NNLO with local subtractions

Zoltán Trócsányi

University of Debrecen and
Institute of Nuclear Research

in collaboration with U. Aglietti, P. Bolzoni, V. Del Duca, C. Duhr, S. Moch and G. Somogyi

Outline

- Motivation
- Recipe for a general subtraction scheme at NNLO
- Integrating the counterterms
- Results
- Conclusions

Motivation

Why NNLO?

- Precise predictions for 'standard candles':
 V (+ jet), top pair
- Missing piece for precise determination of pdf's
- NLO corrections are often large (e.g.>50%):
 H production
- Main source of uncertainty in experimental results is often due to theory: α_s measurement from shapes, jet rates
- NLO is effectively LO: energy distribution inside jets
- For reliable estimate of theory uncertainty

Why NNLO?

Less sophisticated answer:

Monday, July 5, 2010 5

Why NNLO?

Less sophisticated answer:

Many matrix elements are known, but yet vaguely used

Monday, July 5, 2010 5

Status

 NNLO corrections have been known to processes with fully inclusive final states for almost 30 years

Chetyrkin et al, Van Neerven et al, Harlander-Kilgore

- Dedicated approches for simple final state
 - 2jet electroproduction, H and V hadroproduction with SD
 Anastasiou, Melnikov and Petriello
 - H and V production with NLO + constrained-NNLO subtraction
 Catani and Grazzini
- Antennae subtraction for two- and three-jet production in e⁺e⁻ annihilation

Gehrmann et al, Weinzierl

(extension to include coloured initial state is in progress)

Daleo et al, Pires and Glover

$$\sigma^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}}$$

$$\equiv \int_{m+2} d\sigma_{m+2}^{\text{RR}} J_{m+2} + \int_{m+1} d\sigma_{m+1}^{\text{RV}} J_{m+1} + \int_{m} d\sigma_{m}^{\text{VV}} J_{m}$$

$$\sigma^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}}$$

$$\equiv \int_{m+2} d\sigma_{m+2}^{\text{RR}} J_{m+2} + \int_{m+1} d\sigma_{m+1}^{\text{RV}} J_{m+1} + \int_{m} d\sigma_{m}^{\text{VV}} J_{m}$$

 \blacktriangleright matrix elements are known for σ^{RR} and σ^{RV} for many processes

$$\sigma^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}}$$

$$\equiv \int_{m+2} d\sigma_{m+2}^{\text{RR}} J_{m+2} + \int_{m+1} d\sigma_{m+1}^{\text{RV}} J_{m+1} + \int_{m} d\sigma_{m}^{\text{VV}} J_{m}$$

- \blacktriangleright matrix elements are known for σ^{RR} and σ^{RV} for many processes
- σ^{VV} is known for many $0\rightarrow 4$ parton, V+3 parton processes higher multiplicities are not on the horizon

$$\sigma^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}}$$

$$\equiv \int_{m+2} d\sigma_{m+2}^{\text{RR}} J_{m+2} + \int_{m+1} d\sigma_{m+1}^{\text{RV}} J_{m+1} + \int_{m} d\sigma_{m}^{\text{VV}} J_{m}$$

- \blacktriangleright matrix elements are known for σ^{RR} and σ^{RV} for many processes
- σ^{VV} is known for many $0 \rightarrow 4$ parton, V+3 parton processes higher multiplicities are not on the horizon
- the three contributions are separately divergent in d = 4 dimensions:
 - in σ^{RR} kinematical singularities as one or two partons become unresolved yielding ϵ -poles at $O(\epsilon^{-4}, \ \epsilon^{-3}, \ \epsilon^{-2}, \ \epsilon^{-1})$ after integration over phase space, no explicit ϵ -poles
 - in σ^{RV} kinematical singularities as one parton becomes unresolved yielding ϵ -poles at $O(\epsilon^{-2}, \epsilon^{-1})$ after integration over phase space + explicit ϵ -poles at $O(\epsilon^{-2}, \epsilon^{-1})$
 - in σ^{VV} explicit ϵ -poles at $O(\epsilon^{-4}, \epsilon^{-3}, \epsilon^{-2}, \epsilon^{-1})$

$$\sigma^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}}$$

$$\equiv \int_{m+2} d\sigma_{m+2}^{\text{RR}} J_{m+2} + \int_{m+1} d\sigma_{m+1}^{\text{RV}} J_{m+1} + \int_{m} d\sigma_{m}^{\text{VV}} J_{m}$$

- \blacktriangleright matrix elements are known for σ^{RR} and σ^{RV} for many processes
- \bullet σ^{VV} is known for many $0\!\to\!4$ parton, V+3 parton processes higher multiplicities are not on the horizon
- the three contributions are separately divergent in d = 4 dimensions:
 - in σ^{RR} kinematical singularities as one or two partons become unresolved yielding ϵ -poles at $O(\epsilon^{-4}, \ \epsilon^{-3}, \ \epsilon^{-2}, \ \epsilon^{-1})$ after integration over phase space, no explicit ϵ -poles
 - in σ^{RV} kinematical singularities as one parton becomes unresolved yielding ϵ -poles at $O(\epsilon^{-2}, \epsilon^{-1})$ after integration over phase space + explicit ϵ -poles at $O(\epsilon^{-2}, \epsilon^{-1})$
 - in σ^{VV} explicit ϵ -poles at $O(\epsilon^{-4}, \epsilon^{-3}, \epsilon^{-2}, \epsilon^{-1})$

general solution is not yet available

Several options available - why a new one?

Several options available - why a new one?

Sector Decomposition (residuum subtraction)

- √ First method to yield physical cross sections
- √ Calculation is fully numerical
- Cancellation of poles also and depends on the jet function
- Can it handle final states with many coloured partons?

M. Czakon 2010: yes

Several options available - why a new one?

Sector Decomposition (residuum subtraction)

- √ First method to yield physical cross sections
- √ Calculation is fully numerical
- Cancellation of poles also and depends on the jet function
- Can it handle final states with many coloured partons?

M. Czakon 2010: yes

Antennae subtraction

- Successfully applied
 - to $e^+e^- \rightarrow 2$, 3 jets
- ✓ Integration of the
 - antennae over
 - unresolved phase
 - space is relatively
 - easy
- Counterterms are
- nonlocal
- Cannot cut on
 - factorized phase

space

Several options available - why a new one?

Sector Decomposition (residuum subtraction)

- √ First method to yield physical cross sections
- ✓ Calculation is fully numerical
- Cancellation of poles also and depends on the jet function
- Can it handle final states with many coloured partons?

