NEXT-TO-EIKONAL EXPONENTIATION

Eric Laenen

EL, L. Magnea, G. Stavenga, Phys. Lett.B 669 (2008) 173
EL, G. Stavenga, C. White, JHEP 0903: 054 (2009)
EL, L. Magnea, G. Stavenga, C. White, to appear
E. Gardi, EL, G. Stavenga, C. White, to appear

OUTLINE

- Introduction
- Extended threshold resummation
- Next-to-eikonal exponentation for matrix elements
 - Path-integral methods
 - Diagrams and induction
- Multiple colored lines
- Conclusions

LARGE X BEHAVIOR

■ For DY, DIS, Higgs, singular behavior when $x \rightarrow 1$

$$\delta(1-x) \qquad \left[\frac{\ln^i(1-x)}{1-x}\right] \qquad \ln^k(1-x)$$

- singularity structure for plus distributions is organizable to all orders, perhaps also for divergent logarithms?
- After Mellin transform

Constants
$$\ln^i(N) = \frac{\ln^k(N)}{N}$$

We know a lot about logs and constants, very little about 1/N

LN(N)/N TERMS

Kraemer, EL, Spira; Catani, De Florian, Grazzini; Kilgore, Harlander

Can be numerically important

Kraemer, EL, Spira

Moch, Vogt

- We know that the leading series lnⁱ(N)/N exponentiates
 - by replacing in resummation formula

$$\frac{1+z^2}{1-z} \longrightarrow \frac{2}{1-z} - 2$$

SUCCESFUL LN(N)/N ORGANIZATION

Dokshitzer, Marchesini, Salam Basso, Korchemsky

$$\gamma_{qq}(N) = A(\alpha_s) \ln N + B(\alpha_s) + C(\alpha_s) \frac{\ln N}{N} + \dots$$

Moch, Vermaseren, Vogt noted an remarkable relation

$$C_2 = A_1^2 \qquad C_3 = 2A_2A_1$$

DMS reproduced this by changing DGLAP equation

$$\mu^2 \frac{\partial}{\partial \mu^2} \psi(x, \mu^2) = \int_x^1 \frac{dz}{z} \psi\left(\frac{x}{z}, z\mu^2\right) \mathcal{P}\left(z, \alpha_s\left(\frac{\mu^2}{z}\right)\right)$$

$$\mathcal{P}(z, \alpha_s) = \frac{A(\alpha_s)}{(1-z)_+} + B_{\delta}(\alpha_s) \delta(1-z) + \mathcal{O}((1-z))$$

Can this be reproduced in threshold resummation?

EXTENDED THRESHOLD RESUMMATION

EL, Magnea, Stavenga

Ansatz: modified resummed expression

$$\ln \left[\sigma(N) \right] = \mathcal{F}_{DY} \left(\alpha_s(Q^2) \right) + \int_0^1 dz \, z^{N-1} \left\{ \frac{1}{1-z} D \left[\alpha_s \left(\frac{(1-z)^2 Q^2}{z} \right) \right] + 2 \int_{Q^2}^{(1-z)^2 Q^2/z} \frac{dq^2}{q^2} P_s \left[z, \alpha_s(q^2) \right] \right\}_+$$

where

$$P_s^{(n)}(z) = \frac{z}{1-z}A^{(n)} + C_{\gamma}^{(n)}\ln(1-z) + \overline{D}_{\gamma}^{(n)}$$

(We constructed a similar expression for DIS). Structure:

$$\sigma(N) = \sum_{n=0}^{\infty} (g^2)^n \left[\sum_{m=0}^{2n} a_{nm} \ln^m N + \sum_{m=0}^{2n-1} b_{nm} \frac{\ln^m N}{N} \right] + \mathcal{O}(N^{-2})$$

