The all-order infrared structure of massless gauge theories

Lorenzo Magnea

CERN - Università di Torino - INFN Torino

$$
\text { HO10 - CERN - June 30, } 2010
$$

Outline

(1) Introduction

Motivations
Tools
(2) The dipole formula

Factorization constraints
The dipole formula
(3) Beyond dipoles

Further constraints
Three-loop analysis
(4) Perspective

Introduction

Practicalities

- Higher order calculations at colliders cross hinge upon cancellation of divergences between virtual corrections and real emission contributions.
- Cancellation must be performed analytically before numerical integrations.
- Need local counterterms for matrix elements in all singular regions.
- State of the art: NLO multileg. NNLO available only for $e^{+} e^{-}$annihilation.
- Cancellations leave behind large logarithms: they must be resummed.

- For inclusive observables: analytic resummation to high logarithmic accuracy.
- For exclusive final states: parton shower event generators, (N) LL accuracy.
- Resummation probes the all-order structure of perturbation theory.
- Power-suppressed corrections to QCD cross sections can be studied
- Power corrections are often essential for phenomenology: event shapes, jets.

Theoretical concerns

- Understanding long-distance singularities to all orders provides a window into non-perturbative effects.
- IR singularities have a universal structure for all massless gauge theories.
- Links to the strong coupling regime can be established for SUSY gauge theories.
- A very special theory has emerged as a theoretical laboratory: $\mathcal{N}=4$ Super Yang-Mills.
- It is conformal invariant: $\beta_{\mathcal{N}=4}\left(\alpha_{S}\right)=0$.
- Exponentiation of IR/C poles in scattering amplitudes simplifies.
- AdS/CFT suggests a 'simple' description at strong coupling, in the planar limit.
- Exponentiation has been observed for MHV amplitudes up to five legs.
- Higher-point amplitudes are strongly constrained by (super)conformal symmetry.
- A string calculation at strong coupling matches perturbative results.
- Amplitudes admit a dual description in terms of polygonal Wilson loops.
- Integrability leads to possibly exact expressions for anomalous dimensions.

Theoretical concerns

- Understanding long-distance singularities to all orders provides a window into non-perturbative effects.
- IR singularities have a universal structure for all massless gauge theories.
- Links to the strong coupling regime can be established for SUSY gauge theories.
- A very special theory has emerged as a theoretical laboratory: $\mathcal{N}=4$ Super Yang-Mills.
- It is conformal invariant: $\beta_{\mathcal{N}=4}\left(\alpha_{S}\right)=0$.
- Exponentiation of IR/C poles in scattering amplitudes simplifies.
- AdS/CFT suggests a 'simple' description at strong coupling, in the planar limit.
- Exponentiation has been observed for MHV amplitudes up to five legs.
- Higher-point amplitudes are strongly constrained by (super)conformal symmetry.
- A string calculation at strong coupling matches perturbative results.
- Amplitudes admit a dual description in terms of polygonal Wilson loops.
- Integrability leads to possibly exact expressions for anomalous dimensions.
(Anastasiou, Bern, Dixon, Kosower, Smirnov; Alday, Maldacena; Brandhuber, Heslop, Spence, Travaglini; Drummond, Ferro, Henn, Korchemsky, Sokatchev; Beisert, Eden, Staudacher; Del Duca, Duhr, Smirnov; ...)

Tools: dimensional regularization

Nonabelian exponentiation of IR/C poles requires d-dimensional evolution equations. The running coupling in $d=4-2 \epsilon$ obeys

$$
\mu \frac{\partial \bar{\alpha}}{\partial \mu} \equiv \beta(\epsilon, \bar{\alpha})=-2 \epsilon \bar{\alpha}+\hat{\beta}(\bar{\alpha}), \quad \hat{\beta}(\bar{\alpha})=-\frac{\bar{\alpha}^{2}}{2 \pi} \sum_{n=0}^{\infty} b_{n}\left(\frac{\bar{\alpha}}{\pi}\right)^{n} .
$$

The one-loop solution is

$$
\bar{\alpha}\left(\mu^{2}, \epsilon\right)=\alpha_{s}\left(\mu_{0}^{2}\right)\left[\left(\frac{\mu^{2}}{\mu_{0}^{2}}\right)^{\epsilon}-\frac{1}{\epsilon}\left(1-\left(\frac{\mu^{2}}{\mu_{0}^{2}}\right)^{\epsilon}\right) \frac{b_{0}}{4 \pi} \alpha_{s}\left(\mu_{0}^{2}\right)\right]^{-1} .
$$

The β function develops an IR free fixed point, so that $\bar{\alpha}(0, \epsilon)=0$ for $\epsilon<0$. The location of the Landau pole acquires an imaginary part for $\epsilon<-b_{0} \alpha_{s} /(4 \pi)$,

$$
\mu^{2}=\Lambda^{2} \equiv Q^{2}\left(1+\frac{4 \pi \epsilon}{b_{0} \alpha_{s}\left(Q^{2}\right)}\right)^{-1 / \epsilon}
$$

- Integrations over the scale of the coupling can be analytically performed.
- All infrared and collinear poles arise by integration of $\alpha_{s}\left(\mu^{2}, \epsilon\right)$.

Tools: factorization

All factorizations separating dynamics at different energy scales lead to resummations.