M. Czakon 2010: yes

Antennae subtraction

- / Successfully applied to $e^+e^- \rightarrow 2$, 3 jets
- ✓ Integration of the antennae over unresolved phase space is relatively easy
- Counterterms are nonlocal
 - Cannot cut on factorized phase space

CS dipole subtraction

- ✓ Clear concept
- √ Explicit

 documentation for any process
- Cannot be extended to NNLO for arbitrary processes

to devise a subtraction scheme with

to devise a subtraction scheme with

√ fully local counterterms (efficiency and mathematical rigour)

to devise a subtraction scheme with

- √ fully local counterterms (efficiency and mathematical rigour)
- √ explicit expressions including colour (colour space natation is used)

to devise a subtraction scheme with

- √ fully local counterterms (efficiency and mathematical rigour)
- √ explicit expressions including colour (colour space natation is used)
- √ completely algorithmic construction (valid in any order of perturbation theory)

to devise a subtraction scheme with

- √ fully local counterterms (efficiency and mathematical rigour)
- √ explicit expressions including colour (colour space natation is used)
- √ completely algorithmic construction (valid in any order of perturbation theory)
- √ option to constrain subtraction near singular regions (important check)

Recipe for a general subtraction scheme at NNLO

G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043 G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 Z. Nagy, G. Somogyi, ZT hep-ph/0702273

of subtractions is governed by jet functions

$$\sigma^{\text{NNLO}} = \sigma^{\text{RR}}_{m+2} + \sigma^{\text{RV}}_{m+1} + \sigma^{\text{VV}}_{m} = \sigma^{\text{NNLO}}_{m+2} + \sigma^{\text{NNLO}}_{m+1} + \sigma^{\text{NNLO}}_{m}$$

$$\sigma^{\text{NNLO}}_{m+2} = \int_{m+2} \left\{ d\sigma^{\text{RR}}_{m+2} J_{m+2} - d\sigma^{\text{RR}, A_2}_{m+2} J_m - \left(d\sigma^{\text{RR}, A_1}_{m+2} J_{m+1} - d\sigma^{\text{RR}, A_{12}}_{m+2} J_m \right) \right\}$$

$$\sigma^{\text{NNLO}}_{m+1} = \int_{m+1} \left\{ \left(d\sigma^{\text{RV}}_{m+1} + \int_{1} d\sigma^{\text{RR}, A_1}_{m+2} \right) J_{m+1} - \left[d\sigma^{\text{RV}, A_1}_{m+1} + \left(\int_{1} d\sigma^{\text{RR}, A_1}_{m+2} \right)^{A_1} \right] J_m \right\}$$

$$\sigma^{\text{NNLO}}_{m} = \int_{m} \left\{ d\sigma^{\text{VV}}_{m} + \int_{2} \left(d\sigma^{\text{RR}, A_2}_{m+2} - d\sigma^{\text{RR}, A_{12}}_{m+2} \right) + \int_{1} \left[d\sigma^{\text{RV}, A_1}_{m+1} + \left(\int_{1} d\sigma^{\text{RR}, A_1}_{m+2} \right)^{A_1} \right] \right\} J_{m}$$

of subtractions is governed by jet functions

$$\sigma^{\text{NNLO}} = \sigma^{\text{RR}}_{m+2} + \sigma^{\text{RV}}_{m+1} + \sigma^{\text{VV}}_{m} = \sigma^{\text{NNLO}}_{m+2} + \sigma^{\text{NNLO}}_{m+1} + \sigma^{\text{NNLO}}_{m}$$

$$\sigma^{\text{NNLO}}_{m+2} = \int_{m+2} \left\{ d\sigma^{\text{RR}}_{m+2} J_{m+2} - d\sigma^{\text{RR}, A_2}_{m+2} J_{m} - \left(d\sigma^{\text{RR}, A_1}_{m+2} J_{m+1} - d\sigma^{\text{RR}, A_{12}}_{m+2} J_{m} \right) \right\}$$

$$\sigma^{\text{NNLO}}_{m+1} = \int_{m+1} \left\{ \left(d\sigma^{\text{RV}}_{m+1} + \int_{1} d\sigma^{\text{RR}, A_1}_{m+2} \right) J_{m+1} - \left[d\sigma^{\text{RV}, A_1}_{m+1} + \left(\int_{1} d\sigma^{\text{RR}, A_1}_{m+2} \right)^{A_1} \right] J_{m} \right\}$$

$$\sigma^{\text{NNLO}}_{m} = \int_{m} \left\{ d\sigma^{\text{VV}}_{m} + \int_{2} \left(d\sigma^{\text{RR}, A_2}_{m+2} - d\sigma^{\text{RR}, A_{12}}_{m+2} \right) + \int_{1} \left[d\sigma^{\text{RV}, A_1}_{m+1} + \left(\int_{1} d\sigma^{\text{RR}, A_1}_{m+2} \right)^{A_1} \right] \right\} J_{m}$$

of subtractions is governed by jet functions

$$\sigma^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR}, A_2} J_m - \left(d\sigma_{m+2}^{\text{RR}, A_1} J_{m+1} - d\sigma_{m+2}^{\text{RR}, A_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_{1} d\sigma_{m+2}^{\text{RR}, A_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV}, A_1} + \left(\int_{1} d\sigma_{m+2}^{\text{RR}, A_1} \right)^{A_1} \right] J_m \right\}$$

$$\sigma_{m}^{\text{NNLO}} = \int_{m} \left\{ d\sigma_{m}^{\text{VV}} + \int_{2} \left(d\sigma_{m+2}^{\text{RR}, A_2} - d\sigma_{m+2}^{\text{RR}, A_{12}} \right) + \int_{1} \left[d\sigma_{m+1}^{\text{RV}, A_1} + \left(\int_{1} d\sigma_{m+2}^{\text{RR}, A_1} \right)^{A_1} \right] \right\} J_{m}$$

of subtractions is governed by jet functions

$$\sigma^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR}, A_2} J_m - \left(d\sigma_{m+2}^{\text{RR}, A_1} J_{m+1} - d\sigma_{m+2}^{\text{RR}, A_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_{1} d\sigma_{m+2}^{\text{RR}, A_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV}, A_1} + \left(\int_{1} d\sigma_{m+2}^{\text{RR}, A_1} \right)^{A_1} \right] J_m \right\}$$

$$\sigma_{m}^{\text{NNLO}} = \int_{m} \left\{ d\sigma_{m}^{\text{VV}} + \int_{2} \left(d\sigma_{m+2}^{\text{RR}, A_2} - d\sigma_{m+2}^{\text{RR}, A_{12}} \right) + \int_{1} \left[d\sigma_{m+1}^{\text{RV}, A_1} + \left(\int_{1} d\sigma_{m+2}^{\text{RR}, A_1} \right)^{A_1} \right] \right\} J_{m}$$

of subtractions is governed by jet functions

$$\sigma^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR}, A_2} J_m - \left(d\sigma_{m+2}^{\text{RR}, A_1} J_{m+1} - d\sigma_{m+2}^{\text{RR}, A_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_{1} d\sigma_{m+2}^{\text{RR}, A_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV}, A_1} + \left(\int_{1} d\sigma_{m+2}^{\text{RR}, A_1} \right)^{A_1} \right] J_m \right\}$$

$$\sigma_{m}^{\text{NNLO}} = \int_{m} \left\{ d\sigma_{m}^{\text{VV}} + \int_{2} \left(d\sigma_{m+2}^{\text{RR}, A_2} - d\sigma_{m+2}^{\text{RR}, A_{12}} \right) + \int_{1} \left[d\sigma_{m+1}^{\text{RV}, A_1} + \left(\int_{1} d\sigma_{m+2}^{\text{RR}, A_1} \right)^{A_1} \right] \right\} J_m$$

