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Introduction



Practicalities

I Higher order calculations at colliders cross hinge upon cancellation of divergences
between virtual corrections and real emission contributions.

I Cancellation must be performed analytically before numerical integrations.
I Need local counterterms for matrix elements in all singular regions.
I State of the art: NLO multileg. NNLO available only for e+e− annihilation.

I Cancellations leave behind large logarithms: they must be resummed.

1
ε|{z}
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I For inclusive observables: analytic resummation to high logarithmic accuracy.
I For exclusive final states: parton shower event generators, (N)LL accuracy.

I Resummation probes the all-order structure of perturbation theory.

I Power-suppressed corrections to QCD cross sections can be studied
I Power corrections are often essential for phenomenology: event shapes, jets.



Theoretical concerns
I Understanding long-distance singularities to all orders provides a window into

non-perturbative effects.

I IR singularities have a universal structure for all massless gauge theories.
I Links to the strong coupling regime can be established for SUSY gauge theories.

I A very special theory has emerged as a theoretical laboratory: N = 4 Super Yang-Mills.

I It is conformal invariant: βN=4(αs) = 0.
I Exponentiation of IR/C poles in scattering amplitudes simplifies.
I AdS/CFT suggests a ‘simple’ description at strong coupling, in the planar limit.
I Exponentiation has been observed for MHV amplitudes up to five legs.
I Higher-point amplitudes are strongly constrained by (super)conformal symmetry.
I A string calculation at strong coupling matches perturbative results.
I Amplitudes admit a dual description in terms of polygonal Wilson loops.
I Integrability leads to possibly exact expressions for anomalous dimensions.

(Anastasiou, Bern, Dixon, Kosower, Smirnov; Alday, Maldacena; Brandhuber, Heslop, Spence, Travaglini;
Drummond, Ferro, Henn, Korchemsky, Sokatchev; Beisert, Eden, Staudacher; Del Duca, Duhr, Smirnov; ...)
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Tools: dimensional regularization
Nonabelian exponentiation of IR/C poles requires d-dimensional evolution equations. The
running coupling in d = 4− 2ε obeys
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The β function develops an IR free fixed point, so that α(0, ε) = 0 for ε < 0. The location of
the Landau pole acquires an imaginary part for ε < − b0αs/(4π) ,
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„
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.

I Integrations over the scale of the coupling can be analytically performed.

I All infrared and collinear poles arise by integration of αs(µ2, ε).



Tools: factorization
All factorizations separating dynamics at different energy scales lead to resummations.

I Collinear logarithms: Mellin moments of partonic DIS structure functions factorize

eF2

„
N,

Q2

m2
, αs

«
= eC„N,

Q2

µ2
F
, αs

« ef „N,
µ2

F

m2
, αs

«

deF2

dµF
= 0 →

d logef
d logµF

= γN (αs) .

Altarelli-Parisi evolution resums collinear logarithms into evolved parton distributions.

I Factorization is the difficult step. It requires a diagrammatic analysis
I all-order power counting (UV, IR, collinear ...);
I implementation of gauge invariance via Ward identities.

I Sudakov double logarithms are more difficult.
I A double factorization is required: hard vs. collinear vs. soft. Gauge invariance

plays a key role in the decoupling.
I After identification of relevant modes, effective field theory can be used (SCET).



Sudakov factorization

Leading regions for Sudakov factorization.

I Divergences arise in fixed-angle amplitudes from
leading regions in loop momentum space.

I Soft gluons factorize both form hard (easy) and
from collinear (intricate) virtual exchanges.

I Jet functions J represent color singlet evolution of
external hard partons.

I The soft function S is a matrix mixing the
available color representations.

I In the planar limit soft exchanges are confined to
wedges: S ∝ I.

I In the planar limit S can be reabsorbed defining
jets J as square roots of elementary form factors.

I Beyond the planar limit S is determined by an
anomalous dimension matrix ΓS.

I Phenomenological applications to jet and heavy
quark production at hadron colliders.