- Collinear logarithms: Mellin moments of partonic DIS structure functions factorize

$$
\begin{gathered}
\widetilde{F}_{2}\left(N, \frac{Q^{2}}{m^{2}}, \alpha_{s}\right)=\widetilde{C}\left(N, \frac{Q^{2}}{\mu_{F}^{2}}, \alpha_{s}\right) \tilde{f}\left(N, \frac{\mu_{F}^{2}}{m^{2}}, \alpha_{s}\right) \\
\frac{d \widetilde{F}_{2}}{d \mu_{F}}=0
\end{gathered} \rightarrow \frac{d \log \widetilde{f}}{d \log \mu_{F}}=\gamma_{N}\left(\alpha_{s}\right) .
$$

Altarelli-Parisi evolution resums collinear logarithms into evolved parton distributions.

- Factorization is the difficult step. It requires a diagrammatic analysis
- all-order power counting (UV, IR, collinear ...);
- implementation of gauge invariance via Ward identities.
- Sudakov double logarithms are more difficult.
- A double factorization is required: hard vs. collinear vs. soft. Gauge invariance plays a key role in the decoupling.
- After identification of relevant modes, effective field theory can be used (SCET).

Sudakov factorization

Leading regions for Sudakov factorization.

- Divergences arise in fixed-angle amplitudes from leading regions in loop momentum space.
- Soft gluons factorize both form hard (easy) and from collinear (intricate) virtual exchanges.
- Jet functions J represent color singlet evolution of external hard partons.
- The soft function S is a matrix mixing the available color representations.
- In the planar limit soft exchanges are confined to wedges: $S \propto \mathbf{I}$.
- In the planar limit S can be reabsorbed defining jets J as square roots of elementary form factors.
- Beyond the planar limit S is determined by an anomalous dimension matrix Γ_{S}.
- Phenomenological applications to jet and heavy quark production at hadron colliders.

The dipole formula

(with Einan Gardi)

Factorization: pictorial

Operator factorization for fixed-angle scattering amplitudes, with subtractions.

Operator definitions

The functional form of this graphical factorization is

$$
\begin{aligned}
\mathcal{M}_{L}\left(p_{i} / \mu, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) & =\mathcal{S}_{L K}\left(\beta_{i} \cdot \beta_{j}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) H_{K}\left(\frac{p_{i} \cdot p_{j}}{\mu^{2}}, \frac{\left(p_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2} \mu^{2}}, \alpha_{s}\left(\mu^{2}\right)\right) \\
& \times \prod_{i=1}^{n}\left[J_{i}\left(\frac{\left(p_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2} \mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) / \mathcal{J}_{i}\left(\frac{\left(\beta_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)\right],
\end{aligned}
$$

We introduced factorization vectors n_{i}^{μ}, with $n_{i}^{2} \neq 0$, to define the jets,

$$
J\left(\frac{(p \cdot n)^{2}}{n^{2} \mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) u(p)=\langle 0| \Phi_{n}(\infty, 0) \psi(0)|p\rangle
$$

where Φ_{n} is the Wilson line operator along the direction n^{μ}.

$$
\Phi_{n}\left(\lambda_{2}, \lambda_{1}\right)=P \exp \left[\mathrm{i} g \int_{\lambda_{1}}^{\lambda_{2}} d \lambda n \cdot A(\lambda n)\right]
$$

The jet J has collinear divergences only along p.

Eikonal functions

The soft function \mathcal{S} is a matrix, mixing the available color tensors. It is defined by a correlator of Wilson lines.

$$
\left(c_{L}\right)_{\left\{\alpha_{k}\right\}} \mathcal{S}_{L K}\left(\beta_{i} \cdot \beta_{j}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\sum_{\left\{\eta_{k}\right\}}\langle 0| \prod_{i=1}^{n}\left[\Phi_{\beta_{i}}(\infty, 0)_{\alpha_{k}, \eta_{k}}\right]|0\rangle\left(c_{K}\right)_{\left\{\eta_{k}\right\}},
$$

Soft-collinear regions are subtracted dividing by eikonal jets \mathcal{J}.

$$
\mathcal{J}\left(\frac{(\beta \cdot n)^{2}}{n^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\langle 0| \Phi_{n}(\infty, 0) \Phi_{\beta}(0,-\infty)|0\rangle
$$

- \mathcal{S} and \mathcal{J} are pure counterterms in dimensional regularization.
\Rightarrow Infrared poles are mapped to ultraviolet singularities.
- Functional dependence of jet and soft factors on the vectors n_{i}^{μ} is restricted by the classical invariance of Wilson lines under velocity rescalings, $n_{i}^{\mu} \rightarrow \kappa_{i} n_{i}^{\mu}$.
- Rescaling invariance for light-like velocities, $\beta_{i}^{2}=0$ is broken by quantum corrections. \Rightarrow UV counterterms contain collinear poles, corresponding to soft-collinear singularities.
- Double poles are determined by the cusp anomalous dimension $\gamma_{K}\left(\alpha_{s}\right)$. $\Rightarrow \gamma_{K}\left(\alpha_{s}\right)$ governs the renormalization of Wilson lines with light-like cusps.