- Universal IR structure of QCD (squared) matrix elements
 - ϵ -poles of one-loop amplitudes:

$$|\mathcal{M}_{m}^{(1)}(\{p\})\rangle = -\frac{1}{2}\mathbf{I}_{1}^{(0)}(\epsilon;\{p\})|\mathcal{M}_{m}^{(0)}(\{p\})\rangle + O(\epsilon^{0})$$

$$\boldsymbol{I}_{1}^{(0)}(\epsilon) = \frac{\alpha_{s}}{2\pi} \sum_{i} \left[\frac{1}{\epsilon} \gamma_{i} - \frac{1}{\epsilon^{2}} \sum_{k \neq i} \boldsymbol{T}_{i} \cdot \boldsymbol{T}_{k} \left(\frac{4\pi\mu^{2}}{s_{ik}} \right)^{\epsilon} \right]$$

Z. Kunszt, ZT 1994, S. Catani, M.H. Seymour 1996, S. Catani, S. Dittmaier, ZT 2000

- Universal IR structure of QCD (squared) matrix elements
 - ϵ -poles of one-loop amplitudes:

$$|\mathcal{M}_{m}^{(1)}(\{p\})\rangle = -\frac{1}{2}\mathbf{I}_{1}^{(0)}(\epsilon;\{p\})|\mathcal{M}_{m}^{(0)}(\{p\})\rangle + \mathcal{O}(\varepsilon^{0})$$

$$\boldsymbol{I}_{1}^{(0)}(\epsilon) = \frac{\alpha_{s}}{2\pi} \sum_{i} \left[\frac{1}{\epsilon} \gamma_{i} - \frac{1}{\epsilon^{2}} \sum_{k \neq i} \boldsymbol{T}_{i} \cdot \boldsymbol{T}_{k} \left(\frac{4\pi\mu^{2}}{s_{ik}} \right)^{\epsilon} \right]$$

Z. Kunszt, ZT 1994, S. Catani, M.H. Seymour 1996, S. Catani, S. Dittmaier, ZT 2000

- \in -poles of two-loop amplitudes:

$$|\mathcal{M}_{m}^{(2)}(\{p\})\rangle =$$

$$-\frac{1}{2}\left(\boldsymbol{I}_{1}^{(0)}(\epsilon;\{p\})|\mathcal{M}_{m}^{(1)}(\{p\})\rangle + \boldsymbol{I}_{1}^{(1)}(\epsilon;\{p\})|\mathcal{M}_{m}^{(0)}(\{p\})\rangle\right) + O(\varepsilon^{0})$$

S. Catani 1998, G. Sterman, M.E. Tejeda-Yeomans 2003, S. Moch, M. Mitov 2007

- Universal IR structure of QCD (squared) matrix elements
 - \in -poles of one- and two-loop amplitudes
 - soft and collinear factorization of QCD matrix elements

tree-level 3-parton splitting, double soft current:

J.M. Campbell, E.W.N. Glover 1997, S. Catani, M. Grazzini 1998 V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002 one-loop 2-parton splitting, soft gluon current:

> L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994 Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9 D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000

- Universal IR structure of QCD (squared) matrix elements
 - \in -poles of one- and two-loop amplitudes
 - soft and collinear factorization of QCD matrix elements

tree-level 3-parton splitting, double soft current:

J.M. Campbell, E.W.N. Glover 1997, S. Catani, M. Grazzini 1998 V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002 one-loop 2-parton splitting, soft gluon current:

> L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994 Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9 D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000

 Simple and general procedure for separating overlapping singularities (using a physical gauge)

- Universal IR structure of QCD (squared) matrix elements
 - \in -poles of one- and two-loop amplitudes
 - soft and collinear factorization of QCD matrix elements

tree-level 3-parton splitting, double soft current:

J.M. Campbell, E.W.N. Glover 1997, S. Catani, M. Grazzini 1998 V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002 one-loop 2-parton splitting, soft gluon current:

> L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994 Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9 D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000

 Simple and general procedure for separating overlapping singularities (using a physical gauge)

Z. Nagy, G. Somogyi, ZT, 2007

- Universal IR structure of QCD (squared) matrix elements
 - \bullet \in -poles of one- and two-loop amplitudes
 - soft and collinear factorization of QCD matrix elements

tree-level 3-parton splitting, double soft current:

J.M. Campbell, E.W.N. Glover 1997, S. Catani, M. Grazzini 1998 V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002 one-loop 2-parton splitting, soft gluon current:

> L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994 Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9 D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000

 Simple and general procedure for separating overlapping singularities (using a physical gauge)

Z. Nagy, G. Somogyi, ZT, 2007

Extension over whole phase space using momentum mappings

$$\{p\}_{n+s} \to \{\tilde{p}\}_n$$

Momentum mappings

$$\{p\}_{n+s} \to \{\tilde{p}\}_n$$

- implement exact momentum conservation
- recoil distributed democratically
 - ⇒ can be generalized to any number of s unresolved partons
- different mappings for
 - collinear limit $\mathbf{p_i}||\mathbf{p_r}:\{p\}_{n+1}\xrightarrow{\mathsf{C}_{ir}}\{\tilde{p}\}_n^{(ir)}$

- soft limit
$$p_s \to 0$$
: $\{p\}_{n+1} \xrightarrow{S_s} \{\tilde{p}\}_n^{(s)}$

Momentum mappings

$$\{p\}_{n+s} \to \{\tilde{p}\}_n$$

- implement exact momentum conservation
- recoil distributed democratically
- different mappings for collinear and soft limits
- lead to phase-space factorization

Momentum mappings

$$\{p\}_{n+s} \to \{\tilde{p}\}_n$$

- implement exact momentum conservation
- recoil distributed democratically
- different mappings for collinear and soft limits
- lead to phase-space factorization

Momentum mappings

define subtractions

$$\sigma^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{NV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR}, A_2} J_m - \left(d\sigma_{m+2}^{\text{RR}, A_1} J_{m+1} - d\sigma_{m+2}^{\text{RR}, A_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_{1} d\sigma_{m+2}^{\text{RR}, A_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV}, A_1} + \left(\int_{1} d\sigma_{m+2}^{\text{RR}, A_1} \right)^{A_1} \right] J_m \right\}$$

$$\sigma_{m}^{\text{NNLO}} = \int_{m} \left\{ d\sigma_{m}^{\text{VV}} + \int_{2} \left(d\sigma_{m+2}^{\text{RR}, A_2} - d\sigma_{m+2}^{\text{RR}, A_{12}} \right) + \int_{1} \left[d\sigma_{m+1}^{\text{RV}, A_1} + \left(\int_{1} d\sigma_{m+2}^{\text{RR}, A_1} \right)^{A_1} \right] \right\} J_{m}$$

