NLO QCD corrections to $pp \rightarrow t\bar{t}b\bar{b}$ at the LHC

Stefano Pozzorini CERN

based on

A. Bredenstein, A. Denner, S. Dittmaier and S. P.

JHEP **0808** (2008) 108 [arXiv:0807.1248] PRL **103** (2009) 012002 [arXiv:0905.0110] JHEP **1003** (2010) 021 [arXiv:1001.4006]

HO10 Theory Institute, CERN, June 29, 2010

Outline of the talk

- 1. Importance of $t\bar{t}b\bar{b}$ as background to $t\bar{t}H(H \rightarrow b\bar{b})$
- 2. One-loop amplitudes
- 3. NLO predictions for the LHC

First $2 \rightarrow 4$ calculations of the '05/'07 Les Houches priority list

- Two calculations for $pp \to t\bar{t}b\bar{b}$ with permille agreement
 - arXiv:0905.0110 by Bredenstein, Denner, Dittmaier and S. P.
 Feynman diagrams and tensor integrals
 - arXiv:0907.4723 by Bevilacqua, Czakon, Papadopoulos, Pittau and Worek OPP reduction and HELAC
- Two calculations for $pp \rightarrow Vjjj$
 - arXiv:0906.1445 by Ellis, Melnikov and Zanderighi
 D-dimensional unitarity (leading colour)
 - arXiv:0907.1984 (Wjjj) and arXiv:1004.1659 (Zjjj) by Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower and Maitre generalized unitarity (full colour)
- $q\bar{q}$ -channel contribution to $pp \rightarrow b\bar{b}b\bar{b}$
 - arXiv:0910.4379 by Binoth, Greiner, Guffanti, Reuter, Guillet and Reiter Feynman diagrams and tensor integrals (GOLEM)
- First result for $pp \rightarrow t\bar{t}jj$
 - arXiv:1002.4009 by Bevilacqua, Czakon, Papadopoulos and Worek
 OPP reduction and HELAC

Importance of $t\bar{t}H(H \rightarrow b\bar{b})$

- exploit $H \to b\bar{b}$ for $M_H \sim 120 \,\text{GeV}$
- direct measurement of Top-Yukawa coupling

ATLAS/CMS analysis $(30 \text{ fb}^{-1} @ 14 \text{ TeV})$

- jet combinatorics dilutes Higgs resonance
- very low $S/B \simeq 1/10$
- to exploit $S/\sqrt{B} \simeq 2\sigma$ we need $\Delta B/B < 10\%!$

Fat Jets can bring $t\bar{t}H(H \rightarrow b\bar{b})$ back to life! [Plehn/Salam/Spannowsky arXiv:0910.5472]

Selecting Higgs & Top Fat Jets $(p_T > 200 \text{ GeV}, R = 1.5)$

Higgs-jet: two b-tags &	$ m_{\mathrm{b}\bar{\mathrm{b}}} - M_{\mathrm{H}} $	$< 10 \mathrm{GeV}$
-------------------------	---	---------------------

Top-jet: $m_{jjj} \sim m_t \& m_{jj} \sim M_W$

 2^{nd} Top: 1 lepton + 3^{rd} b-tag (optional)

removes combinatorial ambiguity

ATLAS vs Fat-Jet Analysis $(M_{\rm H} = 120 \,{\rm GeV} \otimes 14 \,{\rm TeV} \& 30 \,{\rm fb}^{-1})$

# of events	$t\bar{t}H$	$t\bar{t}b\bar{b} + t\bar{t}jj$	${ m t}ar{ m t}jj/{ m t}ar{ m t}{ m b}ar{ m b}$	S/\sqrt{B}	S/B
ATLAS	38	309	0.5 - 1.0	2.2	12%
Fat Jets $(2b)$	30	135	0.6	2.6	22%
Fat Jets $(3b)$	14	41	0.06	2.2	36%

sizable S/B increase and possible $t\bar{t}jj$ suppression!

$$\frac{\Delta \sigma_{\rm t\bar{t}b\bar{b}}}{\sigma_{\rm t\bar{t}b\bar{b}}} \simeq \frac{\Delta \alpha_{\rm S}^4(\mu)}{\alpha_{\rm S}^4(\mu)} \simeq 80\%$$