Soft matrices

The soft function \mathcal{S} obeys a matrix RG evolution equation

$$
\mu \frac{d}{d \mu} \mathcal{S}_{I K}\left(\beta_{i} \cdot \beta_{j}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=-\Gamma_{I J}^{\mathcal{S}}\left(\beta_{i} \cdot \beta_{j}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) \mathcal{S}_{J K}\left(\beta_{i} \cdot \beta_{j}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)
$$

$-\Gamma^{\mathcal{S}}$ is singular due to overlapping UV and collinear poles.
\mathcal{S} is a pure counterterm. In dimensional regularization, using $\alpha_{s}\left(\mu^{2}=0, \epsilon\right)=0$, one finds

$$
\mathcal{S}\left(\beta_{i} \cdot \beta_{j}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=P \exp \left[-\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d \xi^{2}}{\xi^{2}} \Gamma^{\mathcal{S}}\left(\beta_{i} \cdot \beta_{j}, \alpha_{s}\left(\xi^{2}, \epsilon\right), \epsilon\right)\right]
$$

Double poles cancel in the reduced soft function

$$
\overline{\mathcal{S}}_{L K}\left(\rho_{i j}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\frac{\mathcal{S}_{L K}\left(\beta_{i} \cdot \beta_{j}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)}{\prod_{i=1}^{n} \mathcal{J}_{i}\left(\frac{\left(\beta_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)}
$$

- $\overline{\mathcal{S}}$ must depend on rescaling invariant variables,

$$
\rho_{i j} \equiv \frac{n_{i}^{2} n_{j}^{2}\left(\beta_{i} \cdot \beta_{j}\right)^{2}}{\left(\beta_{i} \cdot n_{i}\right)^{2}\left(\beta_{j} \cdot n_{j}\right)^{2}} .
$$

- The anomalous dimension $\Gamma^{\bar{S}}\left(\rho_{i j}, \alpha_{s}\right)$ for the evolution of $\overline{\mathcal{S}}$ is finite.

Surprising simplicity

- $\Gamma^{\mathcal{S}}$ can be computed from UV poles of \mathcal{S}
- Non-abelian eikonal exponentiation selects the relevant diagrams: webs
- $\Gamma^{\mathcal{S}}$ appears highly complex at high orders.
- g-loop webs directly correlate color and kinematics of up to $g+1$ Wilson lines.

A web contributing to $\Gamma^{\mathcal{S}}$.

The two-loop calculation (M. Aybat, L. Dixon, G. Sterman) leads to a surprising result: for any number of light-like eikonal lines

$$
\Gamma_{\mathcal{S}}^{(2)}=\frac{\kappa}{2} \Gamma_{\mathcal{S}}^{(1)} \quad \kappa=\left(\frac{67}{18}-\zeta(2)\right) C_{A}-\frac{10}{9} T_{F} C_{F} .
$$

- No new kinematic dependence; no new matrix structure.
- κ is the two-loop coefficient of $\gamma_{K}\left(\alpha_{s}\right)$, rescaled by the appropriate quadratic Casimir,

$$
\gamma_{K}^{(i)}\left(\alpha_{s}\right)=C^{(i)}\left[2 \frac{\alpha_{s}}{\pi}+\kappa\left(\frac{\alpha_{s}}{\pi}\right)^{2}+\mathcal{O}\left(\alpha_{s}^{3}\right)\right] .
$$

Factorization constraints

Recall the origin of kinematic dependence for eikonal functions

- The classical rescaling symmetry of Wilson line correlators under $\beta_{i} \rightarrow \kappa_{i} \beta_{i}$ is violated only through the cusp anomaly.
\Rightarrow For eikonal jets, no β_{i} dependence is possible at all except through the cusp.
- In the reduced soft function $\overline{\mathcal{S}}$ the cusp anomaly cancels.
$\Rightarrow \overline{\mathcal{S}}$ must depend on β_{i} only through rescaling-invarant combinations such as $\rho_{i j}$, or, for $n \geq 4$ legs, the cross ratios $\rho_{i j k l} \equiv\left(\beta_{i} \cdot \beta_{j}\right)\left(\beta_{k} \cdot \beta_{l}\right) /\left(\beta_{i} \cdot \beta_{k}\right)\left(\beta_{j} \cdot \beta_{l}\right)$.

Consider then the anomalous dimension for the reduced soft function

$$
\Gamma_{I J}^{\bar{S}}\left(\rho_{i j}, \alpha_{s}\left(\mu^{2}\right)\right)=\Gamma_{I J}^{\mathcal{S}}\left(\beta_{i} \cdot \beta_{j}, \alpha_{S}\left(\mu^{2}\right), \epsilon\right)-\delta_{I J} \sum_{k=1}^{n} \gamma_{\mathcal{J}_{k}}\left(\frac{\left(\beta_{k} \cdot n_{k}\right)^{2}}{n_{k}^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)
$$

This poses strong constraints on the soft matrix. Indeed

- Singular terms in $\Gamma^{\mathcal{S}}$ must be diagonal and proportional to γ_{K}.
- Finite diagonal terms must conspire to construct $\rho_{i j}$'s combining $\beta_{i} \cdot \beta_{j}$ with x_{i}.
- Off-diagonal terms in $\Gamma^{\mathcal{S}}$ must be finite, and must depend only on the cross-ratios $\rho_{i j k l}$.

Factorization constraints

The constraints can be formalized simply by using the chain rule: $\Gamma^{\bar{S}}$ can depend on the factorization vectors n_{i} only through eikonal jets, which are color diagonal.