Integrating the counterterms

G. Somogyi, ZT arXiv:0807.0509

U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi, ZT arXiv:0807.0514

P. Bolzoni, S. Moch, G. Somogyi, ZT arXiv:0905.4390

two types of singly-unresolved

$$\sigma^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR}, A_2} J_m - \left(d\sigma_{m+2}^{\text{RR}, A_1} J_{m+1} - d\sigma_{m+2}^{\text{RR}, A_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_{1} d\sigma_{m+2}^{\text{RR}, A_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV}, A_1} + \left(\int_{1} d\sigma_{m+2}^{\text{RR}, A_1} \right)^{A_1} \right] J_m \right\}$$

$$\sigma_{m}^{\text{NNLO}} = \int_{m} \left\{ d\sigma_{m}^{\text{VV}} + \int_{2} \left(d\sigma_{m+2}^{\text{RR}, A_2} - d\sigma_{m+2}^{\text{RR}, A_{12}} \right) + \int_{1} \left[d\sigma_{m+1}^{\text{RV}, A_1} + \left(\int_{1} d\sigma_{m+2}^{\text{RR}, A_1} \right)^{A_1} \right] \right\} J_{m}$$

Collinear integrals

convolution of the integral of AP-splitting function over ordinary phase space

$$\int_0^{\alpha_0} d\alpha (1-\alpha)^{2d_0-1} \frac{s_{\tilde{ir}Q}}{2\pi} \int \left(\frac{d\phi_2(p_i, p_r; p_{(ir)})}{s_{ir}^{1+\kappa\epsilon}} P_{f_i f_r}^{(\kappa)}(z_i, z_r; \epsilon), \qquad \kappa = 0, 1$$

$$d\phi_2(p_i, p_r; p_{(ir)}) = \frac{s_{ir}^{-\epsilon}}{8\pi} \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} ds_{ir} dv \, \delta(s_{ir} - Q^2 \alpha (\alpha + (1-\alpha)x))$$

$$\times [v (1-v)]^{-\epsilon} \Theta(1-v)\Theta(v)$$

Collinear integrals

convolution of the integral of AP-splitting function over ordinary phase space

$$\int_0^{\alpha_0} d\alpha (1-\alpha)^{2d_0-1} \frac{s_{\tilde{ir}Q}}{2\pi} \int d\phi_2(p_i, p_r; p_{(ir)}) \frac{1}{s_{ir}^{1+\kappa\epsilon}} P_{f_i f_r}^{(\kappa)}(z_i, z_r; \epsilon), \qquad \kappa = 0, 1$$

$$\frac{z_r^{k+\delta\epsilon}}{s_{ir}^{1+\kappa\epsilon}} g_I^{(\pm)}(z_r), \qquad z_r = \frac{\alpha Q^2 + (1-\alpha)v s_{\tilde{i}rQ}}{2\alpha Q^2 + (1-\alpha)s_{\tilde{i}rQ}}$$

δ	Function	$g_I^{(\pm)}(z)$
0	g_A	1
= 1	$g_B^{(\pm)}$	$(1-z)^{\pm\epsilon}$
0	$g_C^{(\pm)}$	$(1-z)^{\pm \epsilon} {}_{2}F_{1}(\pm \epsilon, \pm \epsilon, 1 \pm \epsilon, z)$
±1	$g_D^{(\pm)}$	$_2F_1(\pm\epsilon,\pm\epsilon,1\pm\epsilon,1-z)$

Soft integrals

convolution of the integral of the eikonal factors over ordinary phase space

$$\mathcal{J} \propto -\int_0^{y_0} dy (1-y)^{d_0'-1} \frac{Q^2}{2\pi} \int \left(d\phi_2(p_r, K; Q) \left(\frac{s_{ik}}{s_{ir} s_{kr}}\right)^{1+\kappa \epsilon}\right)$$

$$d\phi_2(p_r, K; Q) = \frac{(Q^2)^{-\epsilon}}{16\pi^2} \frac{(4\pi)^{\epsilon}}{\Gamma(1 - \epsilon)} \frac{\Gamma^2(1 - \epsilon)}{\Gamma(1 - 2\epsilon)} d\varepsilon_r \, \varepsilon_r^{1 - 2\epsilon} \delta(y - \varepsilon_r)$$
$$\times d(\cos \theta) \, d(\cos \varphi) (\sin \theta)^{-2\epsilon} (\sin \varphi)^{-1 - 2\epsilon}$$

Basic forms of integrals

Integration of the counterterms over the unresolved phase space is difficult

collinear-type:
$$\mathcal{I} \propto x \int_0^{\alpha_0} \mathrm{d}\alpha \, \alpha^{-1-(1+\kappa)\epsilon} \, (1-\alpha)^{2d_0-1} \left[\alpha + (1-\alpha)x\right]^{-1-(1+\kappa)\epsilon}$$

$$\times \int_0^1 dv [v (1-v)]^{-\epsilon} \left(\frac{\alpha + (1-\alpha)xv}{2\alpha + (1-\alpha)x} \right)^{k+\delta\epsilon} g \left(\frac{\alpha + (1-\alpha)xv}{2\alpha + (1-\alpha)x} \right)$$

soft-type:

$$\mathcal{J} \propto -\int_0^{y_0} dy \, (1-y)^{d_0'-1} \frac{Q^2}{2\pi} \int d\phi_2(p_r, K; Q) \left(\frac{s_{ik}}{s_{ir} s_{kr}}\right)^{1+\kappa\epsilon}$$

$$\mathcal{K} \propto \int_0^{y_0} dy \, (1-y)^{d_0'-1} \frac{Q^2}{2\pi} \int d\phi_2(p_r, K; Q) 2 \left(\frac{1}{s_{ir}} \frac{z_i}{z_r}\right)^{1+\kappa\epsilon}$$

two types of iterated singly-unresolved

$$\sigma^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR}, A_2} J_m - \left(d\sigma_{m+2}^{\text{RR}, A_1} J_{m+1} - d\sigma_{m+2}^{\text{RR}, A_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_{1} d\sigma_{m+2}^{\text{RR}, A_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV}, A_1} + \left(\int_{1} d\sigma_{m+2}^{\text{RR}, A_1} \right)^{A_1} \right] J_m \right\}$$

$$\sigma_{m}^{\text{NNLO}} = \int_{m} \left\{ d\sigma_{m}^{\text{VV}} + \int_{2} \left(d\sigma_{m+2}^{\text{RR}, A_2} - d\sigma_{m+2}^{\text{RR}, A_{12}} \right) + \int_{1} \left[d\sigma_{m+1}^{\text{RV}, A_1} + \left(\int_{1} d\sigma_{m+2}^{\text{RR}, A_1} \right)^{A_1} \right] \right\} J_{m}$$