	C_F^2		($n_f C_F$		
$egin{array}{c} b_{23} \\ b_{22} \\ b_{21} \end{array}$	$ \begin{array}{c} 4 \\ \hline \frac{7}{2} \\ 8\zeta_2 \left(-\frac{43}{4}\right) \end{array} $	$ \begin{array}{ c c } \hline 4 \\ 8\zeta_2(-11) \end{array} $	$ \begin{array}{c c} 0 \\ \underline{11} \\ -\zeta_2 & \underline{239} \\ 36 \end{array} $	$ \begin{array}{c} 0 \\ \frac{11}{6} \\ -\zeta_2 + \frac{133}{18} \end{array} $	$ \begin{array}{c c} 0 \\ -\frac{1}{3} \\ -\frac{11}{9} \end{array} $	$ \begin{array}{c c} 0 \\ -\frac{1}{3} \\ -\frac{11}{9} \end{array} $
b_{20}	$-\frac{1}{2}\zeta_2 - \frac{3}{4}$	$4\zeta_2$	$\left -\frac{7}{4}\zeta_3 + \frac{275}{216} \right $	$\frac{7}{4}\zeta_3 + \frac{11}{3}\zeta_2 - \frac{101}{54}$	$-\frac{19}{27}$	$-\frac{2}{3}\zeta_2 + \frac{7}{27}$

EXTENDED THRESHOLD RESUMMATION

DIS

	C_F^2		$C_A C_F$		$n_f C_F$	
$\begin{array}{c c} d_{23} \\ d_{22} \\ d_{21} \\ d_{20} \end{array}$	$ \begin{array}{r} \frac{1}{4} \\ \frac{39}{16} \\ \frac{7}{4} \zeta_2 - \frac{49}{32} \\ \frac{15}{4} \zeta_3 - \frac{47}{16} \zeta_2 \\ - \frac{431}{64} \end{array} $	$ \begin{array}{c} \frac{1}{4} \\ -\frac{1}{4}\zeta_{2} - \frac{105}{32} \\ -\frac{3}{4}\zeta_{3} + \frac{53}{16}\zeta_{2} \\ -\frac{21}{64} \end{array} $	$ \begin{array}{c c} 0 \\ \frac{11}{48} \\ -\frac{5}{4}\zeta_2 + \frac{1333}{288} \\ -\frac{11}{4}\zeta_3 + \frac{13}{48}\zeta_2 \\ -\frac{17579}{1728} \end{array} $	$ \begin{array}{r} 0 \\ -\frac{11}{48} \\ -\frac{1}{4}\zeta_{2} + \frac{565}{288} \\ \frac{5}{4}\zeta_{3} + \frac{7}{16}\zeta_{2} \\ -\frac{953}{1728} \end{array} $	$ \begin{array}{r} 0 \\ -\frac{1}{24} \\ -\frac{107}{144} \\ \frac{1}{24} \zeta_2 - \frac{1699}{864} \end{array} $	$ \begin{array}{c c} 0 \\ -\frac{1}{24} \\ -\frac{47}{144} \\ -\frac{1}{8}\zeta_2 + \frac{73}{864} \end{array} $

Almost works, but not quite. Similar at 3 loop.

More general approach by Grunberg, Ravindran. Does not work fully either.

Other approach: use physical evolution kernels Moch, Soar, Vermaseren, Vogt

For deeper understanding we must go beyond the eikonal approximation

HISTORY OF EIKONAL APPROXIMATION

- "Eikon" originally from Greek ειμεναι [to resemble]
 - leading to εικον [icon, image]
- Predates quantum mechanics, and even Maxwell
 - also known in optics as "ray optics"
- Can describe formation of images / eikons
- Cannot describe diffraction, polarization etc
 - these are wave phenomena

EIKONAL APPROXIMATION IN QFT

- At amplitude level
 - Reveals new symmetries, new structures in gauge theory
 - Intuitive interpretation
 - Practical
 - Coherence, resummation, EFT,