Scale in LO simulations (ATLAS)

$$\mu_{
m QCD}={f E}_{
m thr}/2$$

NLO for p	$p \rightarrow t\bar{t}H, t\bar{t}j, t\bar{t}Z$	$(K\simeq 1)$ a	d $t\bar{t}b\bar{b}$ ($K \simeq 2$) completely different!	
Process	$\mu_{ m QCD}$	K-factor	Reference	
$pp \to t \bar{t} H$	$m_{\rm t} + M_{\rm H}/2$	1.2	Beenakker/Dittmaier/Krämer/Plümper/Spira/Zerwas (2001) Dawson/Reina/Wackeroth/Orr/Jackson (2001) Peng/Wen-Gan/Hong-Shen/Ren-You/Yi (2005)	
$\mathrm{pp} ightarrow \mathrm{t\bar{t}j}$ $p_{\mathrm{T,jet}} > 2050\mathrm{GeV}$	$m_{ m t}$ V)	1.0-1.15	Dittmaier/Uwer/Weinzierl (2007) Melnikov/Schulze (2010)	
$pp \to t \bar{t} Z$	$m_{\rm t} + M_{\rm Z}/2$	1.35	Lazopoulus/McElmurry/Melnikov/Petriello (2007)	
$\mathrm{pp} ightarrow \mathrm{t\bar{t}b\bar{b}}$ $(p_{\mathrm{T,jet}} > 20\mathrm{GeV})$	$m_{ m t}+m_{ m bar b}/2$	1.8	Bredenstein/Denner/Dittmaier/S. P. (2009) Bevilacqua/Czakon/Papadopoulos/Pittau/Worek (2009)	

(2) One-loop amplitudes

Ingredients of $pp \to t \bar{t} b \bar{b}$ at NLO

Full calculation twice and independently

Diagram generation

• FeynArts 1.0 / 3.2

Algebraic reduction

• FormCalc 5.2 & MATHEMATICA

Tensor integrals & numerics

• Fortran77 \Rightarrow 100MB executable

Real emission & IR Subtraction

- Madgraph & Spinors & Off-shell recursions
- Dipoles [Catani/Dittmaier/Seymour/Trócsányi '02] & MadDipole [Frederix/Gehrmann/Greiner '08]

PS integration

• adaptive MC with 1400 channels

Diagrammatic approach with systematic *reduction of factorial complexity*

$$\sum_{\text{col,pol}} \left(\bigcap_{i=1}^{\infty} \bigcap_{i=1}^{\infty} = \sum_{\text{col,pol}} \left(\bigcap_{i=1}^{\infty} \bigcap_{i=1}^{\infty} + \mathcal{O}(1000) \text{ more diagrams} \right)$$

$$\frac{Colour \text{ sums at zero cost}}{\text{thanks to colour factorisation}}$$

$$\sum_{i=1,\dots,j_P} a_{i_1\dots,j_P} \epsilon_{\mu_1} \epsilon_{\mu_2} [\overline{v}_3 \gamma_{\mu_3} \dots u_4] [\overline{v}_5 \dots \gamma_{\mu_k} u_6] \{g \dots p\}_{i_1\dots,j_P}^{\mu_1\dots\nu_P} \int_{i=1}^{\infty} d^D q \frac{q_{\nu_1} \dots q_{\nu_P}}{N_0 \dots N_{N-1}}$$

$$\frac{Covariant decomposition of tensor integrals}{\text{decouples helicity structures from topologies}}$$

$$\sum_{i=1}^{\infty} T_{j_1\dots j_P}^{(N)} \{g \dots p\}_{j_1\dots j_P}^{\nu_1\dots\nu_P}$$

Reduction of $gg \rightarrow t\bar{t}b\bar{b}$ helicity structures to *common* and *minimal set* of SMEs

SMEs (compact & diagram-indep. spinor chains) strongly boost helicity sums

$$\{g\dots p\}_m^{\mu_1\dots\mu_k} \epsilon_{\mu_1}\epsilon_{\mu_2} \left[\bar{v}_3\,\gamma_{\mu_3}\dots\,u_4\right] \left[\bar{v}_5\,\dots\gamma_{\mu_k}\,u_6\right] = \sum_{n=1}^{N_{\text{SME}}} K_{mn}\mathcal{S}_n$$