The dipole formula
(with Einan Gardi)



Factorization: pictorial

Operator factorization for fixed-angle scattering amplitudes, with subtractions.



Operator definitions

The functional form of this graphical factorization is
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We introduced factorization vectors nµ
i , with n2

i 6= 0, to define the jets,

J
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where Φn is the Wilson line operator along the direction nµ.
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The jet J has collinear divergences only along p.



Eikonal functions
The soft function S is a matrix, mixing the available color tensors. It is defined by a correlator
of Wilson lines.
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Soft-collinear regions are subtracted dividing by eikonal jets J .
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I S and J are pure counterterms in dimensional regularization.

⇒ Infrared poles are mapped to ultraviolet singularities.

I Functional dependence of jet and soft factors on the vectors nµ
i is restricted by the

classical invariance of Wilson lines under velocity rescalings, nµ
i → κin

µ
i .

I Rescaling invariance for light-like velocities, β2
i = 0 is broken by quantum corrections.

⇒ UV counterterms contain collinear poles, corresponding to soft-collinear singularities.

I Double poles are determined by the cusp anomalous dimension γK(αs).

⇒ γK(αs) governs the renormalization of Wilson lines with light-like cusps.



Soft matrices
The soft function S obeys a matrix RG evolution equation
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I ΓS is singular due to overlapping UV and collinear poles.

S is a pure counterterm. In dimensional regularization, using αs(µ2 = 0, ε) = 0, one finds
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Double poles cancel in the reduced soft function
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I The anomalous dimension ΓS(ρij, αs) for the evolution of S is finite.



Surprising simplicity

I ΓS can be computed from UV poles of S

I Non-abelian eikonal exponentiation selects the
relevant diagrams: webs

I ΓS appears highly complex at high orders.

I g-loop webs directly correlate color and kinematics
of up to g + 1 Wilson lines.

A web contributing to ΓS .

The two-loop calculation (M. Aybat, L. Dixon, G. Sterman) leads to a surprising result: for any
number of light-like eikonal lines
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I No new kinematic dependence; no new matrix structure.

I κ is the two-loop coefficient of γK(αs), rescaled by the appropriate quadratic Casimir,
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Factorization constraints
Recall the origin of kinematic dependence for eikonal functions

I The classical rescaling symmetry of Wilson line correlators under βi → κiβi is violated
only through the cusp anomaly.

⇒ For eikonal jets, no βi dependence is possible at all except through the cusp.

I In the reduced soft function S the cusp anomaly cancels.

⇒S must depend on βi only through rescaling-invarant combinations such as ρij, or, for
n ≥ 4 legs, the cross ratios ρijkl ≡ (βi · βj)(βk · βl)/(βi · βk)(βj · βl) .

Consider then the anomalous dimension for the reduced soft function
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This poses strong constraints on the soft matrix. Indeed

I Singular terms in ΓS must be diagonal and proportional to γK .

I Finite diagonal terms must conspire to construct ρij’s combining βi · βj with xi.

I Off-diagonal terms in ΓS must be finite, and must depend only on the cross-ratios ρijkl.



Factorization constraints
The constraints can be formalized simply by using the chain rule: ΓS can depend on the
factorization vectors ni only through eikonal jets, which are color diagonal.

Defining xi ≡ (βi · ni)2/n2
i one finds
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∂
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This leads to a linear equation for the dependence of ΓS on its proper arguments, ρij
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I The equation relates ΓS to γK to all orders in perturbation theory

⇒ and should remain true at strong coupling as well.

I It correlates color and kinematics for any number of hard partons.

I It admits a unique solution for amplitudes with up to three hard partons.

⇒ For n ≥ 4 hard partons, functions of ρijkl solve the homogeneous equation.



The dipole formula
The cusp anomalous dimension exhibits Casimir scaling up to three loops.

I γ
(i)
K (αs) = C(i) bγK(αs) , with C(i) the quadratic Casimir and bγK(αs) universal.

