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LARGE X BEHAVIOR

For DY, DIS, Higgs, singular behavior when x— 1

o(1 —x) [lni(l—x)] In"(1 — z)

1l —=x

s singularity structure for plus distributions is organizable to all orders,
perhaps also for divergent logarithms?

After Mellin transform

In® (V)
N
We know a lot about logs and constants, very little about 1/N

Constants In"(N)




LN(N)/N TERMS

Kraemer, EL, Spira; Catani, De Florian, Grazzini; Kilgore, Harlander

Can be numerically important
Kraemer, EL, Spira Moch,Vogt
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We know that the leading series Ini(N) /N exponentiates

= by replacing in resummation formula
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SUCCESFUL LN(N)/N ORGANIZATION

Dokshitzer, Marchesini, Salam
Basso, Korchemsky

Yaa(N) = A(a) In N + B(ay) + (;(%)% N

Moch, Vermaseren, Vogt noted an remarkable relation
Co= A2 Cs=2454,

DMS reproduced this by changing DGLAP equation
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Can this be reproduced in threshold resummation?




EXTENDED THRESHOLD RESUMMATION

EL, Magnea, Stavenga
Ansatz: modified resummed expression
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(We constructed a similar expression for DIS). Structure:
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EXTENDED THRESHOLD RESUMMATION

Almost works, but not quite. Similar at 3 loop.

More general approach by Grunberg, Ravindran. Does not work fully either.

Other approach: use physical evolution kernels Moch, Soar, Vermaseren, Vogt

For deeper understanding we must go beyond
the eikonal approximation




HISTORY OF EIKONAL APPROXIMATION

“Eikon” originally from Greek ewevar [to resemble]

= leading to ewov [icon, image]

Predates quantum mechanics, and even Maxwell
= also known in optics as “ray optics”

Can describe formation of images/ eikons
Cannot describe diffraction, polarization etc

s these are wave phenomena




EIKONAL APPROXIMATION IN QFT

At amplitude level
= Reveals new symmetries, new structures in gauge theory
= Intuitive interpretation

ms Practical

o (Coherence, resummation, EFT, ....




BASICS, QED

Soft emission by charged particle

= Propagator: expand numerator & denominator in soft momentum, keep
lowest order

Vertex: expand in soft momentum, keep lowest order




Approx:

Eikonal
identity:

Sum over

all perm’s:

1

BASICS QED, CONT’'D
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Independent, uncorrelated emissions, Poisson process
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NON-ABELIAN EIKONAL APPROXIMATION

Same methods as for QED, but organization harder: SU(3)
generator at every vertex

m  no obvious decorrelation

Order the Ta according to A

/

A2
Key “object”: Wilson line  ®n(A2; A1) = P exp |ig A dAn - A%(An) T,

L[ __J

= Order by order in “g”, it generates QCD eikonal Feynman rules




EXPONENTIATON

One loop vertex correction, in eikonal approximation

Two loop vertex correction, in eikonal approximation

“@é “{ A0;</d”kz:2<p-z>'<p-k>>2

Exponential series




NON-ABELIAN EXPONENTIATION: WEBS

Gatheral; Frenkel, Taylor; Sterman

Take quark - antiquark line, connect with soft gluons in all possible
ways, use eikonal approximation

Exponentiation still occurs, without path ordering!

= A selection of diagrams in exponent, but with modified color weights:

“webs”
2

e
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s Webs are two-eikonal line irreducible

= Proof by induction; recursive definition of color weights

How can we extend this to include next-to-eikonal terms?




PATH INTEGRAL METHOD

EL, Stavenga, White

Represent propagator as particle path integral, between coord. and momentum states

_ 1/ dT<pf’U(T)’$i> S L where
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Add an (abelian) gauge field
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n-point Green’s function
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PATH INTEGRAL METHOD

Truncate external lines for S-matrix element i(p} +m?)(ps| —i((p — A)? — ie) " |x;) = e~ f(o0)

S(p17 T 7pn) — /DAgH(xla 0 0 o 73377,) e—ip15131 fl(OO) e e_ipnxnfn(OO) eiS[AS]

/ Dr ei fooo dt(%¢2+(pf+¢)'A(CEz'—I—pft—l—a?(t))—l—%8-A(:13i—|—pft—|—m))
xz(0)=0

Eikonal vertices act as sources for gauge bosons along path

~§ {4 4

. Connected
Disconnected

QED: exponentiation now textbook result:
all diagrams = exp (connected diagrams)




REPLICA TRICK

Can relate exponentiation of soft gauge fields to that of connected
diagrams in QFT. Proof: replica trick (from stat. mech.)