BASICS, QED

- Soft emission by charged particle
 - Propagator: expand numerator & denominator in soft momentum, keep lowest order

Vertex: expand in soft momentum, keep lowest order

BASICS QED, CONT'D

Exact:
$$\frac{1}{(p+K_1)^2}(2p+K_2+K_1)^{\mu_1}\dots\frac{1}{(p+K_n)^2}(2p+K_n)^{\mu_n}, \quad K_i=\sum_{m=i}^n k_m.$$

Approx:
$$\frac{1}{2pK_1} 2p^{\mu_1} \dots \frac{1}{2pK_n} 2p^{\mu_n}$$

Eikonal identity:
$$\frac{1}{p \cdot (k_1 + k_2) \, p \cdot k_2} + \frac{1}{p \cdot (k_1 + k_2) \, p \cdot k_1} = \frac{1}{p \cdot k_1 \, p \cdot k_2}$$

Sum over all perm's:
$$\prod_i \frac{p^{\mu_i}}{p \cdot k_i}.$$

Independent, uncorrelated emissions, Poisson process

NON-ABELIAN EIKONAL APPROXIMATION

- Same methods as for QED, but organization harder: SU(3) generator at every vertex
 - no obvious decorrelation

Order the $T_{\text{a}}\;$ according to λ

Key "object": Wilson line
$$\Phi_n(\lambda_2, \lambda_1) = P \exp \left[ig \int_{\lambda_1}^{\lambda_2} d\lambda \, n \cdot A^a(\lambda n) \, T_a \right]$$

Order by order in "g", it generates QCD eikonal Feynman rules

EXPONENTIATON

One loop vertex correction, in eikonal approximation

$$\mathcal{A}_0 \int d^n k \frac{1}{k^2} \frac{p \cdot \bar{p}}{(p \cdot k)(\bar{p} \cdot k)}$$

Two loop vertex correction, in eikonal approximation

$$\mathcal{A}_0 \frac{1}{2} \left(\int d^n k \frac{1}{k^2} \frac{p \cdot \bar{p}}{(p \cdot k)(\bar{p} \cdot k)} \right)^2$$

Exponential series

NON-ABELIAN EXPONENTIATION: WEBS

Gatheral; Frenkel, Taylor; Sterman

- Take quark antiquark line, connect with soft gluons in all possible ways, use eikonal approximation
- Exponentiation still occurs, without path ordering!
 - A selection of diagrams in exponent, but with modified color weights: "webs"

$$+C_{F}$$

$$+\frac{1}{2}C_{F}^{2}$$

$$+\left(-\frac{C_{A}}{2}\right)C_{F}$$

$$+\left(-\frac{C_{A}}{2}\right)C_{F}$$

- Webs are two-eikonal line irreducible
- Proof by induction; recursive definition of color weights
- How can we extend this to include next-to-eikonal terms?

PATH INTEGRAL METHOD

EL, Stavenga, White

Represent propagator as particle path integral, between coord. and momentum states

$$\tilde{\Delta}_F(p_f^2) = \frac{1}{2} \int_0^\infty dT \frac{\langle p_f | U(T) | x_i \rangle}{\langle p_f | x_i \rangle} = -\frac{i}{p_f^2 + m^2 - i\varepsilon}$$

where

$$\langle p_f | U(T) | x_i \rangle = e^{-ip_f x_i - i\frac{1}{2}(p_f^2 + m^2)T} \int_{x(0)=0}^{p(T)=0} \mathcal{D}p \mathcal{D}x \, e^{i\int_0^T dt(p\dot{x} - \frac{1}{2}p^2)}$$

