

AUTOMATION OF THE FKS SUBTRACTION IN MADFKS

Rikkert Frederix

University of Zurich

in collaboration with

Stefano Frixione, Fabio Maltoni & Tim Stelzer

JHEP **0910** (2009) 003 [arXiv:0908.4272 [hep-ph]]

HO10, CERN, June 21 - July 9, 2010

NEXT-TO-LEADING ORDER

'Virtual' or 'one-loop' NLO corrections

WHY AUTOMATE?

NLO calculations can take a long time. It would be nice to spend this time doing phenomenology instead.

To reduce the number of bugs in the calculation

Having a code that does everything automatically will be without* bugs once the internal algorithms have been checked properly.

To have all processes within one framework

To learn how to use a new code for each process is not something all our (experimental) colleagues are willing to do.

AUTOMATION OF VIRTUAL CORRECTIONS

- ****** BlackHat
 - Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower & Maitre
- ** Rocket
 Ellis, Giele, Kunszt, Melnikov, Schulze e³ Zan∂erighi
- ** Samurai

 Mastrolia, Ossola, Reiter & Tramontano
- # Golem

 Binoth, Guffanti, Guillet, Heinrich, Karg, Kauer, Pilon, Reiter & Sanguinetti
- ** and many others...
 Lazopoulous, Kilian, Kleinschmiðt, Winter, Denner, Dittmaier, Pozzorini...

IR DIVERGENCE

$$\sigma^{\text{NLO}} = \int_{m+1} d^{(d)} \sigma^R + \int_m d^{(d)} \sigma^V + \int_m d^{(4)} \sigma^B$$

- Real emission -> IR divergent
- (UV-renormalized) virtual corrections-> IR divergent
 - **After integration, the sum of all contributions is finite (for infrared-safe observables)
 - To see this cancellation the integration is done in a non-integer number of dimensions:

 Not possible with a Monte-Carlo integration

SUBTRACTION TERMS

$$\sigma^{\text{NLO}} = \int_{m+1} d^{(d)} \sigma^R + \int_m d^{(d)} \sigma^V + \int_m d^{(4)} \sigma^B$$

SUBTRACTION TERMS

$$\sigma^{\text{NLO}} = \int_{m+1} d^{(d)} \sigma^R + \int_m d^{(d)} \sigma^V + \int_m d^{(4)} \sigma^B$$

$$\sigma^{\rm NLO} = \int_{m+1} \left[d^{(4)} \sigma^R - d^{(4)} \sigma^A \right] + \int_{m} \left[d^{(4)} \sigma^B + \int_{\text{loop}} d^{(d)} \sigma^V + \int_{1} d^{(d)} \sigma^A \right]_{\epsilon=0}$$

- Include subtraction terms to make real emission and virtual contributions separately finite
- ** All can be integrated numerically

AUTOMATION OF SUBTRACTION SCHEMES

- **Catani-Seymour dipole subtraction Catani & Seymour 1997; Phaf, Weinzierl 2001; Catani, Dittmaier, Seymour & Trocsanyi 2002
 - implementations by various groups

Gleisberg & Krauss; Seymour & Tevlin; RF, Gebrmann & Greiner; Hasegawa, Moch & Uwer; Czakon, Papadopoulos & Worek

- ** FKS subtraction Frixione, Kunzst & Signer 1996
 - implemented in MadFKS RF, Frixione, Maltoni & Stelzer and the POWHEG BOX Alioli, Nason, Oleari & Re

FKS SUBTRACTION

- **FKS subtraction: Frixione, Kunszt & Signer 1996. Standard subtraction method in MC@NLO and POWHEG, but can also be used for 'normal' NLO computations
- **Also known as "residue subtraction"
- ** Based on using plus-distributions to regulate the infrared divergences of the real emission matrix elements

FKS FOR BEGINNERS

** Easiest to understand by starting from real emission:

$$d\sigma^R = |M^{n+1}|^2 d\phi_{n+1}$$

- $\|M^{n+1}\|^2$ blows up like $\frac{1}{\xi_i^2} \frac{1}{1-y_{ij}}$ with $\frac{\xi_i = E_i/\sqrt{\hat{s}}}{y_{ij} = \cos\theta_{ij}}$
- ** Partition the phase space in such a way that each partition has at most one soft and one collinear singularity

$$d\sigma^{R} = \sum_{ij} S_{ij} |M^{n+1}|^{2} d\phi_{n+1} \qquad \sum_{ij} S_{ij} = 1$$

We Use plus distributions to regulate the singularities

$$d\tilde{\sigma}^{R} = \sum_{ij} \left(\frac{1}{\xi_{i}}\right)_{+} \left(\frac{1}{1 - y_{ij}}\right)_{+} \xi_{i} (1 - y_{ij}) S_{ij} |M^{n+1}|^{2} d\phi_{n+1}$$

