagrams or as products of tree 
level amplitudes

• We produced several examples to show its main features

• We tried to make things as effective and simple asWe tried to make things as effective and simple as 
possible to allow for interfaces with other tools

O tl kOutlook

• Improve on velocity and stability
i ll f d t ki ti fi tiespecially for degenerate kinematic configurations