Add an (abelian) gauge field

$$\langle p_f | U(T) | x_i \rangle = \int_{x(0)=x_i}^{p(T)=p_f} \mathcal{D}p \mathcal{D}x \exp\left[-ip(T)x(T) + i \int_0^T dt (p\dot{x} - \frac{1}{2}(p^2 + m^2) + p \cdot A + \frac{i}{2}\partial \cdot A - \frac{1}{2}A^2)\right]$$

n-point Green's function

$$G(p_1, \dots, p_n) = \int \mathcal{D}A_s^{\mu} H(x_1, \dots, x_n)$$
$$\times \langle p_1 | ((p - A_s)^2 - i\varepsilon)^{-1} | x_1 \rangle \dots \langle p_n | (p - A_s)^2 - i\varepsilon)^{-1} | x_n \rangle$$

PATH INTEGRAL METHOD

Truncate external lines for S-matrix element $i(p_f^2+m^2)\langle p_f|-i((p-A)^2-i\varepsilon)^{-1}|x_i\rangle=e^{-ip_fx_i}f(\infty)$

$$S(p_1, \dots, p_n) = \int \mathcal{D}A_s^{\mu} H(x_1, \dots, x_n) e^{-ip_1 x_1} f_1(\infty) \dots e^{-ip_n x_n} f_n(\infty) e^{iS[A_s]}$$

$$f(\infty) = \int_{x(0)=0} \mathcal{D}x \, e^{i \int_0^\infty dt \left(\frac{1}{2}\dot{x}^2 + (p_f + \dot{x}) \cdot A(x_i + p_f t + x(t)) + \frac{i}{2}\partial \cdot A(x_i + p_f t + x)\right)}$$

Eikonal vertices act as sources for gauge bosons along path

Disconnected

Connected

QED: exponentiation now textbook result: all diagrams = exp (connected diagrams)

REPLICA TRICK

- Can relate exponentiation of soft gauge fields to that of connected diagrams in QFT. Proof: replica trick (from stat. mech.)
- Consider a N copies of a scalar theory

$$Z[J]^N = \int \mathcal{D}\phi_1 \dots \mathcal{D}\phi_N e^{iS[\phi_1] + \dots + iS[\phi_N] + J\phi_1 + \dots J\phi_N}$$

If Z is exponential, find out what contributes to log Z

$$Z^N = 1 + N \log Z + \mathcal{O}(N^2)$$

■ Amounts to diagrams that allow only one replica → connected!

REPLICA TRICK

- Can relate exponentiation of soft gauge fields to that of connected diagrams in QFT. Proof: replica trick (from stat. mech.)
- Consider a N copies of a scalar theory

$$Z[J]^N = \int \mathcal{D}\phi_1 \dots \mathcal{D}\phi_N e^{iS[\phi_1] + \dots + iS[\phi_N] + J\phi_1 + \dots J\phi_N}$$

If Z is exponential, find out what contributes to log Z

$$Z^N = 1 + N \log Z + \mathcal{O}(N^2)$$

■ Amounts to diagrams that allow only one replica → connected!

APPLICATION TO QCD

Amplitude for two colored lines

$$S(p_1, p_2) = H(p_1, p_2) \int \mathcal{D}A_s f(\infty) e^{iS[A_s]}$$

Replicate, and introduce ordering operator

$$f(\infty) = \mathcal{P} \exp\left[\int dx \cdot A(x)\right]$$

$$f(\infty) = \mathcal{P} \exp\left[\int dx \cdot A(x)\right] \qquad \prod_{i=1}^{N} \mathcal{P} \exp\left[\int dx \cdot A_i(x)\right] = \mathcal{R} \mathcal{P} \exp\left[\sum_{i=1}^{N} \int dx \cdot A_i(x)\right]$$

Look for diagrams of replica order N. These will go into exponent

- (a) is order N
- (b) for equal replica number (i=j): C_F^2 . For i \neq j also C_F^2 . Sum: $NC_F^2 + N(N-1)C_F^2 = N^2C_F^2$
- (c) for equal replica number (i=j): C_F^2 - C_F C_A /2. $N\left(C_F^2 - \frac{C_F C_A}{2}\right) + (-N)C_F^2 = N\left(-\frac{C_F C_A}{2}\right)$ For $i \neq j$ C_F^2 . Term linear in N:

APPLICATION TO QCD

$$S(p_1, p_2) = H(p_1, p_2) \int \mathcal{D}A_s f(\infty) e^{iS[A_s]}$$

$$f(\infty) = \mathcal{P} \exp\left[\int dx \cdot A(x)\right] \qquad \prod_{i=1}^{N} \mathcal{P} \exp\left[\int dx \cdot A_i(x)\right] = \mathcal{R} \mathcal{P} \exp\left[\sum_{i=1}^{N} \int dx \cdot A_i(x)\right]$$

Look for diagrams of replica order N. These will go into exponent

Web

Modified color factor

- (a) is order N
- (b) for equal replica number (i=j): C_F^2 . For i \neq j also C_F^2 . Sum: $NC_F^2 + N(N-1)C_F^2 = N^2C_F^2$
- (c) for equal replica number (i=j): C_F^2 - C_F C_A /2. For i \neq j C_F^2 . Term linear in N: $N\left(C_F^2 - \frac{C_F C_A}{2}\right) + (-N)C_F^2 = N\left(-\frac{C_F C_A}{2}\right)$

WEBS TO ALL ORDERS

- Can even give an all-order, non-recursive formula for modified color factors
 - Consider general diagram G, with a number of connected pieces
 - Distribute replica numbers in all possible ways, and count for each such partition P the multiplicity to linear order in N

$$\overline{C}(G) = \sum_{P} (-)^{n(P)-1} (n(P) - 1)! \prod_{g} C(g)$$

Examples

$$\overline{C}(X) = C(X) - C(I)C(I)$$

$$= (C_F^2 - \frac{1}{2}C_AC_F) - C_F^2$$

$$\overline{C}(IX) = C(IX) - C(I)C(X) = 0$$

NEXT-TO-EIKONAL EXPONENTIATION

- Wilson lines are classical solutions of path integral
- Fluctuations around classical path lead to NE corrections
 - This class of NE corrections exponentiates
 - Keep track via scaling variable λ $p^{\mu} = \lambda n^{\mu}$

$$f(\infty) = \int_{x(0)=0} \mathcal{D}x \exp\left[i \int_0^\infty dt \left(\frac{\lambda}{2}\dot{x}^2 + (n+\dot{x}) \cdot A(x_i + nt + x)\right) + \frac{i}{2\lambda}\partial \cdot A(x_i + p_f t + x)\right]$$

Use I-D field theory propagators

$$\langle x(t)x(t')\rangle = G(t,t') = \frac{i}{\lambda}\min(t,t')$$

$$\langle \dot{x}(t)\dot{x}(t')\rangle = \frac{i}{\lambda}\delta(t-t')$$

FEYNMAN RULES

$$f(\infty) = \exp\left[-\int \frac{d^d k}{(2\pi)^d} \frac{n^{\mu}}{n \cdot k} \tilde{A}_{\mu}(k) + \frac{1}{2\lambda} \int \frac{d^d k}{(2\pi)^d} \frac{k^{\mu}}{n \cdot k} \tilde{A}_{\mu}(k) + \sum \bullet - \bullet + \sum \bullet - \cdot \right]$$

Both 2-point correlators and tadpoles contribute

NE Feynman rules

LOW-BURNETT-KROLL

One soft emission determined by elastic amplitude to eikonal and next-to-eikonal order

$$\Gamma^{\mu} = \left[\frac{(2p_1 - k)^{\mu}}{-2p_1 \cdot k} + \frac{(2p_2 + k)^{\mu}}{2p_2 \cdot k} \right] \Gamma + \left[\frac{p_1^{\mu}(k \cdot p_2 - k \cdot p_1)}{p_1 \cdot k} + \frac{p_2^{\mu}(k \cdot p_1 - k \cdot p_2)}{p_2 \cdot k} \right] \frac{\partial \Gamma}{\partial p_1 \cdot p_2}$$

