GOLEM: Status and Progress

Thomas Reiter
in collaboration with
G. Cullen, A. Guffanti, J.P. Guillet, G. Heinrich, S. Karg, N. Kauer, T. Kleinschmidt, E. Pilon, M. Rodgers, I. Wigmore

Overview

The GOLEM Method
golem-2.0: Generator for Virtual Matrix Elements
golem95: Reduction of One-Loop Integrals

Application: Four-b Amplitude

Summary and Outlook

The GOLEM Method: Overview

GOLEM: General One-Loop Evaluator for Matrix Elements

- GOLEM $=$ a method for evaluating one-loop Feynman diagrams
- GOLEM $=$ a library for one-loop integrals (golem95)
- GOLEM $=$ a matrix element generator at the one-loop level

Why Feynman Diagrams?

- No distinction between cut-constructible and rational part \Rightarrow conceptually simple (one method for all parts)
- Gram determinant problem avoidable by dedicated tensor reduction (\Rightarrow golem95)
- Combinatorial complexity of Feynman diagrams \Rightarrow problematic mainly beyond $2 \rightarrow 4$
- Tool of choice for many masses and few symmetries

The GOLEM Method: Overview

GOLEM: General One-Loop Evaluator for Matrix Elements

- GOLEM = a method for evaluating one-loop Feynman diagrams
- GOLEM $=$ a library for one-loop integrals (golem95)
- GOLEM $=$ a matrix element generator at the one-loop level

```
Why Feynman Diagrams?
- No distinction between cut-constructible and rational part
    => conceptually simple (one method for all parts)
* Gram determinant problem avoidable by dedicated
    tensor reduction ( }=>\mathrm{ golem95)
- Combinatorial complexity of Feynman diagrams
    # problematic mainly beyond 2 }->
* Tool of choice for many masses and few symmetries
```


The GOLEM Method: Overview

GOLEM: General One-Loop Evaluator for Matrix Elements

- GOLEM = a method for evaluating one-loop Feynman diagrams
- GOLEM $=$ a library for one-loop integrals (golem95)
- GOLEM $=$ a matrix element generator at the one-loop level

Why Feynman Diagrams?

- No distinction between cut-constructible and rational part \Rightarrow conceptually simple (one method for all parts)
- Gram determinant problem avoidable by dedicated tensor reduction (\Rightarrow golem95)
- Combinatorial complexity of Feynman diagrams \Rightarrow problematic mainly beyond $2 \rightarrow 4$

The GOLEM Method: Overview

GOLEM: General One-Loop Evaluator for Matrix Elements

- GOLEM = a method for evaluating one-loop Feynman diagrams
- GOLEM $=$ a library for one-loop integrals (golem95)
- GOLEM $=$ a matrix element generator at the one-loop level

Why Feynman Diagrams?

- No distinction between cut-constructible and rational part \Rightarrow conceptually simple (one method for all parts)
- Gram determinant problem avoidable by dedicated tensor reduction (\Rightarrow golem95)
- Combinatorial complexity of Feynman diagrams \Rightarrow problematic mainly beyond $2 \rightarrow 4$
- Tool of choice for many masses and few symmetries

The GOLEM Method: Overview

The GOLEM method uses

- Feynman diagrams
- Helicity projections
- Improved tensor reduction

The GOLEM method is designed for

- any number of ext. particles ($\lesssim 6$ feasable)
- massless and massive particles
- QCD and EW corrections
- physics within and beyond the Standard Model

The GOLEM method is aiming at

- NLO "Plug In" for MC generators

The GOLEM Method: Overview

The GOLEM method uses

- Feynman diagrams
- Helicity projections
- Improved tensor reduction

The GOLEM method is designed for

- any number of ext. particles ($\lesssim 6$ feasable)
- massless and massive particles
- QCD and EW corrections
- physics within and beyond the Standard Model

[^0]
The GOLEM Method: Overview

The GOLEM method uses

- Feynman diagrams
- Helicity projections
- Improved tensor reduction

The GOLEM method is designed for

- any number of ext. particles ($\lesssim 6$ feasable)
- massless and massive particles
- QCD and EW corrections
- physics within and beyond the Standard Model

The GOLEM method is aiming at

- NLO "Plug In" for MC generators
golem-2.0: A Generator for Virtual Matrix Elements. NIDEEF NLO calculations are modularized:
- tree level $2 \rightarrow N$ (Born)
- one-loop $2 \rightarrow N$ (virtual)
- tree level $2 \rightarrow N+1$ (real)
- IR-subtraction
- At present very few automated tools for virtual part
- Aim of GOLEM:

automated generation of one-loop part

golem-2.0: A Generator for Virtual Matrix Elements nilder

NLO calculations are modularized:

- tree level $2 \rightarrow N$ (Born)
- one-loop $2 \rightarrow N$ (virtual)
- tree level $2 \rightarrow N+1$ (real)
- IR-subtraction
- At present very few automated tools for virtual part

Aim of GOLEM: automated generation

- BlackHat ${ }_{[B e r g e r, B e r n, D i x o n, F e b r e s ~}$

Cordero,Forde, Gleisberg,Ita,Kosower,Maitre]

- CutTools [Ossola,Papadopoulos,Pittau]
- FeynArts/FormCalc [Hahn]
- Grace one-loop [yasui et al.]
- HAWK [Denner,Dittmaier,Mück],

Prophecy4f [Bredenstein,Denner,Dittmaier, Weber]

- Helac-1loop [Bevilac-
qua,Czakon,v. Hameren,Papadopoulos, Pittau,Worek]
- Rocket [Ellis,Giele,Kunszt,Melnikov, Zanderighi]
- Samurai [Mastrolia,Ossau,TR,Tramontano]
- VBF@NLO [Arnold et al.]
- Diana/OLOTIC ${ }_{\text {TTen- }}$
tyukov,Fleischer/Diakonidis, Tausk]
golem-2.0: A Generator for Virtual Matrix Elements NIDEEF NLO calculations are modularized:
- tree level $2 \rightarrow N$ (Born)
- one-loop $2 \rightarrow N$ (virtual)
- tree level $2 \rightarrow N+1$ (real)
- IR-subtraction
- At present very few automated tools for virtual part
- Aim of GOLEM:
 automated generation of one-loop part

golem-2.0: Structure

golem-2.0: Structure

golem-2.0: Structure

golem-2.0: Structure

golem-2.0: Matrix Elements Made Easy

- create configuration file
\rightarrow enter process, here: $g g \rightarrow s \bar{s} b \bar{b}$ © NLO in QCD
- set up process directory
- generate code

shell

\$ golem-main.py --template process.in \$

golem-2.0: Matrix Elements Made Easy

NIREEF

- create configuration file
- enter process, here: $g g \rightarrow s \bar{s} b \bar{b} @$ NLO in QCD
> set up process directory
- generate code

editor: process.in

```
process_path=<a directory>
in=g,g
out=s,s~~,b,b~
order=gs,4,6
model=sm
```

\# more settings optional

golem-2.0: Matrix Elements Made Easy

- create configuration file
- enter process, here: $g g \rightarrow s \bar{s} b \bar{b} @$ NLO in QCD
- set up process directory
- generate code

```
shell
$ golem-main.py --template process.in
$ edit process.in
$ golem-main.py process.in
$
```


golem-2.0: Matrix Elements Made Easy

- create configuration file
- enter process, here: $g g \rightarrow s \bar{s} b \bar{b} @$ NLO in QCD
- set up process directory
- generate code and draw diagrams

```
shell
$ golem-main.py --template process.in
$ edit process.in
$ golem-main.py process.in
$ make dist # -> matrix.tar.gz
$
```


golem-2.0: Matrix Elements Made Easy

- create configuration file
- enter process, here: $g g \rightarrow s \bar{s} b \bar{b} @$ NLO in QCD
- set up process directory
- generate code and draw diagrams

```
shell
$ golem-main.py --template process.in
$ edit process.in
$ golem-main.py process.in
$ make dist # -> matrix.tar.gz
$ make doc # -> process.ps
$
```


golem-2.0: Unfinished Features

Things to be finished in the near future:

- FeynRules model files
- Les Houches interface
- PowHeg-Box interface [Alioli,Nason,Oleari,Re]
- release after validation of $g g \rightarrow b \bar{b} b \bar{b}$

golem95: Reduction of One-Loop Integrals

golem95

is a Fortran95 library for the reduction and numerically stable evaluation of tensor integral form factors.
The reduction method avoids instabilities induced by small Gram determinants.

News: golem95 Version 1.1.0 released.

- inclusion of internal masses
with link to LoopTools |Hahn. Perez-Victorial for some infrared finite integrals
- scale μ has been added
- installation uses AutoTools
> better routine for matrix inversion

golem95: Reduction of One-Loop Integrals

golem95

is a Fortran95 library for the reduction and numerically stable evaluation of tensor integral form factors.
The reduction method avoids instabilities induced by small Gram determinants.

News: golem95 Version 1.1.0 released.