(A) **Process-independent reduction** $\epsilon_i p_{1,2} = 0$, Dirac eq. & algebra, $\sum p_i = 0$, standard ordering, and

$$\gamma^{\mu_1} \gamma^{\mu_2} \gamma^{\mu_3} \gamma^{\mu_4} \gamma^{\mu_5} = g^{\mu_1 \mu_2} \gamma^{\mu_3} \gamma^{\mu_4} \gamma^{\mu_5} + \dots + g^{\mu_1 \mu_2} g^{\mu_3 \mu_4} \gamma^{\mu_5}$$

(B) **Process-dependent optimisation** sophisticated algorithm based on $u_j \Rightarrow [\omega_+ + \omega_-] u_j$ and

 ΛT

$$\left(\gamma^{\mu}\gamma^{\alpha}\gamma^{\beta} \omega_{\pm}\right) \otimes \left(\gamma_{\mu} \omega_{\mp}\right) =$$

= $(\gamma^{\mu} \omega_{\pm}) \otimes \left(\gamma^{\alpha}\gamma^{\beta}\gamma_{\mu} \omega_{\mp}\right) \dots$

 $\Rightarrow N_{\rm SME} = 970 \qquad \Rightarrow N_{\rm SME} = 502$

Surprise: A & B yield same CPU efficiency

High speed w.o. process-dependent manipulations \Rightarrow automation!

Reduction of tensor integrals – *collection* of $e^+e^- \rightarrow 4f$ methods [Denner/Dittmaier '05]

(A) **Space-time 4-dim** $(N \ge 5 \text{ prop.})$ simultaneous prop. & rank reduction

Melrose '65; Denner/Dittmaier '02&'05; Binoth et. al. '05

(B) Lorentz invariance ($N \leq 4$ prop.)

reduction of rank (P)

Passarino/Veltman '79; Denner '93

$$2(D+P-N-1) T_{00i_3...i_P}^{(P)} = \sum_{k=1}^{N-1} f_k T_{ki_3...i_P}^{(P-1)} + 2m_0^2 T_{i_3...i_P}^{(P-2)} + \text{lower-point}$$

$$\sum_{n=1}^{N-1} Z_{mn} T_{ni_2...i_P}^{(P)} = -2 \sum_{r=2}^{P} \delta_{mi_r} T_{00i_2...\hat{i_r}...i_P}^{(P)} - f_m T_{i_2...i_P}^{(P-1)} + \text{lower-point}$$

inversion of Gram matrix $Z_{mn} = 2p_m p_n$ unstable when $det(Z) \to 0$

$$\begin{split} \tilde{X}_{0j} T_{i_{1} \dots i_{P}}^{(P)} &= \det(Z) \ T_{ji_{1} \dots i_{P}}^{(P+1)} + 2 \sum_{n=1}^{N-1} \tilde{Z}_{jn} \sum_{r=1}^{P} \delta_{ni_{r}} T_{00i_{1} \dots \hat{i}_{r} \dots i_{P}}^{(P+1)} + \text{lower-point} \\ 2 \tilde{Z}_{kl} T_{00i_{2} \dots i_{P}}^{(P+1)} &= \Big\{ -\det(Z) \ T_{kli_{2} \dots i_{P}}^{(P+1)} + 2m_{0} \tilde{Z}_{kl} T_{i_{2} \dots i_{P}}^{(P-1)} + \sum_{n,m=1}^{N-1} \Big[f_{n} f_{m} T_{i_{2} \dots i_{P}}^{(P-1)} + 2 \sum_{r=2}^{P} (f_{n} \delta_{mi_{r}} + f_{m} \delta_{ni_{r}}) \\ \times T_{00i_{2} \dots \hat{i}_{r} \dots i_{P}}^{(P)} + 4 \sum_{\substack{r,s=2\\r \neq s}}^{P} \delta_{ni_{r}} \delta_{mi_{s}} T_{000i_{2} \dots \hat{i}_{r} \dots \hat{i}_{s} \dots i_{P}}^{(P+1)} \Big] \tilde{Z}_{(kn)(lm)} + \text{lower-point} \Big\} (D + 1 + P - N + \sum_{r=2}^{P} \bar{\delta}_{i_{r}0})^{-1} \end{split}$$

(C) Treatment of det(Z) instabilities

Denner/Dittmaier '05

- Iterative expansion with K adapted to det(Z) and target precision

$$T^{(P)} = T_K^{(P)} + \mathcal{O}\left[\det(Z)^{K+1}\right] \quad \text{requires} \quad T_0^{(P+K)}$$