Defining $x_{i} \equiv\left(\beta_{i} \cdot n_{i}\right)^{2} / n_{i}^{2}$ one finds

$$
x_{i} \frac{\partial}{\partial x_{i}} \Gamma_{I J}^{\bar{S}}\left(\rho_{i j}, \alpha_{s}\right)=-\delta_{I J} x_{i} \frac{\partial}{\partial x_{i}} \gamma_{\mathcal{J}}\left(x_{i}, \alpha_{s}, \epsilon\right)=-\frac{1}{4} \gamma_{K}^{(i)}\left(\alpha_{s}\right) \delta_{I J} .
$$

This leads to a linear equation for the dependence of $\Gamma^{\overline{\mathcal{S}}}$ on its proper arguments, $\rho_{i j}$

$$
\sum_{j \neq i} \frac{\partial}{\partial \ln \left(\rho_{i j}\right)} \Gamma_{M N}^{\overline{\mathcal{S}}}\left(\rho_{i j}, \alpha_{s}\right)=\frac{1}{4} \gamma_{K}^{(i)}\left(\alpha_{s}\right) \delta_{M N} \quad \forall i
$$

- The equation relates $\Gamma^{\bar{S}}$ to γ_{K} to all orders in perturbation theory
\Rightarrow and should remain true at strong coupling as well.
- It correlates color and kinematics for any number of hard partons.
- It admits a unique solution for amplitudes with up to three hard partons.
\Rightarrow For $n \geq 4$ hard partons, functions of $\rho_{i j k l}$ solve the homogeneous equation.

The dipole formula

The cusp anomalous dimension exhibits Casimir scaling up to three loops.

- $\gamma_{K}^{(i)}\left(\alpha_{S}\right)=C^{(i)} \widehat{\gamma}_{K}\left(\alpha_{S}\right)$, with $C^{(i)}$ the quadratic Casimir and $\widehat{\gamma}_{K}\left(\alpha_{S}\right)$ universal.

Denoting with $\widetilde{\gamma}_{K}^{(i)}$ possible terms violating Casimir scaling, we write

$$
\sum_{j \neq i} \frac{\partial}{\partial \ln \left(\rho_{i j}\right)} \Gamma^{\overline{\mathcal{S}}}\left(\rho_{i j}, \alpha_{s}\right)=\frac{1}{4}\left[C^{(i)} \widehat{\gamma}_{K}\left(\alpha_{s}\right)+\widetilde{\gamma}_{K}^{(i)}\left(\alpha_{s}\right)\right] \quad \forall i
$$

By linearity, using the color generator notation, the scaling term yields

$$
\sum_{j \neq i} \frac{\partial}{\partial \ln \left(\rho_{i j}\right)} \Gamma_{\mathrm{Q} . \mathrm{C} .}^{\overline{\mathcal{S}}}\left(\rho_{i j}, \alpha_{s}\right)=\frac{1}{4} \mathrm{~T}_{i} \cdot \mathrm{~T}_{i} \widehat{\gamma}_{K}\left(\alpha_{s}\right)
$$

An all-order solution is the dipole formula (E. Gardi, LM; T. Becher, M. Neubert)

$$
\Gamma_{\mathrm{dip}}^{\bar{S}^{\prime}}\left(\rho_{i j}, \alpha_{s}\right)=-\frac{1}{8} \widehat{\gamma}_{K}\left(\alpha_{s}\right) \sum_{j \neq i} \ln \left(\rho_{i j}\right) \mathbf{T}_{i} \cdot \mathbf{T}_{j}+\frac{1}{2} \widehat{\delta}_{\overline{\mathcal{S}}}\left(\alpha_{s}\right) \sum_{i} \mathbf{T}_{i} \cdot \mathbf{T}_{i}
$$

as easily checked using color conservation, $\sum_{i} T_{i}=0$.
Note: all known results for massless gauge theories are of this form.

The full amplitude

It is possible to construct a dipole formula for the full amplitude enforcing the cancellation of the dependence on the factorization vectors n_{i} through

$$
\ln \left(\frac{\left(2 p_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2}}\right)+\ln \left(\frac{\left(2 p_{j} \cdot n_{j}\right)^{2}}{n_{j}^{2}}\right)+\ln \left(\frac{\left(-\beta_{i} \cdot \beta_{j}\right)^{2} n_{i}^{2} n_{j}^{2}}{2\left(\beta_{i} \cdot n_{i}\right)^{2} 2\left(\beta_{j} \cdot n_{j}\right)^{2}}\right)=2 \ln \left(-2 p_{i} \cdot p_{j}\right)
$$

Soft and collinear singularities can then be collected in a matrix Z

$$
\mathcal{M}\left(\frac{p_{i}}{\mu}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=Z\left(\frac{p_{i}}{\mu_{f}}, \alpha_{s}\left(\mu_{f}^{2}\right), \epsilon\right) \mathcal{H}\left(\frac{p_{i}}{\mu}, \frac{\mu_{f}}{\mu}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right),
$$

satisfying a matrix evolution equation

$$
\frac{d}{d \ln \mu_{f}} Z\left(\frac{p_{i}}{\mu_{f}}, \alpha_{s}\left(\mu_{f}^{2}\right), \epsilon\right)=-\Gamma\left(\frac{p_{i}}{\mu_{f}}, \alpha_{s}\left(\mu_{f}^{2}\right)\right) Z\left(\frac{p_{i}}{\mu_{f}}, \alpha_{s}\left(\mu_{f}^{2}\right), \epsilon\right) .
$$