- inclusion of internal masses
with link to LoopTools [Hahn,Perez-Victoria] for some infrared finite integrals
- scale μ has been added
- installation uses AutoTools
- better routine for matrix inversion

golem95: Reduction of One-Loop Integrals

golem95

is a Fortran95 library for the reduction and numerically stable evaluation of tensor integral form factors.
The reduction method avoids instabilities induced by small Gram determinants.

News: golem95 Version 1.1.0 released.

- inclusion of internal masses
with link to LoopTools [Hahn,Perez-Victoria] for some infrared finite integrals
- scale μ has been added
- installation uses AutoTools
- better routine for matrix inversion
\Rightarrow suitable for all processes up to 6 legs with real masses!

golem95: Reduction of One-Loop Integrals

$$
\begin{gathered}
I_{N}^{d ; \mu_{1} \ldots \mu_{r}}(S)=\int \frac{\mathrm{d}^{d} k}{i \pi^{d} / 2} \frac{k^{\mu_{1}} k^{\mu_{2}} \cdots k^{\mu_{r}}}{\left[\left(k+r_{1}\right)^{2}-m_{1}^{2}\right] \cdots\left[\left(k+r_{N}\right)^{2}-m_{N}^{2}\right]} \\
S_{i j}=\left(r_{i}-r_{j}\right)^{2}-m_{i}^{2}-m_{j}^{2} \\
G_{i j}=2 r_{i} \cdot r_{j}
\end{gathered}
$$

Starting point: one-loop tensor integrals

golem95: Reduction of One-Loop Integrals

Full reduction to scalar integral \Rightarrow Gram determinants

golem95: Reduction of One-Loop Integrals

$$
\begin{aligned}
& I_{N}^{d ; \mu_{1} \ldots \mu_{r}}(S)=\int \frac{\mathrm{d}^{d} k}{i \pi^{d} / 2} \frac{k^{\mu_{1}} k^{\mu_{2}} \cdots k^{\mu_{r}}}{\left[\left(k+r_{1}\right)^{2}-m_{1}^{2}\right] \cdots\left[\left(k+r_{N}\right)^{2}-m_{N}^{2}\right]} \\
& I_{N}^{d}\left(l_{1}, \ldots, l_{p} ; S\right)=(-1)^{N} \Gamma(N-d / 2) \int_{0} \mathrm{~d}^{N} z \frac{\delta\left(1-\sum z_{i}\right) z_{l_{1}} \cdots z_{l_{p}}}{\left(-\frac{1}{2} z^{\top} S z-i \delta\right)^{N-d / 2}}
\end{aligned}
$$

$I_{N}^{d}(S)=(-1)^{N} \Gamma(N-d / 2) \int_{0} \mathrm{~d}^{N} z \frac{\delta\left(1-\sum z_{i}\right)}{\left(-\frac{1}{2} z^{\top} S z-i \delta\right)^{N-d / 2}}$
form factor decomposition: non-scalar Feynman param. integrals

golem95: Reduction of One-Loop Integrals

$I_{N}^{d ; \mu_{1} \ldots \mu_{r}}(S)=\int \frac{\mathrm{d}^{d} k}{i \pi^{d} / 2} \frac{k^{\mu_{1}} k^{\mu_{2}} \cdots k^{\mu_{r}}}{\left[\left(k+r_{1}\right)^{2}-m_{1}^{2}\right] \cdots\left[\left(k+r_{N}\right)^{2}-m_{N}^{2}\right]}$

$$
I_{N}^{d}\left(l_{1}, \ldots, l_{p} ; S\right)=(-1)^{N} \Gamma(N-d / 2) \int_{0} \mathrm{~d}^{N} z \frac{\delta\left(1-\sum z_{i}\right) z_{l_{1}} \cdots z_{l_{p}}}{\left(-\frac{1}{2} z^{\top} S z-i \delta\right)^{N-d / 2}}
$$

(

$$
I_{N}^{d}(S)=(-1)^{N} \Gamma(N-d / 2) \int_{0} \mathrm{~d}^{N} z \frac{\delta\left(1-\sum z_{i}\right)}{\left(-\frac{1}{2} z^{\top} S z-i \delta\right)^{N-d / 2}}
$$

det G small \Rightarrow numerical evaluation of non-scalar integrals.

golem95: Status and outlook

- Current version (1.1.0) contains all massive and massless one-loop integrals up to 6 legs
- well tested, many examples
- for some massive integrals only algebraic branch available
- future plans include
- completion of numerical integration for all integrals
- removal of dependence on 3rd party libraries
- complex masses
- http://lappweb.in2p3.fr/lapth/Golem/golem95.html

The four- b amplitude

...for an overview of recent NLO results see Lance Dixon's talk. . .
... or Francesco Tramontano's talk...