Various alternative methods
further expansions (*Ž_{kl}* or *X_{0j}* = − ∑_k *Ž_{jk}f_k* small); modified set of MIs
(*T₀* → *T_{00...00}*); solutions of PV-identities with det(*Z*) → det(*Y*)
General, flexible & robuts solution of instability problems

CPU efficiency

(3GHz Intel Xeon & pgf77)

• The tensor reduction is strongly boosted by a chache system that recycles tensor integrals from diagrams that share *common subtopologies*

all loop integrals for $gg \to t\bar{t}b\bar{b}$	CPU time/point		
A_0, B_0, C_0, D_0	$t_{\rm MIs} \simeq 10 \ {\rm ms}$		
$T_N^{(P)}$ with $N \leq 6$ and $P \leq 4$	$t_{ m red}\simeq 30~{ m ms}$		

- The CPU cost of the one-loop amplitude including colour/helicity sums (180 ms) is not far from the absolute minimum ($t_{\rm MIs} = 10$ ms)
- Virtual corrections require less CPU time (25%) than real emission + dipoles (75%)
- Integrating the NLO cross section with statistical accuracy of $\mathcal{O}(10^{-3})$ requires $\mathcal{O}(10^7)$ events obtained within 2–3 days on a single CPU

(3) NLO predictions for $pp \rightarrow t\bar{t}b\bar{b}$ at the LHC

Setup and input parameters

Parton masses

• $m_{\rm t} = 172.6 \,\text{GeV}$ and $m_{\rm b} = 0$ (massless approximation better than 3% at LO)

Recombination of collinear $b\bar{b}$, bg, $\bar{b}g$, with $k_{\rm T}$ -Jet-Algorithm hep-ex/0005012

• partons with $|\eta| < 5 \implies \text{b-jets}$ with $\sqrt{\Delta \phi^2 + \Delta y^2} > D = 0.4$

Require two b-jets $(y < 2.5, p_T > 20 \text{ GeV})$ with

- (1) ATLAS setup: $m_{b\bar{b}} > 100 \,\text{GeV}$
- (2) FAT-JET setup: $p_{\mathrm{T,b\bar{b}}} > 200 \,\mathrm{GeV}$

CTEQ6M PDFs with factor-2 variations of $\mu_{R,F}$ around central values

(A) ATLAS scale choice: $\mu_0 = E_{\text{thr}}/2$ (B) NEW dynamical scale: $\mu_0^2 = m_{\text{t}} \sqrt{p_{\text{T,b}} p_{\text{T,b}}}$

Impact on ttH ATLAS studies: $m_{b\bar{b}} > 100 \,\text{GeV}$

High sensitivity to scale choice

 $\frac{\Delta \sigma_{\rm LO}}{\sigma_{\rm LO}} \simeq \frac{\Delta \alpha_{\rm S}^4(\mu)}{\alpha_{\rm S}^4(\mu)} \quad \Rightarrow \quad 78\% \text{ uncertainty}$

ATLAS scale choice $\mu_0 = E_{\text{thr}}/2 = m_{\text{t}} + m_{\text{b}\bar{\text{b}}}/2$

- $t\bar{t}H$ signal receives small K-factor (1.2)
- tītbīb: large K-factor and scale dep. $(K = 1.67 \pm 34\%)$

QCD dynamics of $t\bar{t}H/t\bar{t}b\bar{b}$ completely different

- various channels involving $g \to b \bar{b}$ splittings
- $t\bar{t}b\bar{b}$ is a multi-channel multi-scale process

Stabilizing $\sigma_{t\bar{t}b\bar{b}}$ with an appropriate $\mu_{\rm QCD}$

Pragmatic approach: geometric average of widely separated scales observed in $t\bar{t}b\bar{b}$ distributions

$$\mu_0^2=m_{
m t}\sqrt{p_{
m T,b}p_{
m T,b}}$$

 $p_{\rm T}$ -distributions of individual b-jets

The two b-jets have typically

 $p_{\rm T,b} \ll m_{\rm t}$

and rather different distributions

- softest b-jet (upper plot) tends to saturate the cut at 20 GeV
- hardest b-jet (lower plot) has $p_{\rm T} \sim 100 \,{\rm GeV}$ and extends over wider $p_{\rm T}$ -range