Denoting with eγ(i)
K possible terms violating Casimir scaling, we write
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By linearity, using the color generator notation, the scaling term yields
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An all-order solution is the dipole formula (E. Gardi, LM; T. Becher, M. Neubert)
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as easily checked using color conservation,
P

i Ti = 0.

Note: all known results for massless gauge theories are of this form.



The full amplitude
It is possible to construct a dipole formula for the full amplitude enforcing the cancellation of
the dependence on the factorization vectors ni through
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Soft and collinear singularities can then be collected in a matrix Z
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satisfying a matrix evolution equation
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The dipole structure of ΓS is inherited by Γ, which reads (T. Becher, M. Neubert)
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Beyond the dipole formula
(with Lance Dixon and Einan Gardi)



Beyond the minimal solution
I The cusp anomalous dimension may violate Casimir scaling starting at four loops. This

would add to ΓSdip a contribution ΓSH.C. satisfying
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I For n ≥ 4 the constraints do not uniquely determine ΓS : one may write

ΓS (ρij, αs) = ΓSdip (ρij, αs) + ∆S (ρij, αs) ,

where ∆S solves the homogeneous equationX
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I By eikonal exponentiation ∆S must directly correlate four partons.
I A nontrivial function of ρijkl cannot appear in ΓS at two loops.
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I The minimal solution holds for ‘matter loop’ diagrams at three loops (L. Dixon).



Collinear constraints
Factorization of fixed-angle amplitudes breaks down in collinear limits, as pi · pj → 0. New
singularities are expected to be captured by a universal splitting function

Mn (p1, p2, pj;µ, ε)
1‖2−→ Sp (p1, p2;µ, ε) Mn−1 (P, pj;µ, ε) .

Infrared poles of the splitting function are generated by a splitting anomalous dimension
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related to the soft anomalous dimension matrices of the two amplitudes,
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If the dipole formula receives corrections, so does the splitting amplitude
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´
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`
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´
.

Universality of ΓSp constrains the combination ∆n −∆n−1: it must depend only on the
kinematics and color of the collinear parton pair (T. Becher, M. Neubert).



Bose symmetry, transcendentality
Contributions to ∆n(ρijkl) arise from gluon subdiagrams of eikonal correlators. They must be
Bose symmetric. With four hard partons,

∆4(ρijkl) =
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the symmetries of ∆
(i)
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abcd . For polynomials in Lijkl ≡ log ρijkl one
easily matches symmetries of available color tensors
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I Transcendentality constrains the powers of the logarithms. At L loops

htot ≡ h1 + h2 + h3 ≤ τ ≤ 2L− 1

I ForN = 4 SYM, and for any massless gauge theory at three loops, the bound is
expected to be saturated.

I Collinear consistency requires hi ≥ 1 in any monomial.



Three loops

I ∆n can first appear at three loops.

I A general ∆n is a ‘sum over quadrupoles’.

I Relevant webs are the same inN = 4 SYM.

I The only available color tensors are fade f e
cb

I Polynomials in Lijkl are severely constrained.

I Using Jacobi identities for color and
L1234 + L1423 + L1342 = 0 for kinematics, only one
structure polynomial in Lijkl survives.
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b c

Three-loop web contributing to ΓS .



Survivors
Just one maximal transcendentality, Bose symmetric, collinear safe polynomial in the
logarithms survives all available constraints.

∆
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Allowing for polylogarithms, structures mimicking the simple symmetries of Lijkl must be
constructed. Two examples are
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Higher-order polylogarithms are ruled out by their trancendentality combined with collinear
constraints (recall one must have hi ≥ 1, ∀i ).



Perspective

I AfterO
`
102
´

years, soft and collinear singularities in massless gauge theories are still a
fertile field of study. A definitive solution may be at hand.

⇒We are probing the all-order structure of the nonabelian exponent.

⇒ All-order results constrain, test and help fixed order calculations.

⇒ Understanding singularities has phenomenological applications through resummation.