One of 25 subtraction terms: collinear-double collinear subtraction

$$C_{kt}C_{ir;kt}^{(0)} = (8\pi\alpha_{s}\mu^{2\epsilon})^{2} \frac{1}{s_{kt}} \frac{1}{\widehat{s}_{ir}} \langle \mathcal{M}_{m}^{(0)}(\{\tilde{p}\})|P_{f_{k}f_{t}}^{(0)}(z_{t,k};\epsilon)P_{f_{i}f_{r}}^{(0)}(\widehat{z}_{r,i};\epsilon)|\mathcal{M}_{m}^{(0)}(\{\tilde{p}\})\rangle \times (1-\alpha_{kt})^{2d_{0}-2m(1-\epsilon)} (1-\widehat{\alpha}_{kt})^{2d_{0}-2m(1-\epsilon)}\Theta(\alpha_{0}-\alpha_{kt})\Theta(\alpha_{0}-\widehat{\alpha}_{ir})$$

obtained by an iterated mapping

$$\{p\}_{m+2} \xrightarrow{\mathsf{C}_{kt}} \{\hat{p}\}_{m+1} \xrightarrow{\mathsf{C}_{\hat{i}\hat{r}}} \{\tilde{p}\}: d\phi_{m+2}(\{p\};Q) = d\phi_m(\{\tilde{p}\};Q)[d\hat{p}_{1,m}][dp_{1,m+1}]$$

Then we define the function $C_{kt}C_{ir;kt}^{(0)}(\widetilde{x}_{kt},\widetilde{x}_{ir},\epsilon,\alpha_0,d_0)$ by

$$\int [\mathrm{d}\widehat{p}_{1,m}][\mathrm{d}p_{1,m+1}]\mathcal{C}_{kt}\mathcal{C}_{ir;kt}^{(0)} \equiv \left[\frac{\alpha_{\mathrm{s}}}{2\pi}S_{\epsilon}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\right]^{2} \mathbf{C}_{kt}\mathbf{C}_{ir;kt}^{(0)} \boldsymbol{T}_{kt}^{2}\boldsymbol{T}_{ir}^{2}|\mathcal{M}_{m}^{(0)}(\{\widetilde{p}\})|^{2}$$

Use explicit parametrization of $[\mathrm{d}\widehat{p}_{1,m}]$ and $[\mathrm{d}p_{1,m+1}]$ to write

$$\begin{split} & \mathbf{C}_{kt} \mathbf{C}_{ir;kt}^{(0)}(\widetilde{x}_{kt},\widetilde{x}_{ir},\epsilon,\alpha_0,d_0) \text{ as a linear combination of basic integrals} \\ & \mathcal{I}_{\mathcal{C}}^{(4)}(x_k,x_i;\epsilon,\alpha_0,d_0,k,l) = x_k x_i \\ & \times \int_0^{-0} \mathrm{d}\beta \, (1-\beta)^{2d_0-2+2} \, \, \beta^{-1-} \, \left[\beta + (1-\beta)x_i\right]^{-1-} \\ & \times \int_0^{-0} \mathrm{d}\alpha \, (1-\alpha)^{2d_0-1}\alpha^{-1-} \, \left[\alpha + (1-\alpha)(1-\beta)x_k\right]^{-1-} \\ & \times \int_0^1 \mathrm{d}u \, u^- \, (1-u)^- \, \left(\frac{\beta + (1-\beta)x_i u}{2\beta + (1-\beta)x_i}\right)^l \\ & \times \int_0^1 \mathrm{d}v \, v^- \, (1-v)^- \, \left(\frac{\alpha + (1-\alpha)(1-\beta)x_k v}{2\alpha + (1-\alpha)(1-\beta)x_k}\right)^k \,, \qquad k,l = -1,0,1,2 \end{split}$$

Use explicit parametrization of $[\mathrm{d}\widehat{p}_{1,m}]$ and $[\mathrm{d}p_{1,m+1}]$ to write

$$\begin{split} & \mathbf{C}_{kt} \mathbf{C}_{ir;kt}^{(0)}(\widetilde{x}_{kt},\widetilde{x}_{ir},\epsilon,\alpha_0,d_0) \text{ as a linear combination of basic integrals} \\ & \mathcal{I}_{\mathcal{C}}^{(4)}(x_k,x_i;\epsilon,\alpha_0,d_0,k,l) = x_k x_i \\ & \times \int_0^{-\sigma} \mathrm{d}\beta \, (1-\beta)^{2d_0-2+2} \, \mathbf{Sir} \big(\mathbf{\beta}, \mathbf{X}_i \big)^{-1-\epsilon} \\ & \times \int_0^{-\sigma} \mathrm{d}\alpha \, (1-\alpha)^{2d_0-1} \alpha^{-1-} \, \left[\alpha + (1-\alpha)(1-\beta)x_k \right]^{-1-\epsilon} \\ & \times \int_0^1 \mathrm{d}u \, u^- \, (1-u)^- \, \left(\frac{\beta + (1-\beta)x_i u}{2\beta + (1-\beta)x_i} \right)^l \\ & \times \int_0^1 \mathrm{d}v \, v^- \, (1-v)^- \, \left(\frac{\alpha + (1-\alpha)(1-\beta)x_k v}{2\alpha + (1-\alpha)(1-\beta)x_k} \right)^k \,, \qquad k,l = -1,0,1,2 \end{split}$$

Use explicit parametrization of $[\mathrm{d}\widehat{p}_{1,m}]$ and $[\mathrm{d}p_{1,m+1}]$ to write

$$\mathbf{C}_{kt}\mathbf{C}_{ir;kt}^{(0)}(\widetilde{x}_{kt},\widetilde{x}_{ir},\epsilon,\alpha_0,d_0)$$
 as a linear combination of basic integrals $\mathcal{I}_{\mathcal{C}}^{(4)}(x_k,x_i;\epsilon,\alpha_0,d_0,k,l)=x_kx_i$ $\times\int_0^{-0}\mathrm{d}\beta\,(1-\beta)^{2d_0-2+2}\,\mathbf{Sir}(oldsymbol{eta},oldsymbol{\chi_i})^{-1-\epsilon}\,$ $\times\int_0^{-0}\mathrm{d}\alpha\,(1-\alpha)^{2d_0-1}\,\mathbf{Skt}(oldsymbol{\alpha},oldsymbol{\beta},oldsymbol{\chi_k})^{-1-\epsilon}$

$$\times \int_0^1 du \, u^- (1-u)^- \left(\frac{\beta + (1-\beta)x_i u}{2\beta + (1-\beta)x_i} \right)^l$$

$$\times \int_0^1 dv \, v^- \, (1-v)^- \, \left(\frac{\alpha + (1-\alpha)(1-\beta)x_k v}{2\alpha + (1-\alpha)(1-\beta)x_k} \right)^k \,, \qquad k, l = -1, 0, 1, 2$$