NLO/LO for b-jet p_{T} -distributions

NLO band perfectly fits within LO band both for soft-b (upper plot) and hard-b (lower plot) distributions

- much smaller NLO correction $(K \simeq 1.25)$
- smaller NLO uncertainty (20%)
- almost constant K-factor over wide $p_{\rm T}$ -range

New scale choice strongly improves convergence

LO and NLO scale dependence of $\sigma_{
m t\bar{t}b\bar{b}}$

Variations around new central scale

 $\mu_0^2 = m_{\mathrm{t}} \sqrt{p_{\mathrm{T,b}} p_{\mathrm{T,}ar{\mathrm{b}}}}$

Good news for theory: improved convergence

- small correction & uncertainty $(K = 1.25 \pm 21\%)$
- shape of NLO curves: μ_0 close to maximum

Bad news for experiment: $\sigma_{t\bar{t}b\bar{b}}$ enhanced by factor 2.2^{*a*} wrt LO ATLAS simulations

$\sigma_{ m tar tbar b}$	LO	NLO	NLO/LO
$\mu_{\rm R,F} = E_{\rm thr}/2$	$449\mathrm{fb}$	$751{ m fb}$	1.67
$\mu_{\rm R,F}^2 = m_{\rm t} \sqrt{p_{\rm T,b} p_{\rm T,\bar{b}}}$	$786\mathrm{fb}$	$978\mathrm{fb}$	1.24

 a (Partially) taken into account in Fat-Jet analysis!

Jet-veto effects

How to reduce large $\mathrm{t\bar{t}b\bar{b}}$ background?

• $p_{\rm jet,veto} \sim 50 \,{\rm GeV} \quad \Rightarrow \quad {\rm sizable \ suppression}$

Perturbative instability

- small $p_{\text{jet,veto}} \Rightarrow -\alpha_{\text{s}}^5 \ln^2(Q_0/p_{\text{jet,veto}})$
- NLO uncertainty band enters K < 0 range when $p_{\rm jet,veto} \lesssim 50 \,{\rm GeV}$

Safe jet veto: $p_{\rm jet,veto} \simeq 100 \, {\rm GeV}$

- $\sigma_{\rm NLO}$ reduced by 30%
- optimal stability (19% uncertainty)

Fat-Jet kinematics: $p_{T,b\bar{b}} > 200 \,\text{GeV}$

Dynamical scale keeps $\sigma_{t\bar{t}b\bar{b}}$ stable

$\sigma_{ m tar tbar b}$	LO	NLO	NLO/LO
$\mu_{\mathrm{R,F}}^2 = m_{\mathrm{t}} \sqrt{p_{\mathrm{T,b}} p_{\mathrm{T,} \mathrm{b}}}$	$452\mathrm{fb}$	$592{ m fb}$	1.31

• correction (31%) & uncertainty (22%) moderate

Some distributions significantly distorted

- distortion of $\mathcal{O}(20\%)$ in shape of $m_{\mathrm{b}\bar{\mathrm{b}}}$
- close to $m_{b\bar{b}} = 100 \,\text{GeV}$ and tends to mimic H $\rightarrow b\bar{b}$ signal (both in shape and size)

Conclusions

NLO QCD calculation for $pp \to t\bar{t}b\bar{b}$ at the LHC

• mandatory to extract $t\bar{t}H(H \rightarrow b\bar{b})$

QCD scale in ATLAS studies not adequate \Rightarrow new dynamical scale

- stabilizes QCD predictions $(K \simeq 1.7 \Rightarrow 1.25)$
- doubles ttbb cross section wrt LO ATLAS studies

Technical test of diagrammatic tensor-reduction approach

- very high CPU efficiency with process-independent techniques
- very good perspectives to study other six-particle processes!