Consider a N copies of a scalar theory

Z[J]N — /D¢1 - D¢Neis[¢1]+--+i5[¢N]+J¢1—I—..Jqu

= [f Z is exponential, find out what contributes to log Z

7N =14 Nlog Z + O(N?)

= Amounts to diagrams that allow only one replica — connected!

><[ W,




REPLICA TRICK

Can relate exponentiation of soft gauge fields to that of connected
diagrams in QFT. Proof: replica trick (from stat. mech.)

Consider a N copies of a scalar theory

Z[J]N — /D¢1 - D¢Neis[¢1]+--+i5[¢N]+J¢1—I—..Jqu

= [f Z is exponential, find out what contributes to log Z

7N =14 Nlog Z + O(N?)

= Amounts to diagrams that allow only one replica — connected!

pad




APPLICATION TO QCD

Amplitude for two colored lines Wwég W@ MA%

S(pl,pz):H(p1,pz DA o f(00)etS1As]

Replicate, and introduce ordering operator

N

f(oc0) =Pexp [/da:A(x)] lj_:llpexp [/d:ﬁAz(m)] = RP exp Z/da:Az(a;)

1=1

Look for diagrams of replica order N. These will go into exponent

X2 X2
i, A j, B
i, A i, A J B
Xy Xy

(@) (b) ()

(a) is order N

(b) for equal replica number (i=j): CF2. For i#j also Cf2. Sum: NC% + N(N —1)C¢ = N°C}
(c) for equal replica number (i=j): CF>-Cr Ca /2.

CpCy
For i#j Cf2. Term linear in N: N >




APPLICATION TO QCD

Amplitude for two colored lines Wwég W@ MA%

S(p1,p2) = H(p1,p2 DA o f(00)e*514]
Replicate, and introduce ordering operator

N

f(oc0) =Pexp [/da:A(x)] lj_:llpexp [/d:ﬁAz(m)] = RP exp Z/da:Az(a;)

1=1

Look for diagrams of replica order N. These will go into_exponent

| | i : Web
i, A i, .
Modified color factor

(@)

(a) is order N

(b) for equal replica number (i=j): CF2. For i#j also Cf2. Sum: NCz+ N
(c) for equal replica number (i=j): CF>-Cr Ca /2.
For i#j Cg% Term linear in N:




WEBS TO ALL ORDERS

Can even give an all-order, non-recursive formula for modified color
factors

Consider general diagram G, with a number of connected pieces

Distribute replica numbers in all possible ways, and count for each such
partition P the multiplicity to linear order in N

@)= ()" up) -] Clo)

P

C(X) = C(X) — C(I)C(I)
= (C} — 5CaCr) — C}

C(IX) = C(IX) — C(I)C(X) =0




NEXT-TO-EIKONAL EXPONENTIATION

Wilson lines are classical solutions of path integral
Fluctuations around classical path lead to NE corrections
= This class of NE corrections exponentiates

s Keep track via scaling variable A p* = An*

B <o [ > Ao N |
f(m)—L(O):ODxe p[z/o dt<2x + (n+ ) - A(x; +nt + x)

)

Use |-D field theory propagators

(EOzE)) = Gt ) = %min(t, )




FEYNMAN RULES

£(00) = exp [_ / (gi]fd A+ 5 (;li’jd L R +ZQ]

Both 2-point correlators and tagdpoles contribute

NE Feynman rules

Pp"p -k +EpMp -
p-(k+Dp-kp-l




LOW-BURNETT-KROLL

One soft emission determined by elastic amplitude to eikonal and next-to-eikonal order

P P, P,
k
r' = + +
k
k
b P, P

T+ =

(2p1—k)“+(2p2+k)”]F+[pﬁ‘(k-p2—k-p1)+p§‘(k-p1—k‘-pz) or
—2p1 - k 2ps - k p1-k p2 -k Op1 - p2

Analyzed in context of jet-soft factorization by Del Duca

One emission from H still missing in our approach




LOW-BURNETT-KROLL

Path integral method provides elegant way to derive Low’s theorem

I Binecoolin) = /DASH(xl’ T Ag)e TP f (g, pri Ag) L eT PR fay, pry Ag)etS A

Gauge transformation must cancel between f’s and H

f(@ips; A) — f@ip; A+ OA) = e M) f(z py; A)

Opposite transformation in H, expand to first order in A and A

Low’s contribution is then:

dk & n’s 0 3,
S(pl,---,pn)—/DA /(27r)d zj:qj<nj.kky )H(pl,---,pn)Au(k)

p;, Opj,

First term is due to displacement of f(x,p,A)

Analagous result in non-abelian case, for n=2




UPSHOT

Exponentiation of soft emissions for matrix elements as
“connectedness”

For both eikonal and next-to-eikonal contributions from external lines

Re]]:;hca trick both for exponentiation, and for explicit expression for
we

s. New NE Webs.
1 emission from hard part also included

QCD: 2 lines ok. 3 lines also easy. 4+ (later)

Can we arrive at the same results using diagrams, and inductive
reasoning?