Analyzed in context of jet-soft factorization by Del Duca

One emission from H still missing in our approach

LOW-BURNETT-KROLL

Path integral method provides elegant way to derive Low's theorem

$$S(p_1, \dots, p_n) = \int \mathcal{D}A_s H(x_1, \dots, x_n; A_s) e^{-ip_1 x_1} f(x_1, p_1; A_s) \dots e^{-ip_n x_n} f(x_1, p_1; A_s) e^{iS[A_s]}$$

Gauge transformation must cancel between f's and H

$$f(x_i, p_f; A) \to f(x_i, p_f; A + \partial \Lambda) = e^{-iq\Lambda(x_i)} f(x_i, p_f; A)$$

Opposite transformation in H, expand to first order in A and Λ

Low's contribution is then:

$$S(p_1, \dots, p_n) = \int \mathcal{D}A \left[\int \frac{d^d k}{(2\pi)^d} \sum_{j=1}^n q_j \left(\frac{n_j^{\mu}}{n_j \cdot k} k_{\nu} \frac{\partial}{\partial p_{j_{\nu}}} - \frac{\partial}{\partial p_{j_{\mu}}} \right) H(p_1, \dots, p_n) A_{\mu}(k) \right] \times f(0, p_1; A) \dots f(0, p_n; A)$$

First term is due to displacement of f(x,p,A)

Analagous result in non-abelian case, for n=2

UPSHOT

- Exponentiation of soft emissions for matrix elements as "connectedness"
 - For both eikonal and next-to-eikonal contributions from external lines
 - Replica trick both for exponentiation, and for explicit expression for webs. New NE Webs.
 - 1 emission from hard part also included
 - QCD: 2 lines ok. 3 lines also easy. 4+ (later)
- Can we arrive at the same results using diagrams, and inductive reasoning?
 - Combinatorics challenging

DIAGRAMMATIC APPROACH

EL, Magnea, Stavenga, White

Recall: Abelian case, multiple emission, and sum over permutations

$$\begin{array}{ll} \text{Eikonal} & \frac{1}{p\cdot(k_1+k_2)\,p\cdot k_2} + \frac{1}{p\cdot(k_1+k_2)\,p\cdot k_1} = \frac{1}{p\cdot k_1\,p\cdot k_2} \\ \text{For many} & \prod_i \frac{p^{\mu_i}}{p\cdot k_i}. \end{array}$$

Non-abelian case requires

- web: two-eikonal irreducible graph
- "group": projection of web on external line
- analogue of eikonal identity for permutations that leaves ordering in group invariant (shuffle product)

$$\sum_{\tilde{\pi}} \frac{1}{2p \cdot k_{\tilde{\pi}_{1}}} \frac{1}{2p \cdot (k_{\tilde{\pi}_{1}} + k_{\tilde{\pi}_{2}})} \cdots \frac{1}{p \cdot (k_{\tilde{\pi}_{1}} + \dots + k_{\tilde{\pi}_{n}})} = \prod_{g} \frac{1}{2p \cdot k_{g_{1}}} \frac{1}{2p \cdot (k_{g_{1}} + k_{g_{2}})} \cdots \frac{1}{2p \cdot (k_{g_{1}} + \dots + k_{g_{m}})}$$

EXPONENTIATION BY INDUCTION

Can also use in reverse, as "merging"

$$E(H_1) E(H_2) = \sum_{\pi_A} \sum_{\pi_B} E(H_1 \cup_{\pi_A}^{\pi_B} H_2)$$

Collect identical diagrams

$$E(H_1) E(H_2) = \sum_{G} E(G) N_{G|H_1 H_2}$$

$$\exp\left\{\sum_{i} \bar{c}_{H} E(H)\right\} = \prod_{H} \left(\sum_{n} \frac{1}{n!} [\bar{c}_{H} E(H)]^{n}\right) = \sum_{G} c_{G} E(G)$$