BACKUP SLIDES

(d) Rational parts

$$K_{i_1...i_P}(D) \underbrace{T_{i_1...i_P}^{(N)}}_{(D-4)} \Rightarrow K'_{i_1...i_P}(4) \left(R_1 + R_1\right) + \frac{1}{2} K''_{i_1...i_P}(4) R_2 + \dots$$

$$\frac{R_1}{(D-4)} + \frac{R_1}{(D-4)} + \frac{R_2}{(D-4)^2} + \text{finite part}$$

When tensor integrals are combined with their *D*-dimensional coefficients

- UV and IR poles require (D-4) expansions (performed algebraically)
- this produces **rational terms** proportional to the pole residues

Rational terms of IR origin

- require the heaviest algebraic work but **cancel in any** *unrenormalized* **QCD amplitude** (proven in App. A of arXiv:0807.1248)
- can thus be neglected from the beginning

Rational terms of UV origin

- extracted automatically by means of a catalogue of UV residues R_1
- after the relevant (D-4)-expansions we can continue the calculation in D=4

Rational terms originate from *D*-dependent $g^{\mu\nu}$ -contractions of type $g_{\nu\lambda}\Gamma^{\nu\lambda}$

$$g_{\nu\lambda} g^{\nu\lambda} = D, \qquad g_{\nu\lambda} \gamma^{\nu} \not p \gamma^{\lambda} = (2-D) \not p, \dots$$

(1) The tensor-reduction is free from IR rational terms since in the soft and collinear regions $(q^{\mu} \rightarrow xp^{\mu})$ the tensor integrals cannot produce $g^{\mu\nu}$

(2) All possible diagrams involving IR-divergent integrals

can be cast into a form where $g_{\nu\lambda}\Gamma^{\nu\lambda}$ contractions cancel in IR regions

$$\int \frac{\mathrm{d}^{D} q}{q^{2} (q+p)^{2}} \underbrace{\epsilon^{\mu*}(p) \left(2q+p\right)_{\mu}}_{\rightarrow 0 \text{ in soft/coll. regions}} g_{\nu\lambda} \Gamma^{\nu\lambda}(q) + \dots$$

(4.1) Matrix elements for real emission

All ingredients computed twice and independently

Two types of matrix elements

- Madgraph 4.1.33 [Alwall/Demin/deVisscher/Frederix/Herquet/Maltoni/Plehn/Rainwater/Stelzer'07] for all channels
- analytical calculation with Weyl–van der Waerden spinors [Dittmaier '98] for qq/qg channels
- in-house numerical algortihm based on off-shell recursions [Berends/Giele '88; Caravaglios/Moretti '95; Draggiotis/Kleiss/Papadopoulos '98] for gg channel

(4.2) Dipole subtraction of soft and collinear singularities

Catani/Seymour '96; Dittmaier '99; Catani/Dittmaier/Seymour/Trócsányi '02

$$\int \mathrm{d}\sigma_{2\to 5} = \int \left[\mathrm{d}\sigma_{2\to 5} - \sum_{\substack{i,j=1\\i\neq j}}^{6} \mathrm{d}\sigma_{2\to 5}^{\mathrm{dipole},ij} \right] + \sum_{\substack{i,j=1\\i\neq j}}^{6} \mathcal{F}_{ij} \otimes \mathrm{d}\sigma_{2\to 4}$$

- numerically stable/efficient but non-trivial: 30 qq/gg (10 qg) subtraction terms
- in-house dipoles checked against MadDipole [Frederix/Gehrmann/Greiner '08] (gg/qg) and PS slicing [Giele/Glover '92; Giele et al. '93; Keller/Laenen '98; Harris/Owens '01] (qq)
- initial-state collinear singularities cancelled by $\overline{\text{MS}}$ -redefinition of PDFs

Phase-space integration

- adaptive multi-channel Monte Carlo [Berends/Kleiss/Pittau '94; Kleiss/Pittau '94] as in RACOONWW[Denner/Dittmaier/Roth/Wackeroth'99]/PROFECY4f[Bredenstein/Denner/Dittmaier/Weber'06]
- $\mathcal{O}(1400)$ channels to map all peaks from propagators (300) and dipoles (1100)

	$\sigma/\sigma_{ m LO}$	events (after cuts)	$(\Delta\sigma)_{ m stat}/\sigma$	time	time/event
$\mathrm{NLOtree}(\mathrm{gg})$	86%	5.3×10^6	0.4×10^{-3}	38min	$0.4\mathrm{ms}$
$\mathbf{virtual}(\mathbf{gg})$	-11%	$0.26 imes 10^6$	0.6×10^{-3}	13h	$180 \mathrm{ms}$
real + dipoles (gg/qg)	49%	10×10^6	3×10^{-3}	40h	14ms
tot	124%		4×10^{-3}	53h	