FKS FOR BEGINNERS

$$d\tilde{\sigma}^{R} = \sum_{ij} \left(\frac{1}{\xi_{i}}\right)_{+} \left(\frac{1}{1 - y_{ij}}\right)_{+} \xi_{i} (1 - y_{ij}) S_{ij} |M^{n+1}|^{2} d\phi_{n+1}$$

Definition plus distribution

$$\int d\xi \left(\frac{1}{\xi}\right)_{+} f(\xi) = \int d\xi \frac{f(\xi) - f(0)}{\xi}$$

- One event has maximally three counter events:
 - \$ Soft: $\xi_i \to 0$

$$\xi_i \to 0$$

Collinear: $y_{ij} \to 1$

$$y_{ij} \to 1$$

Soft-collinear: $\xi_i \to 0$ $y_{ij} \to 1$

$$\xi_i \to 0$$

$$y_{ij} \rightarrow 1$$

FKS FOR BEGINNERS

$$d\tilde{\sigma}^{R} = \sum_{ij} \left(\frac{1}{\xi_{i}}\right)_{\xi_{cut}} \left(\frac{1}{1 - y_{ij}}\right)_{\delta_{O}} \xi_{i} (1 - y_{ij}) S_{ij} |M^{n+1}|^{2} d\phi_{n+1}$$

Definition plus distribution

$$\int d\xi \left(\frac{1}{\xi}\right)_{\xi_{cut}} f(\xi) = \int d\xi \frac{f(\xi) - f(0)\Theta(\xi_{cut} - \xi)}{\xi}$$

- One event has maximally three counter events:
 - \$ Soft: $\xi_i \to 0$

$$\xi_i \to 0$$

Collinear: $y_{ij} \to 1$

$$y_{ij} \to 1$$

\$ Soft-collinear: $\xi_i \to 0$ $y_{ij} \to 1$

$$\xi_i \to 0$$

$$y_{ij} \rightarrow 1$$

SUBTRACTION TERMS

$$\sigma^{\text{NLO}} = \int_{m+1} \left[d^{(4)} \sigma^R - d^{(4)} \sigma^A \right] + \int_{m} \left[d^{(4)} \sigma^B + \int_{\text{loop}} d^{(d)} \sigma^V + \int_{1} d^{(d)} \sigma^A \right]_{\epsilon=0}$$

- ** This defines the subtraction terms for the reals
- They need to be integrated over the one-parton phase space (analytically) and added to the virtual corrections
 - ** these are process-independent terms proportional to the (color-linked) Borns
- **All formulae can be found in the MadFKS paper, arXiv:0908.4247

FKS -- TECHNICALITIES

- No need to change anything for BSM physics. Massive particles have only soft singularity which is independent of the spin
- Each phase space partition can be run completely independently of all the others -> genuine parallelization, i.e. with different phase-space parameterizations
- Naive scaling of the number of subtraction terms is n² (as opposed to n³ of CS dipoles). Can be greatly reduced by using symmetry of the matrix elements
 - ** Adding additional gluons does not lead to more phase-space partitions
- In a given phase space partition, Born amplitudes need be computed only once for each real-emission event, and can be used for the Born and collinear, soft and soft-collinear counter events (and their remainders)

MADFKS

- **Automatic FKS subtraction for QCD within the MadGraph/MadEvent framework
- Given the (n+1) process, it generates the real, all
 the subtraction terms and the Born processes
- For a NLO computation, only the finite parts of the virtual corrections are needed from the user

MADFKS -- TECHNICALITIES

- * Completely general & all automatic
- * Same user-friendly interface as MadGraph
- ** MadFKS works also for any BSM physics model implemented in MadGraph, e.g. MSSM
- ** Color-linked Borns generated by MadDipole RF, Gehrmann & Greiner
- MC-ing over helicities possible; only more efficient for highmultiplicity final states
- Phase-space generation for the (n)-body is the same as in standard MG. It has been heavily adapted to generate (n+1)-body emission events at the same time
- Phase-space integration deals with the (n) and (n+1)-body processes at the same time, or separately

FULL NLO

- Of course, to get the total NLO results, the finite parts of the virtual corrections should be included as well
- Interface to link with the virtual corrections following the Binoth-Les Houches Accord
 - Standardized way to link MC codes to one-loop programs
- We are also working on an interface to CutTools In collaboration with Hirschi, Garzelli & Pittau

arXiv:1001.1307 [hep-ph]

- ** Facilitate the information exchange between the MC codes and the One-loop Programs (OLPs)
- # It should NOT constrain the OLP (nor the MC code) in any way

Not a standard on what kind of information*, but more on the way it should be passed.