I Factorization theorems⇒ Evolution equations⇒ Exponentiation.

I Dimensional continuation is the simplest and most elegant regulator.

⇒ Transparent mapping UV↔ IR for ‘pure counterterm’ functions.

I Remarkable simplifications inN = 4 SYM point to exact results.

I Factorization and velocity rescaling invariance severely constrain soft anomalous
dimensions to all orders and for any number of legs.

I A simple sum-over-dipole formula may encode all infrared singularites for any massless
gauge theory, a natural generalization of the planar limit.

I The study of possible corrections to the dipole formula is under way.

I Applications to resummations, subtraction methods and parton showers are possible.



Backup Slides



Jet evolution
The full form factor does not depend on the factorization vectors nµ

i .
Defining xi ≡ (βi · ni)

2 /n2
i ,
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This dictates the evolution of the jet J, through a ‘K + G’ equation
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Imposing RG invariance of the form factor

γS (ρ12, αs) + γH (ρ12, αs) + 2γJ (αs) = 0 .

leads to the final evolution equation
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Form factor evolution
We can now resum IR poles for form factors, such as the quark form factor

Γµ(p1, p2;µ
2, ε) ≡ 〈0|Jµ(0)|p1, p2〉 = v(p2)γµu(p1) Γ
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«
.

I Form factors obey evolution equations of the form
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I Renormalization group invariance requires

µ
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= −µ
dK
dµ

= γK

“
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”
.

γK(αs) is the cusp anomalous dimension.

I Dimensional regularization provides a trivial initial condition for
evolution if ε < 0 (for IR regularization).
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Results for form factors
I The counterterm function K is determined by γK .

µ
d
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I The form factor can be written in terms of just G and γK ,
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⇒ In general, poles up to αn
s/ε

n+1 appear in the exponent.

I The ratio of the timelike to the spacelike form factor is
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⇒ Infinities are confined to a phase given by γK .
⇒ The modulus of the ratio is finite, and physically relevant.



Form factors in N = 4 SYM
I In d = 4− 2ε conformal invariance is broken and β(αs) = −2 ε αs.

I All integrations are trivial. The exponent has only double and single
poles to all orders (Z. Bern, L. Dixon, A. Smirnov).
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I In the planar limit this captures all singularities of fixed-angle
amplitudes in N = 4 SYM. The structure remains valid at strong
coupling, in the planar limit (F. Alday, J. Maldacena).

I The analytic continuation yields a finite result in four dimensions,
arguably exact. ˛̨̨̨

Γ(Q2)

Γ(−Q2)

˛̨̨̨2
= exp

»
π2

4
γK

“
αs(Q2)

”–
.



Characterizing G(αs, ε)

The single-pole function G(αs, ε) is a sum of anomalous dimensions

G(αs, ε) = β(ε, αs)
∂

∂αs
log H − γS̄ − 2γJ +

2X
i=1

Gi ,

In d = 4− 2ε finite remainders can be neatly exponentiated

C
“

αs(Q2), ε
”

= exp

24Z Q2

0

dξ2

ξ2

8<: d log C
“

α
“

ξ2, ε
”

, ε
”

d ln ξ2

9=;
35 ≡ exp

"
1

2

Z Q2

0

dξ2

ξ2
GC

“
α
“

ξ
2
, ε
”

, ε
” #

The soft function exponentiates like the full form factor

S
“

αs(µ
2), ε

”
= exp

(
1

2

Z µ2

0

dξ2

ξ2

"
Geik

“
α
“

ξ
2
, ε
” ”

−
1

2
γK

“
α
“

ξ
2
, ε
” ”

log

 
µ2

ξ2

!#)
.

G(αs, ε) is then simply related to collinear splitting functions and to the
eikonal approximation

G(αs, ε) = 2 Bδ (αs) + Geik (αs) + GH (αs, ε) ,

⇒ GH does not generate poles; it vanishes inN = 4 SYM.

⇒ Checked at strong coupling, in the planar limit (F. Alday).
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