Use explicit parametrization of $[\mathrm{d}\widehat{p}_{1,m}]$ and $[\mathrm{d}p_{1,m+1}]$ to write

$$\begin{split} & \mathbf{C}_{kt} \mathbf{C}_{ir;kt}^{(0)}(\widetilde{x}_{kt},\widetilde{x}_{ir},\epsilon,\alpha_0,d_0) \text{ as a linear combination of basic integrals} \\ & \mathcal{I}_{\mathcal{C}}^{(4)}(x_k,x_i;\epsilon,\alpha_0,d_0,k,l) = x_k x_i \\ & \times \int_0^{-\sigma} \mathrm{d}\beta \, (1-\beta)^{2d_0-2+2} \, | \, \mathbf{Sir} \big(\boldsymbol{\beta}, \boldsymbol{\chi}_i \big)^{-1-\epsilon} \\ & \times \int_0^{-\sigma} \mathrm{d}\alpha \, (1-\alpha)^{2d_0-1} \, | \, \mathbf{Skt} \, \big(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\chi}_k \big)^{-1-\epsilon} \\ & \times \int_0^1 \mathrm{d}u \, u^- \, (1-u)^- \, \left(\, \mathbf{Z}_{r;i} \big(\boldsymbol{\beta}, \boldsymbol{\chi}_i, \boldsymbol{u} \big) \right)^l \\ & \times \int_0^1 \mathrm{d}v \, v^- \, (1-v)^- \, \left(\frac{\alpha + (1-\alpha)(1-\beta)x_k v}{2\alpha + (1-\alpha)(1-\beta)x_k v} \right)^k, \qquad k,l = -1,0,1,2 \end{split}$$

Use explicit parametrization of $[\mathrm{d}\widehat{p}_{1,m}]$ and $[\mathrm{d}p_{1,m+1}]$ to write

$$\begin{split} & \mathbf{C}_{kt} \mathbf{C}_{ir;kt}^{(0)}(\widetilde{x}_{kt},\widetilde{x}_{ir},\epsilon,\alpha_0,d_0) \text{ as a linear combination of basic integrals} \\ & \mathcal{I}_{\mathcal{C}}^{(4)}(x_k,x_i;\epsilon,\alpha_0,d_0,k,l) = x_k x_i \\ & \times \int_0^{-\sigma} \mathrm{d}\beta \, (1-\beta)^{2d_0-2+2} \, | \, \mathbf{Sir} \big(\boldsymbol{\beta} \, , \! \boldsymbol{\chi}_i \big)^{-1-\epsilon} \\ & \times \int_0^{-\sigma} \mathrm{d}\alpha \, (1-\alpha)^{2d_0-1} \, | \, \mathbf{Skt} \, \big(\boldsymbol{\alpha} \, , \boldsymbol{\beta} \, , \! \boldsymbol{\chi}_k \big)^{-1-\epsilon} \\ & \times \int_0^1 \mathrm{d}u \, u^- \, (1-u)^- \, \big(\, \boldsymbol{Z}_{r;i} \big(\boldsymbol{\beta} \, , \! \boldsymbol{\chi}_i, \! \boldsymbol{u} \big) \big)^l \\ & \times \int_0^1 \mathrm{d}v \, v^- \, (1-v)^- \, \big(\, \boldsymbol{Z}_{k;t} \, \big(\boldsymbol{\alpha} \, , \! \boldsymbol{\beta} \, , \! \boldsymbol{\chi}_i, \! \boldsymbol{v} \big) \, \big)^k \, , \qquad k,l = -1,0,1,2 \end{split}$$

Three methods

to compute the integrals:

- ▶ IBP's to reduce to master integrals + solution of MI's by differential equations
- MB representations to extract poles structure + summation of nested series

> SD

Three methods

Method	Analytical	Numerical
IBP	✓ Singly-unresolved integrals	✓ Evaluating analytical expressions
TDL	 Bottleneck is the proliferation of denominators 	- No numbers without full analytical results
MB	✓ Iterated singly unresolved integrals	✓ Direct numerical evalution of MB integrals possible
	 Bottleneck is the evaluation of sums 	√ Fast and accurate
	√ Easy to automate	√ Straightforward
SD	- Only in principle, except for leading pole	

Matter of principle:

Matter of principle:

Cancellation of poles requires the coefficients of poles in integrated counterterms in analytical form

Matter of principle:

- Cancellation of poles requires the coefficients of poles in integrated counterterms in analytical form
- Analytical forms are fast and accurate compared to numerical ones

Matter of principle:

- Cancellation of poles requires the coefficients of poles in integrated counterterms in analytical form
- Analytical forms are fast and accurate compared to numerical ones

However:

Matter of principle:

- Cancellation of poles requires the coefficients of poles in integrated counterterms in analytical form
- Analytical forms are fast and accurate compared to numerical ones

However:

Analytical results show that the integrated counterterms are smooth functions of the kinematic variables

Matter of principle:

- Cancellation of poles requires the coefficients of poles in integrated counterterms in analytical form
- Analytical forms are fast and accurate compared to numerical ones

However:

Analytical results show that the integrated counterterms are smooth functions of the kinematic variables

Hence:

Matter of principle:

- Cancellation of poles requires the coefficients of poles in integrated counterterms in analytical form
- Analytical forms are fast and accurate compared to numerical ones

However:

Analytical results show that the integrated counterterms are smooth functions of the kinematic variables

Hence:

Finite terms of integrated counterterms can be given in form of interpolating tables or approximating functions. Thus numerical form – computed once with required precision – is sufficient.

Results

singly-unresolved

$$\int_{1} d\sigma_{m+2}^{\mathrm{RR,A_1}} = d\sigma_{m+1}^{\mathrm{R}} \otimes \boldsymbol{I}_{1}^{(0)}(\{p\}_{m+1}; \epsilon)$$

$$\boldsymbol{I}_{1}^{(0)}(\{p\}_{m+1};\epsilon) = \frac{\alpha_{s}}{2\pi} S_{\epsilon} \left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon} \sum_{i} \left[C_{1,i}^{(0)}(y_{iQ};\epsilon) \boldsymbol{T}_{i}^{2} + \sum_{k \neq i} S_{1}^{(0)ik}(Y_{ik,Q};\epsilon) \boldsymbol{T}_{i} \cdot \boldsymbol{T}_{k} \right]$$

$$y_{iQ} \equiv x_i = \frac{2p_i \cdot Q}{Q^2} \qquad \left(Y_{ik,Q} = \frac{y_{ik}}{y_{iQ}y_{kQ}}\right)$$