OLP and MC might work in completely different ways

Amplitudes may be created on the fly, or read from a library of processes

> "Dedicated to the memory of, and in tribute to, Thomas Binoth, who led the effort to develop this proposal for Les Houches 2009" 18

THE ADVANTAGES

- Switching between codes becomes easy

 Model parameters etc. should be set automatically: checking codes becomes much simpler
- If you write your own OLP or MC code, you know how to link it to existing codes

 Modular problem/calculation allows for modular solutions
- **Our (experimental) colleagues can still use their favorite MC code (e.g. Sherpa or MG/ME), but then at NLO, using the most efficient OLP

BINOTH-LES HOUCHES ACCORD

% Initialization phase

MC code communicates basic information about the process to the OLP. OLP answers if it can provide the loop corrections.

Run-time phase

MC code queries the OLP for the value of the one-loop contributions for each phase-space point.

INITIALIZATION PHASE

MC code writes an order file OLP replies with a contract file

example order file

MDCCC XXXIII

MDCCC XXIII

MDCCC XXXIII

MDCCC XXIII

```
MatrixElementSquareType CHsummed
```

IRregularisation CDR

OperationMode LeadingColor

ModelFile ModelInLHFormat.slh

SubdivideSubprocess yes

AlphasPower 3

CorrectionType QCD


```
# example contract file
# authors of OLP, citation policy, etc
MatrixElementSquareType CHsummed
                                                 0K
IRregularisation
                                                 0K
                      CDR
OperationMode
                                                 0K
                        LeadingColor
                        ModelInLHFormat.slh
ModelFile
                                                0K
                                                 0K
SubdivideSubprocess
                        yes
AlphasPower
                                                 0K
                        QCD
CorrectionType
                                                 0K
#g g -> t tbar g
 21 21 -> 6 -6 21
                       | 2 13 35
#u ubar -> t tbar g
 2 -2 -> 6 -6 21
                         1 29
#u g -> t tbar u
 2 21 -> 6 -6 2
                        1 3 8 23 57
```

MC code

RUN-TIME PHASE

One-loop Program

OLP_EvalSubProcess(..)

OLP_Start(..)

- Should be called once (from MC code) at start up, to confirm the contract and initialize the process
- ****** Two arguments:
 - String with the location of the agreed contract file
 - **OLP returns with integer: '1' if all okay, '0' if some error occurred

OLP_EvalSubProcess(...

- Should be called (from MC code) for every phasespace point
- Five arguments:
 - Integer label of the process
 - ** Array of momenta and masses of the particles
 - ** Renormalization scale
 - ** Strong coupling at the renormalization scale
 - **OLP** returns array of the results

5 JETS AT LEP1 @ NLO

RF, Frixione, Melnikov, Stenzel, Zanderighi

- Scale dependence: +45% -30% at LO; ±20% at NLO
- Rocket and BlackHat agree pointwise
- ** Observable not ideal for fixed-order calculations; α_s fit is not competitive

ONGOING WORK ON MADFKS

- Working out a version of the FKS subtraction organized as a systematic expansion in $1/N_C$ that is easy to implement in MadFKS
- We may want to integrate topologically similar subprocesses simultaneously
- **Automatic MC@NLO in collaboration with Torrielli

AUTOMATION OF MC@NLC

$$d\sigma_{\text{\tiny MC@NLO}}^{(\mathbb{H})} = d\phi_{n+1} \left(\mathcal{M}^{(r)}(\phi_{n+1}) - \mathcal{M}^{(\text{\tiny MC})}(\phi_{n+1}) \right)$$

$$d\sigma_{\text{\tiny MC@NLO}}^{(\mathbb{S})} = \int_{+1} d\phi_{n+1} \left(\mathcal{M}^{(b+v+rem)}(\phi_n) - \mathcal{M}^{(c.t.)}(\phi_{n+1}) + \mathcal{M}^{(\text{\tiny MC})}(\phi_{n+1}) \right)$$

- In black: pure NLO, fully tested in MadFKS
- In red: already implemented (for Herwig 6), and is being tested
 - ** FKS is based on a collinear picture, so are the MC counter terms: branching structure is for free
 - ** Automatic determination of color partners
 - * Automatic computation of leading-color matrix elements
 - Works also when MC-ing over helicities

TO CONCLUDE

- ** For any QCD NLO computation (SM & BSM) MadFKS takes care of:
 - ** Generating the Born, real emission, subtraction terms, phase-space integration and overall management of symmetry factors, subprocess combination etc.
- External program(s) needed for the (finite part of the) loop contributions (so far working with BlackHat and Rocket)
 - ** BLH-interface: other codes/groups more than welcome!
- With the shower subtraction terms, interface to showers to generate automatically unweighted events with NLO precision is in testing phase