The dipole structure of $\Gamma^{\bar{S}}$ is inherited by Γ, which reads (T. Becher, M. Neubert)

$$
\Gamma_{\text {dip }}\left(\frac{p_{i}}{\mu}, \alpha_{s}\left(\mu^{2}\right)\right)=-\frac{1}{4} \widehat{\gamma}_{K}\left(\alpha_{s}\left(\mu^{2}\right)\right) \sum_{j \neq i} \ln \left(\frac{-2 p_{i} \cdot p_{j}}{\mu^{2}}\right) \mathbf{T}_{i} \cdot \mathbf{T}_{j}+\sum_{i=1}^{n} \gamma_{J_{i}}\left(\alpha_{s}\left(\mu^{2}\right)\right) .
$$

Beyond the dipole formula

(with Lance Dixon and Einan Gardi)

Beyond the minimal solution

- The cusp anomalous dimension may violate Casimir scaling starting at four loops. This would add to $\Gamma_{\text {dip }}^{\bar{S}}$ a contribution $\Gamma_{\text {H.C. }}^{\bar{S}}$ satisfying

$$
\sum_{j \neq i} \frac{\partial}{\partial \ln \left(\rho_{i j}\right)} \Gamma_{\text {H.C. }}^{\bar{S}}\left(\rho_{i j}, \alpha_{s}\right)=\frac{1}{4} \widetilde{\gamma}_{K}^{(i)}\left(\alpha_{s}\right), \quad \forall i
$$

- For $n \geq 4$ the constraints do not uniquely determine $\Gamma^{\bar{S}}$: one may write

$$
\Gamma^{\overline{\mathcal{S}}}\left(\rho_{i j}, \alpha_{s}\right)=\Gamma_{\text {dip }}^{\overline{\mathcal{S}}}\left(\rho_{i j}, \alpha_{s}\right)+\Delta^{\overline{\mathcal{S}}}\left(\rho_{i j}, \alpha_{s}\right),
$$

where $\Delta^{\overline{\mathcal{S}}}$ solves the homogeneous equation

$$
\sum_{j \neq i} \frac{\partial}{\partial \ln \left(\rho_{i j}\right)} \Delta^{\overline{\mathcal{S}}}\left(\rho_{i j}, \alpha_{s}\right)=0 \quad \Leftrightarrow \quad \Delta^{\overline{\mathcal{S}}}=\Delta^{\overline{\mathcal{S}}}\left(\rho_{i j k l}, \alpha_{s}\right) \text {. }
$$

- By eikonal exponentiation $\Delta^{\overline{\mathcal{S}}}$ must directly correlate four partons.
- A nontrivial function of $\rho_{i j k l}$ cannot appear in $\Gamma^{\bar{S}}$ at two loops.

$$
\widetilde{\mathbf{H}}_{[f]}=\sum_{j, k, l a, b, c} \sum_{i f_{a b c} \mathrm{~T}_{j}^{a} \mathrm{~T}_{k}^{b} \mathrm{~T}_{l}^{c} \ln \left(\rho_{i j k l}\right) \ln \left(\rho_{i k j}\right) \ln \left(\rho_{i j k}\right) .} .
$$

- The minimal solution holds for 'matter loop' diagrams at three loops (L. Dixon).

Collinear constraints

Factorization of fixed-angle amplitudes breaks down in collinear limits, as $p_{i} \cdot p_{j} \rightarrow 0$. New singularities are expected to be captured by a universal splitting function

$$
\mathcal{M}_{n}\left(p_{1}, p_{2}, p_{j} ; \mu, \epsilon\right) \xrightarrow{1 \| 2} \mathbf{S p}\left(p_{1}, p_{2} ; \mu, \epsilon\right) \mathcal{M}_{n-1}\left(P, p_{j} ; \mu, \epsilon\right) .
$$

Infrared poles of the splitting function are generated by a splitting anomalous dimension

$$
\mathbf{S p}\left(p_{1}, p_{2} ; \mu, \epsilon\right)=\mathbf{S p}_{\mathcal{H}}^{(0)}\left(p_{1}, p_{2} ; \mu, \epsilon\right) \exp \left[-\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d \lambda^{2}}{\lambda^{2}} \Gamma_{\mathbf{S p}}\left(p_{1}, p_{2} ; \lambda\right)\right],
$$

related to the soft anomalous dimension matrices of the two amplitudes,

$$
\Gamma_{\mathbf{S p}}\left(p_{1}, p_{2} ; \mu_{f}\right) \equiv \Gamma_{n}\left(p_{1}, p_{2}, p_{j} ; \mu_{f}\right)-\Gamma_{n-1}\left(P, p_{j} ; \mu_{f}\right)
$$

If the dipole formula receives corrections, so does the splitting amplitude

$$
\Gamma_{\mathbf{S p}}\left(p_{1}, p_{2} ; \lambda\right)=\Gamma_{\mathbf{S p}, \operatorname{dip}}\left(p_{1}, p_{2} ; \lambda\right)+\Delta_{n}\left(\rho_{i j k l} ; \lambda\right)-\Delta_{n-1}\left(\rho_{i j k l} ; \lambda\right) .
$$

Universality of Γ_{Sp} constrains the combination $\Delta_{n}-\Delta_{n-1}$: it must depend only on the kinematics and color of the collinear parton pair (T. Becher, M. Neubert).