=  Combinatorics challenging




DIAGRAMMATIC APPROACH

EL, Magnea, Stavenga, White

ki, py ko, pio

Recall: Abelian case, multiple

emission, and sum over permutations O § § S §
p

Eikonal 1 N 1 _ 1
identity: p - (kl +k’2)p°]€2 p - (]431 —|—]~€2)p' kl D - klp'kg

i
For many H P
emissions p-k;

()

Non-abelian case requires
* web: two-eikonal irreducible graph
* “group” : projection of web on external line
* analogue of eikonal identity for permutations
that leaves ordering in group invariant (shuffle product)

Z 1 1 1 H 1 1

= 2p'kﬁ1 2p'<k7?1+k77'2)“‘p'(kﬁl—'_"'—'_k‘ﬁ'n) g 2p'kgl 2p'(k91+k92)
1

C2p- (kg -+ kg,




EXPONENTIATION BY INDUCTION

Can also use in reverse, as “merging”

=Y Y E(H, U5 H,) % E: ,@3«5

Collect identical diagrams  E(H:) E(Hy) = Y E(G) N, 1,

exp {ZCHE(H)} =1] (Z L[CHE(H)]TL> =) ccE(G)

H G

7 n

Prove that, for normal color factors on rhs, those on left side are those of webs

Proof uses
e induction
e combinatorics
* simplicity of color structure




NEXT-TO-EIKONAL CASE

Identify next-to-eikonal vertices

= show that they “decorrelate”, once summed over all perm’s. Use
induction again

o as eikonal webs, but now with a special vertex §

@

for fermions: they become spin-sensitive

% e%%\g/

o new correlations between eikonal webs — NE webs . ﬁ%\

(c)

checked precise correspondence with path integral method

still two-eikonal line irreducible

Proof of exponentiation as for eikonal case




DRELL-YAN CHECK

Check use of NE Feynman rules for Drell-Yan double real emission
= for amplitude, expand

A= A0 exp [A(l)E+A(1)NE+A(2)NE]

= to 2nd order, and integrate each term with exact 3-particle phase space.
Cross term leads to

3 € €2 €3

<aSCF)2 [—102410g3(1 —z) 512log’(1—2) 512log(l—2) 256

4
= Also need special vertex

ko )t kY ki kEpY — (p -k ko gt — (k1 - ko)DM DY
R“”(p;kl,kg):—(p 2)P"k1 + (p- k1)kyp” — (p- k1) (p - k2)g"” — (k1 - k2)ptp




DRELL-YAN CHECK

Combine with exact phase space

2 3
1024D;  10241og®(1 —
K@NE _ (O‘ZSF) [ 3 5 _ Og3< 2) 4 640 log?(1 — )

| 512D, — 512log”(1 — z) + 6401og(1 — z) | 512D, - 512log(1 — z)
2

€ €

256D — 256]
+ 3
€

D, — [logi(l — z)]
n

11—z

Agrees with equivalent exact result




MULTIPLE COLORED LINES

Gardi, EL, Stavenga, White

Z1y = /DAl...DANe"ZS[Ai]

< (Wi W)

Replica trick for multiple colored lines; find again order N terms

= even when “present”, these may be kinematically zero  Aybat, Dixon, Sterman




MULTIPLE COLORED LINES

example: “closed sets” of diagrams

XA 2R

(3b) (3c) (3d)

%C(ga) C(3b) — C(Sc)+0(3d) M(Sa) 2M (3b) — 2M(3c)+M(3d)

Closed form solution for modified color factor




CONCLUSIONS

Eikonal approximation important, yields simplification, symmetries, all-
order results

Next-to-eikonal contributions not negligible, but fairly little is known

Found that certain next-to-eikonal contributions form new webs, and
exponentiate

o using path integrals, or diagrammatics
Feynman rules for exponent of scattering amplitude
o classified “Low’s theorem” contributions
Outlook:
o more legs

o application to cross sections