Ensures common collinear limit for S_1^{il} and S_1^{rl} if $p_i||p_r$ (essential for iteration & colour coherence: $T_i \cdot T_l + T_r \cdot T_l = T_{(ir)} \cdot T_l$)

singly-unresolved

$$\int_{1} d\sigma_{m+2}^{RR,A_{1}} = d\sigma_{m+1}^{R} \otimes \mathbf{I}_{1}^{(0)}(\{p\}_{m+1};\epsilon)$$

$$\boldsymbol{I}_{1}^{(0)}(\{p\}_{m+1};\epsilon) = \frac{\alpha_{s}}{2\pi} S_{\epsilon} \left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon} \sum_{i} \left[C_{1,i}^{(0)}(y_{iQ};\epsilon) \boldsymbol{T}_{i}^{2} + \sum_{k \neq i} S_{1}^{(0)ik}(Y_{ik,Q};\epsilon) \boldsymbol{T}_{i} \cdot \boldsymbol{T}_{k} \right]$$

singly-unresolved

$$\int_{1} d\sigma_{m+2}^{RR,A_{1}} = d\sigma_{m+1}^{R} \otimes \mathbf{I}_{1}^{(0)}(\{p\}_{m+1};\epsilon)$$

$$\boldsymbol{I}_{1}^{(0)}(\{p\}_{m+1};\epsilon) = \frac{\alpha_{s}}{2\pi} S_{\epsilon} \left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon} \sum_{i} \left[C_{1,i}^{(0)}(y_{iQ};\epsilon) \boldsymbol{T}_{i}^{2} + \sum_{k \neq i} S_{1}^{(0)ik}(Y_{ik,Q};\epsilon) \boldsymbol{T}_{i} \cdot \boldsymbol{T}_{k}\right]$$

singly-unresolved

$$\int_{1} d\sigma_{m+2}^{\mathrm{RR,A_1}} = d\sigma_{m+1}^{\mathrm{R}} \otimes \boldsymbol{I}_{1}^{(0)}(\{p\}_{m+1}; \epsilon)$$

$$\boldsymbol{I}_{1}^{(0)}(\{p\}_{m+1};\epsilon) = \frac{\alpha_{s}}{2\pi} S_{\epsilon} \left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon} \sum_{i} \left[C_{1,i}^{(0)}(y_{iQ};\epsilon) \boldsymbol{T}_{i}^{2} + \sum_{k \neq i} S_{1}^{(0)ik}(Y_{ik,Q};\epsilon) \boldsymbol{T}_{i} \cdot \boldsymbol{T}_{k} \right]$$

$$\int_{1} d\sigma_{m+1}^{\text{RV,A}_{1}} = d\sigma_{m}^{\text{V}} \otimes \boldsymbol{I}_{1}^{(0)}(\{p\}_{m}; \epsilon) + d\sigma_{m}^{\text{B}} \otimes \boldsymbol{I}_{1}^{(1)}(\{p\}_{m}; \epsilon)$$

$$\boldsymbol{I}_{1}^{(1)}(\{p\}_{m};\epsilon) \propto \sum_{i} \left[C_{1,i}^{(1)}(y_{iQ};\epsilon) \boldsymbol{T}_{i}^{2} + \sum_{k \neq i} S_{1}^{(1)ik}(Y_{ik,Q};\epsilon) \boldsymbol{T}_{i} \cdot \boldsymbol{T}_{k} \right]$$

$$+ \sum_{k \neq i} \sum_{l \neq i,k} S_1^{(1)ikl}(Y_{ik,Q}, Y_{il,Q}, Y_{kl,Q}; \epsilon) \sum_{a,b,c} f_{abc} T_i^a T_k^b T_l^c$$

Regularized RR and RV contributions

can now be computed by numerical

Monte Carlo integrations

$$\sigma^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR}, A_2} J_m - \left(d\sigma_{m+2}^{\text{RR}, A_1} J_{m+1} - d\sigma_{m+2}^{\text{RR}, A_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_{1} d\sigma_{m+2}^{\text{RR}, A_{1}} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV}, A_{1}} + \left(\int_{1} d\sigma_{m+2}^{\text{RR}, A_{1}} \right)^{A_{1}} \right] J_{m} \right\}$$

$$\sigma_{m}^{\text{NNLO}} = \int_{m} \left\{ d\sigma_{m}^{\text{VV}} + \int_{2} \left(d\sigma_{m+2}^{\text{RR}, A_{2}} - d\sigma_{m+2}^{\text{RR}, A_{12}} \right) + \int_{1} \left[d\sigma_{m+1}^{\text{RV}, A_{1}} + \left(\int_{1} d\sigma_{m+2}^{\text{RR}, A_{1}} \right)^{A_{1}} \right] \right\} \boldsymbol{J}_{m}$$

Example: 3-jet event shapes

- ✓ Constructed $d\sigma_5$ and $d\sigma_4$ for e+e- \rightarrow 3 jets (regularized RR and RV)
- ✓ Checked numerically that (for J = C or 1 T)
 - in all singly- and doubly-unresolved limits

$$\frac{\mathrm{d}\sigma_5^{\mathrm{RR},\mathrm{A}_2}J_3 + \mathrm{d}\sigma_5^{\mathrm{RR},\mathrm{A}_1}J_4 - \mathrm{d}\sigma_5^{\mathrm{RR},\mathrm{A}_{12}}J_3}{\mathrm{d}\sigma_5^{\mathrm{RR}}} \to 1$$

in all singly unresolved limits

$$\frac{\mathrm{d}\sigma_4^{\mathrm{RV,A_1}} J_3 - \int_1 \mathrm{d}\sigma_5^{\mathrm{RR,A_1}} J_4 - \left(\int_1 \mathrm{d}\sigma_5^{\mathrm{RR,A_1}}\right)^{\mathrm{A_1}} J_3}{\mathrm{d}\sigma_4^{\mathrm{RV}}} \to 1$$

the counterterms are fully local

Regularized RR and RV contributions

can now be computed by numerical Monte Carlo integrations

after summing over unresolved flavours

$$\int_{1} \left(\int_{1} d\sigma_{m+2}^{RR,A_{1}} \right)^{A_{1}} = d\sigma_{m}^{B} \otimes \left[\frac{1}{2} \left\{ \boldsymbol{I}_{1}^{(0)}(\{p\}_{m};\epsilon), \boldsymbol{I}_{1}^{(0)}(\{p\}_{m};\epsilon) \right\} + \boldsymbol{I}_{1}^{R\times(0)}(\{p\}_{m};\epsilon) \right]$$

after summing over unresolved flavours

$$\int_{1} \left(\int_{1} d\sigma_{m+2}^{RR,A_{1}} \right)^{A_{1}} = d\sigma_{m}^{B} \otimes \left[\frac{1}{2} \left\{ \boldsymbol{I}_{1}^{(0)}(\{p\}_{m};\epsilon), \boldsymbol{I}_{1}^{(0)}(\{p\}_{m};\epsilon) \right\} + \boldsymbol{I}_{1}^{R\times(0)}(\{p\}_{m};\epsilon) \right]$$