Bose symmetry, transcendentality

Contributions to $\Delta_{n}\left(\rho_{i j k l}\right)$ arise from gluon subdiagrams of eikonal correlators. They must be Bose symmetric. With four hard partons,

$$
\Delta_{4}\left(\rho_{i j k l}\right)=\sum_{i} h_{a b c d}^{(i)} \mathbf{T}_{i}^{a} \mathbf{T}_{j}^{b} \mathbf{T}_{k}^{c} \mathbf{T}_{l}^{d} \Delta_{4, \mathrm{kin}}^{(i)}\left(\rho_{i j k l}\right),
$$

the symmetries of $\Delta_{4, \text { kin }}^{(i)}$ must match those of $h_{a b c d}^{(i)}$. For polynomials in $L_{i j k l} \equiv \log \rho_{i j k l}$ one easily matches symmetries of available color tensors
$\Delta_{4}\left(\rho_{i j k l}\right)=\mathbf{T}_{1}^{a} \mathbf{T}_{2}^{b} \mathbf{T}_{3}^{c} \mathbf{T}_{4}^{d}\left[f_{\text {ade }} f_{c b}{ }^{e} L_{1234}^{h_{1}}\left(L_{1423}^{h_{2}} L_{1342}^{h_{3}}-(-1)^{h_{1}+h_{2}+h_{3}} L_{1342}^{h_{2}} L_{1423}^{h_{3}}\right)+\right.$ cycl. $]$,

- Transcendentality constrains the powers of the logarithms. At L loops

$$
h_{\mathrm{tot}} \equiv h_{1}+h_{2}+h_{3} \leq \tau \leq 2 L-1
$$

- For $\mathcal{N}=4$ SYM, and for any massless gauge theory at three loops, the bound is expected to be saturated.
- Collinear consistency requires $h_{i} \geq 1$ in any monomial.

Three loops

- Δ_{n} can first appear at three loops.
- A general Δ_{n} is a 'sum over quadrupoles'.
- Relevant webs are the same in $\mathcal{N}=4$ SYM.
- The only available color tensors are $f_{\text {ade }} f_{c b}{ }^{e}$
- Polynomials in $L_{i j k l}$ are severely constrained.
- Using Jacobi identities for color and $L_{1234}+L_{1423}+L_{1342}=0$ for kinematics, only one structure polynomial in $L_{i j k l}$ survives.

Three-loop web contributing to $\Gamma^{\mathcal{S}}$.
$\left.\begin{array}{|c|c|c|l|l|}\hline h_{1} & h_{2} & h_{3} & h_{\text {tot }} & \text { comment } \\ \hline 1 & 1 & 1 & 3 & \text { vanishes identically by Jacobi identity } \\ 2 & 1 & 1 & 4 & \text { kinematic factor vanishes identically } \\ 1 & 1 & 2 & 4 & \text { allowed by symmetry, excluded by transcendentality } \\ 1 & 2 & 2 & 5 & \text { viable possibility } \\ 3 & 1 & 1 & 5 & \text { viable possibility } \\ 2 & 1 & 2 & 5 & \text { viable possibility } \\ 1 & 1 & 3 & 5 & \text { viable possibility } \\ \end{array}\right\}$ all coincide

Survivors

Just one maximal transcendentality, Bose symmetric, collinear safe polynomial in the logarithms survives all available constraints.

$$
\begin{aligned}
\Delta_{4}^{(122)}\left(\rho_{i j k l}\right)= & \mathbf{T}_{1}^{a} \mathbf{T}_{2}^{b} \mathbf{T}_{3}^{c} \mathbf{T}_{4}^{d}\left[f_{a d e} f_{c b}^{e} L_{1234}\left(L_{1423} L_{1342}\right)^{2}\right. \\
& \left.+f_{c a e} f_{d b}^{e} L_{1423}\left(L_{1234} L_{1342}\right)^{2}+f_{b a e} f_{c d}^{e} L_{1342}\left(L_{1423} L_{1234}\right)^{2}\right]
\end{aligned}
$$

Allowing for polylogarithms, structures mimicking the simple symmetries of $L_{i j k l}$ must be constructed. Two examples are

$$
\begin{aligned}
& \Delta_{4}^{\left(122, \mathrm{Li}_{2}\right)}\left(\rho_{i j k l}\right)=\mathbf{T}_{1}^{a} \mathbf{T}_{2}^{b} \mathbf{T}_{3}^{c} \mathbf{T}_{4}^{d} {\left[f_{a d e} f_{c b}^{e} L_{1234}\left(\mathrm{Li}_{2}\left(1-\rho_{1342}\right)-\mathrm{Li}_{2}\left(1-1 / \rho_{1342}\right)\right)\right.} \\
&\left.\times\left(\operatorname{Li}_{2}\left(1-\rho_{1423}\right)-\mathrm{Li}_{2}\left(1-1 / \rho_{1423}\right)\right)+\text { cycl. }\right] \\
& \Delta_{4}^{\left(311, \mathrm{Li}_{3}\right)}\left(\rho_{i j k l}\right)=\mathbf{T}_{1}^{a} \mathbf{T}_{2}^{b} \mathbf{T}_{3}^{c} \mathbf{T}_{4}^{d}\left[f_{a d e} f_{c b}^{e}\left(\operatorname{Li}_{3}\left(1-\rho_{1342}\right)-\mathrm{Li}_{3}\left(1-1 / \rho_{1342}\right)\right) L_{1423} L_{1342}+\text { cycl. }\right]
\end{aligned}
$$

Higher-order polylogarithms are ruled out by their trancendentality combined with collinear constraints (recall one must have $h_{i} \geq 1, \forall i$).