$b \bar{b} b \bar{b}$: An Important Background

4b Final State 5 σ LHC Discovery Contours $m_{\text {acop }}=1 \mathrm{TeV}$, no squark mixing

- Uncertainty on $b \bar{b} b \bar{b}$ crucial for BSM Higgs searches
- for certain MSSM scenarios: $H \rightarrow b \bar{b} b \bar{b}$ enhanced
- maybe only discovery channel
- also important for other BSM models
[Dai,Gunion, Vega]

$p p \rightarrow b \bar{b} b \bar{b}$: Overview

- Born part and virtual corrections
- $q \bar{q} \rightarrow b \bar{b} b \bar{b}$
- $g g \rightarrow b \bar{b} b \bar{b}$
- real corrections
- $q \bar{q} \rightarrow b \bar{b} b \bar{b}+g$ (done)
- $g g \rightarrow b \bar{b} b \bar{b}+g$ (done)
- $g q \rightarrow b \bar{b} b \bar{b}+q$ (done)
- Approximations: $m_{b}=0, m_{t} \rightarrow \infty, q \in\{u, d, s, c\}$
- LHC kinematics and cuts:
- $\sqrt{s}=14 \mathrm{TeV}$
- p_{T} cut: $p_{T}>30 \mathrm{GeV}$
- rapidity cut: $|\eta|<2.5$
- separation cut: $\Delta R>0.8$

$p p \rightarrow b \bar{b} b \bar{b}$: Overview

- Born part and virtual corrections
- $q \bar{q} \rightarrow b \bar{b} b \bar{b}$ (done)
- $g g \rightarrow b \bar{b} b \bar{b}$
- real corrections
- $q \bar{q} \rightarrow b \bar{b} b \bar{b}+g$ (done)
- $g g \rightarrow b \bar{b} b \bar{b}+g$ (done)
- $g q \rightarrow b \bar{b} b \bar{b}+q$ (done)
- Approximations: $m_{b}=0, m_{t} \rightarrow \infty, q \in\{u, d, s, c\}$
- LHC kinematics and cuts:
- $\sqrt{s}=14 \mathrm{TeV}$
- p_{T} cut: $p_{T}>30 \mathrm{GeV}$
- rapidity cut: $|\eta|<2.5$
- separation cut: $\Delta R>0.8$

$p p \rightarrow b \bar{b} b \bar{b}$: Overview

- Born part and virtual corrections
- $q \bar{q} \rightarrow b \bar{b} b \bar{b}$ (done)
- $g g \rightarrow b \bar{b} b \bar{b}$
- real corrections
- $q \bar{q} \rightarrow b \bar{b} b \bar{b}+g$ (done)
- $g g \rightarrow b \bar{b} b \bar{b}+g$ (done)
- $g q \rightarrow b \bar{b} b \bar{b}+q$ (done)
- Approximations: $m_{b}=0, m_{t} \rightarrow \infty, q \in\{u, d, s, c\}$
- LHC kinematics and cuts:
- $\sqrt{s}=14 \mathrm{TeV}$
- p_{T} cut: $p_{T}>30 \mathrm{GeV}$
- rapidity cut: $|\eta|<2.5$
- separation cut: $\Delta R>0.8$
- computed with different setups:
- golem-2.0+golem95+MadGraph/MadEvent/MadDipole
[Long,Stelzer/Maltoni,Stelzer/Frederix, Gehrmann, Greiner]
- golem-2.0+golem95+Whizard [Kilian,Ohl,Reuter]
- golem-2.0+Samurai+MadGraph/MadEvent/MadDipole
- FeynArts/Form/Maple for cross-check of virtual part

$q \bar{q}$ channel complete

$q \bar{q}$ channel, pole cancellation of virtual part using Samurai on 10^{5} points

$p p \rightarrow b \bar{b} b \bar{b}:$ Real Emission

- real emission implemented for all channels using MadEvent/MadDipole
- integration cross-checked with HELAC-PHEGAS
[Cafarella,Papadopoulos,Worek]

invariant $b b$-mass (real only)

p_{T} of the hardest jet (real only)

Summary and Outlook

 golem-2.0:- interfaces for FeynRules,

PowHeg-Box and Les Houches Accord planned

- interface for golem95 and Samurai ready
- release after further validation golem95:
- all integrals up to hexagons in latest release
- AutoTools for installation/configuration
- complex masses and completion of numerical branch coming in future release

[^0]: The GOLEM method is aiming at

 - NLO "Plug In" for MC generators