Prove that, for normal color factors on rhs, those on left side are those of webs

Proof uses

- induction
- combinatorics
- simplicity of color structure

NEXT-TO-EIKONAL CASE

- Identify next-to-eikonal vertices
 - show that they "decorrelate", once summed over all perm's. Use induction again
 - as eikonal webs, but now with a special vertex
 - for fermions: they become spin-sensitive
 - o new correlations between eikonal webs → NE webs

- checked precise correspondence with path integral method
- still two-eikonal line irreducible
- Proof of exponentiation as for eikonal case

DRELL-YAN CHECK

- Check use of NE Feynman rules for Drell-Yan double real emission
 - for amplitude, expand

$$\mathcal{A} = \mathcal{A}^{(0)} \exp \left[\bar{\mathcal{A}}^{(1)E} + \bar{\mathcal{A}}^{(1)NE} + \bar{\mathcal{A}}^{(2)NE} \right]$$

• to 2nd order, and integrate each term with exact 3-particle phase space. Cross term leads to

$$\left(\frac{\alpha_S C_F}{4\pi}\right)^2 \left[\frac{-1024 \log^3(1-z)}{3} - \frac{512 \log^2(1-z)}{\epsilon} - \frac{512 \log(1-z)}{\epsilon^2} - \frac{256}{\epsilon^3} \right]$$

Also need special vertex

$$R^{\mu\nu}(p;k_1,k_2) = -\frac{(p\cdot k_2)p^{\mu}k_1^{\nu} + (p\cdot k_1)k_2^{\mu}p^{\nu} - (p\cdot k_1)(p\cdot k_2)g^{\mu\nu} - (k_1\cdot k_2)p^{\mu}p^{\nu}}{p\cdot (k_1+k_2)}$$

DRELL-YAN CHECK

Combine with exact phase space

$$K^{(2)NE} = \left(\frac{\alpha_S C_F}{4\pi}\right)^2 \left[\frac{1024\mathcal{D}_3}{3} - \frac{1024\log^3(1-z)}{3} + 640\log^2(1-z) + \frac{512\mathcal{D}_2 - 512\log^2(1-z) + 640\log(1-z)}{\epsilon} + \frac{512\mathcal{D}_1 - 512\log(1-z)}{\epsilon^2} + \frac{256\mathcal{D}_0 - 256}{\epsilon^3}\right]$$

$$\mathcal{D}_i = \left[\frac{\log^i (1-z)}{1-z} \right]_+$$

Agrees with equivalent exact result

MULTIPLE COLORED LINES

Gardi, EL, Stavenga, White

$$Z_{IJ}^{N} = \int \mathcal{D}\mathbf{A}^{1} \dots \mathcal{D}\mathbf{A}^{N} e^{i \sum S[A^{i}]}$$
$$\times \left[(\mathbf{W}_{1}^{(1)} \dots \mathbf{W}_{N}^{(1)}) \dots \right]$$

- Replica trick for multiple colored lines; find again order N terms
 - even when "present", these may be kinematically zero

 Aybat, Dixon, Sterman

MULTIPLE COLORED LINES

example: "closed sets" of diagrams

Closed form solution for modified color factor

$$\overline{C}(G) = \sum_{P} \frac{(-)^{n(P)-1}}{n(P)} \sum_{\pi} C(g_{\pi_1}) \dots C(g_{\pi_n(P)})$$

CONCLUSIONS

- Eikonal approximation important, yields simplification, symmetries, allorder results
- Next-to-eikonal contributions not negligible, but fairly little is known
- Found that certain next-to-eikonal contributions form new webs, and exponentiate
 - using path integrals, or diagrammatics
 - Feynman rules for exponent of scattering amplitude
 - classified "Low's theorem" contributions
- Outlook:
 - more legs
 - application to cross sections