Perspective

- After $\mathcal{O}\left(10^{2}\right)$ years, soft and collinear singularities in massless gauge theories are still a fertile field of study. A definitive solution may be at hand.
\Rightarrow We are probing the all-order structure of the nonabelian exponent.
\Rightarrow All-order results constrain, test and help fixed order calculations.
\Rightarrow Understanding singularities has phenomenological applications through resummation.
- Factorization theorems \Rightarrow Evolution equations \Rightarrow Exponentiation.
- Dimensional continuation is the simplest and most elegant regulator.
\Rightarrow Transparent mapping UV $\leftrightarrow \mathrm{IR}$ for 'pure counterterm' functions.
- Remarkable simplifications in $\mathcal{N}=4$ SYM point to exact results.
- Factorization and velocity rescaling invariance severely constrain soft anomalous dimensions to all orders and for any number of legs.
- A simple sum-over-dipole formula may encode all infrared singularites for any massless gauge theory, a natural generalization of the planar limit.
- The study of possible corrections to the dipole formula is under way.
- Applications to resummations, subtraction methods and parton showers are possible.

Backup Slides

Jet evolution

The full form factor does not depend on the factorization vectors n_{i}^{μ}. Defining $x_{i} \equiv\left(\beta_{i} \cdot n_{i}\right)^{2} / n_{i}^{2}$,

$$
x_{i} \frac{\partial}{\partial x_{i}} \log \Gamma\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=0 .
$$

This dictates the evolution of the jet J, through a ' $K+G$ ' equation

$$
\begin{aligned}
x_{i} \frac{\partial}{\partial x_{i}} \log J_{i} & =-x_{i} \frac{\partial}{\partial x_{i}} \log H+x_{i} \frac{\partial}{\partial x_{i}} \log \mathcal{J}_{i} \\
& \equiv \frac{1}{2}\left[\mathcal{G}_{i}\left(x_{i}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)+\mathcal{K}\left(\alpha_{s}\left(\mu^{2}\right), \epsilon\right)\right]
\end{aligned}
$$

Imposing RG invariance of the form factor

$$
\gamma_{\overline{\mathcal{S}}}\left(\rho_{12}, \alpha_{s}\right)+\gamma_{H}\left(\rho_{12}, \alpha_{s}\right)+2 \gamma_{J}\left(\alpha_{s}\right)=0 .
$$

leads to the final evolution equation

$$
Q \frac{\partial}{\partial Q} \log \Gamma=\beta\left(\epsilon, \alpha_{s}\right) \frac{\partial}{\partial \alpha_{s}} \log H-\gamma_{\overline{\mathcal{S}}}-2 \gamma_{J}+\sum_{i=1}^{2}\left(\mathcal{G}_{i}+\mathcal{K}\right)
$$

Form factor evolution

We can now resum IR poles for form factors, such as the quark form factor

$$
\Gamma_{\mu}\left(p_{1}, p_{2} ; \mu^{2}, \epsilon\right) \equiv\langle 0| J_{\mu}(0)\left|p_{1}, p_{2}\right\rangle=\bar{v}\left(p_{2}\right) \gamma_{\mu} u\left(p_{1}\right)\left\ulcorner\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) .\right.
$$

- Form factors obey evolution equations of the form

$$
Q^{2} \frac{\partial}{\partial Q^{2}} \log \left[\Gamma\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)\right]=\frac{1}{2}\left[K\left(\epsilon, \alpha_{s}\left(\mu^{2}\right)\right)+G\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)\right],
$$

- Renormalization group invariance requires

$$
\mu \frac{d G}{d \mu}=-\mu \frac{d K}{d \mu}=\gamma_{K}\left(\alpha_{s}\left(\mu^{2}\right)\right) .
$$

$\gamma_{K}\left(\alpha_{s}\right)$ is the cusp anomalous dimension.

- Dimensional regularization provides a trivial initial condition for evolution if $\epsilon<0$ (for IR regularization).

$$
\bar{\alpha}\left(\mu^{2}=0, \epsilon<0\right)=0 \rightarrow \Gamma\left(0, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\Gamma(1, \bar{\alpha}(0, \epsilon), \epsilon)=1
$$

Results for form factors

- The counterterm function K is determined by γ_{K}.

$$
\mu \frac{d}{d \mu} K\left(\epsilon, \alpha_{s}\right)=-\gamma_{K}\left(\alpha_{s}\right) \quad \Longrightarrow K\left(\epsilon, \alpha_{s}\left(\mu^{2}\right)\right)=-\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d \lambda^{2}}{\lambda^{2}} \gamma_{K}\left(\bar{\alpha}\left(\lambda^{2}, \epsilon\right)\right)
$$

- The form factor can be written in terms of just G and γ_{K},

$$
\begin{aligned}
\Gamma\left(Q^{2}, \epsilon\right)=\exp & \left\{\frac { 1 } { 2 } \int _ { 0 } ^ { - Q ^ { 2 } } \frac { d \xi ^ { 2 } } { \xi ^ { 2 } } \left[G\left(-1, \bar{\alpha}\left(\xi^{2}, \epsilon\right), \epsilon\right)\right.\right. \\
- & \left.\left.\frac{1}{2} \gamma_{K}\left(\bar{\alpha}\left(\xi^{2}, \epsilon\right)\right) \log \left(\frac{-Q^{2}}{\xi^{2}}\right)\right]\right\} .
\end{aligned}
$$

\Rightarrow In general, poles up to $\alpha_{s}^{n} / \epsilon^{n+1}$ appear in the exponent.

- The ratio of the timelike to the spacelike form factor is
$\log \left[\frac{\Gamma\left(Q^{2}, \epsilon\right)}{\Gamma\left(-Q^{2}, \epsilon\right)}\right]=\mathrm{i} \frac{\pi}{2} K(\epsilon)+\frac{\mathrm{i}}{2} \int_{0}^{\pi}\left[G\left(\bar{\alpha}\left(\mathrm{e}^{\mathrm{i} \theta} Q^{2}\right), \epsilon\right)-\frac{\mathrm{i}}{2} \int_{0}^{\theta} d \phi \gamma_{K}\left(\bar{\alpha}\left(\mathrm{e}^{\mathrm{i} \phi} Q^{2}\right)\right)\right]$
\Rightarrow Infinities are confined to a phase given by γ_{K}.
\Rightarrow The modulus of the ratio is finite, and physically relevant.

Form factors in $\mathcal{N}=4$ SYM

- In $d=4-2 \epsilon$ conformal invariance is broken and $\beta\left(\alpha_{s}\right)=-2 \epsilon \alpha_{s}$.
- All integrations are trivial. The exponent has only double and single poles to all orders (Z. Bern, L. Dixon, A. Smirnov).

$$
\begin{aligned}
\log \left[\Gamma\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)\right] & =-\frac{1}{2} \sum_{n=1}^{\infty}\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}\right)^{n}\left(\frac{\mu^{2}}{-Q^{2}}\right)^{n \epsilon}\left[\frac{\gamma_{K}^{(n)}}{2 n^{2} \epsilon^{2}}+\frac{G^{(n)}(\epsilon)}{n \epsilon}\right] \\
& =-\frac{1}{2} \sum_{n=1}^{\infty}\left(\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\right)^{n} \mathrm{e}^{-\mathrm{i} \pi n \epsilon}\left[\frac{\gamma_{K}^{(n)}}{2 n^{2} \epsilon^{2}}+\frac{G^{(n)}(\epsilon)}{n \epsilon}\right]
\end{aligned}
$$

- In the planar limit this captures all singularities of fixed-angle amplitudes in $\mathcal{N}=4$ SYM. The structure remains valid at strong coupling, in the planar limit (F. Alday, J. Maldacena).
- The analytic continuation yields a finite result in four dimensions, arguably exact.

$$
\left|\frac{\Gamma\left(Q^{2}\right)}{\Gamma\left(-Q^{2}\right)}\right|^{2}=\exp \left[\frac{\pi^{2}}{4} \gamma_{K}\left(\alpha_{s}\left(Q^{2}\right)\right)\right]
$$

Characterizing $G\left(\alpha_{s}, \epsilon\right)$

The single-pole function $G\left(\alpha_{s}, \epsilon\right)$ is a sum of anomalous dimensions

$$
G\left(\alpha_{s}, \epsilon\right)=\beta\left(\epsilon, \alpha_{s}\right) \frac{\partial}{\partial \alpha_{s}} \log H-\gamma_{\overline{\mathcal{S}}}-2 \gamma_{J}+\sum_{i=1}^{2} \mathcal{G}_{i}
$$

In $d=4-2 \epsilon$ finite remainders can be neatly exponentiated
$C\left(\alpha_{s}\left(Q^{2}\right), \epsilon\right)=\exp \left[\int_{0}^{Q^{2}} \frac{d \xi^{2}}{\xi^{2}}\left\{\frac{d \log C\left(\bar{\alpha}\left(\xi^{2}, \epsilon\right), \epsilon\right)}{d \ln \xi^{2}}\right\}\right] \equiv \exp \left[\frac{1}{2} \int_{0}^{Q^{2}} \frac{d \xi^{2}}{\xi^{2}} G_{C}\left(\bar{\alpha}\left(\xi^{2}, \epsilon\right), \epsilon\right)\right]$
The soft function exponentiates like the full form factor

$$
\mathcal{S}\left(\alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\exp \left\{\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d \xi^{2}}{\xi^{2}}\left[G_{\text {eik }}\left(\bar{\alpha}\left(\xi^{2}, \epsilon\right)\right)-\frac{1}{2} \gamma_{K}\left(\bar{\alpha}\left(\xi^{2}, \epsilon\right)\right) \log \left(\frac{\mu^{2}}{\xi^{2}}\right)\right]\right\} .
$$

$G\left(\alpha_{s}, \epsilon\right)$ is then simply related to collinear splitting functions and to the eikonal approximation

$$
G\left(\alpha_{s}, \epsilon\right)=2 B_{\delta}\left(\alpha_{s}\right)+G_{\text {eik }}\left(\alpha_{s}\right)+G_{\bar{H}}\left(\alpha_{s}, \epsilon\right),
$$

$\Rightarrow G_{\bar{H}}$ does not generate poles; it vanishes in $\mathcal{N}=4$ SYM.
\Rightarrow Checked at strong coupling, in the planar limit (F. Alday).