after summing over unresolved flavours

$$\int_{1} \left(\int_{1} d\sigma_{m+2}^{RR,A_{1}} \right)^{A_{1}} = d\sigma_{m}^{B} \otimes \left[\frac{1}{2} \left\{ \boldsymbol{I}_{1}^{(0)}(\{p\}_{m};\epsilon), \boldsymbol{I}_{1}^{(0)}(\{p\}_{m};\epsilon) \right\} + \boldsymbol{I}_{1}^{R\times(0)}(\{p\}_{m};\epsilon) \right]$$

$$\boldsymbol{I}_{1}^{R\times(0)}(\{p\}_{m+1};\epsilon)\propto\sum_{i}\left[C_{i}^{R\times(0)}(y_{iQ};\epsilon)\boldsymbol{T}_{i}^{2}+\sum_{k\neq i}S^{R\times(0),ik}(Y_{ik,Q};\epsilon)\boldsymbol{T}_{i}\cdot\boldsymbol{T}_{k}\right]$$

after summing over unresolved flavours

$$\int_{1} \left(\int_{1} d\sigma_{m+2}^{RR,A_{1}} \right)^{A_{1}} = d\sigma_{m}^{B} \otimes \left[\frac{1}{2} \left\{ \boldsymbol{I}_{1}^{(0)}(\{p\}_{m};\epsilon), \boldsymbol{I}_{1}^{(0)}(\{p\}_{m};\epsilon) \right\} + \boldsymbol{I}_{1}^{R\times(0)}(\{p\}_{m};\epsilon) \right]$$

$$\boldsymbol{I}_{1}^{R\times(0)}(\{p\}_{m+1};\epsilon) \propto \sum_{i} \left[C_{i}^{R\times(0)}(y_{iQ};\epsilon) \boldsymbol{T}_{i}^{2} + \sum_{k\neq i} S^{R\times(0),ik}(Y_{ik,Q};\epsilon) \boldsymbol{T}_{i} \cdot \boldsymbol{T}_{k} \right]$$

$$\int_{1} d\sigma_{m+2}^{\mathrm{RR,A_{12}}} = d\sigma_{m}^{\mathrm{B}} \otimes \boldsymbol{I}_{12}^{(0)}(\{p\}_{m}; \epsilon)$$

after summing over unresolved flavours

$$\int_{1} \left(\int_{1} d\sigma_{m+2}^{RR,A_{1}} \right)^{A_{1}} = d\sigma_{m}^{B} \otimes \left[\frac{1}{2} \left\{ \boldsymbol{I}_{1}^{(0)}(\{p\}_{m};\epsilon), \boldsymbol{I}_{1}^{(0)}(\{p\}_{m};\epsilon) \right\} + \boldsymbol{I}_{1}^{R\times(0)}(\{p\}_{m};\epsilon) \right]$$

$$\boldsymbol{I}_{1}^{R\times(0)}(\{p\}_{m+1};\epsilon)\propto\sum_{i}\left[C_{i}^{R\times(0)}(y_{iQ};\epsilon)\boldsymbol{T}_{i}^{2}+\sum_{k\neq i}S^{R\times(0),ik}(Y_{ik,Q};\epsilon)\boldsymbol{T}_{i}\cdot\boldsymbol{T}_{k}\right]$$

$$\int_{1} d\sigma_{m+2}^{RR,A_{12}} = d\sigma_{m}^{B} \otimes \boldsymbol{I}_{12}^{(0)}(\{p\}_{m};\epsilon)$$

$$\int_{1} d\sigma_{m+2}^{RR,A_{2}} = d\sigma_{m}^{B} \otimes \boldsymbol{I}_{2}^{(0)}(\{\}_{m};\epsilon)$$
?

I₁₂ and I₂ have the same colour and flavour decomposition

$$I_{12}^{(0)}(\{p\}_{m};\epsilon) \propto \left\{ \sum_{i} \left[C_{12,f_{i}}^{(0)} \mathbf{T}_{i}^{2} + \sum_{k} C_{12,f_{i}f_{k}}^{(0)} \mathbf{T}_{k}^{2} \right] \mathbf{T}_{i}^{2} \right.$$

$$+ \sum_{j,l} \left[S_{12}^{(0),(j,l)} \mathbf{C}_{A} + \sum_{i} C S_{12,f_{i}}^{(0),(j,l)} \mathbf{T}_{i}^{2} \right] \mathbf{T}_{j} \mathbf{T}_{l}$$

$$+ \sum_{i,k,j,l} S_{12}^{(0),(i,k)(j,l)} \left\{ \mathbf{T}_{i} \mathbf{T}_{k}, \mathbf{T}_{j} \mathbf{T}_{l} \right\} \right\}$$

The coefficients depend on ϵ (poles starting at $O(\epsilon^{-4})$), kinematics and PS cut parameters

Insertion operator I₁₂

Illustration: e⁺e⁻ → 2 jets

Born squared matrix element: $|\mathcal{M}_2^{(0)}(1_q,2_{ar{q}})|^2$

Colour and kinematics are trivial:

$$m{T}_1^2 = m{T}_2^2 = -m{T}_1m{T}_2 = C_{
m F}\,, \qquad y_{12} = rac{2p_1 \ p_2}{Q^2} = 1$$

Insertion operator from iterated subtraction:

$$I_{12}^{(0)}(p_1, p_2; \epsilon) = \frac{\left[\alpha_{\rm s} S_{\epsilon} \left(\frac{\mu^2}{Q^2}\right)^{\epsilon}\right]^2 \left\{\frac{2C_{\rm F}(3C_{\rm F} - C_{\rm A})}{\epsilon^4} + \frac{C_{\rm F}}{6} \left[20C_{\rm A} + 81C_{\rm F} - 4T_{\rm R}n_{\rm f}\right] + 12(3C_{\rm A} - 2C_{\rm F})\Sigma(y_0, D_0') + 12(2C_{\rm A} - C_{\rm F})\Sigma(y_0, D_0' - 1)\right] \frac{1}{\epsilon^3} + O(\epsilon^{-2})\right\}$$

Higher order expansion coefficients are cumbersome

Insertion operator I₁₂

Illustration: e⁺e⁻ → 3 jets

Born squared matrix element: $|\mathcal{M}_3^{(0)}(1_q,2_{ar{q}},3_g)|^2$

Colour is still trivial:

$$m{T}_1^2 = m{T}_2^2 = C_{
m F} \,, \quad m{T}_3^2 = C_{
m A} \,, \quad m{T}_1 m{T}_2 = rac{C_{
m A} - 2C_{
m F}}{2} \,, \quad m{T}_1 m{T}_3 = m{T}_2 m{T}_3 = -rac{C_{
m A}}{2}$$

Insertion operator from iterated subtraction:

$$I_{12}^{(0)}(p_{1}, p_{2}, p_{3}; \epsilon) =$$

$$= \left[\frac{\alpha_{s}}{2\pi} S_{\epsilon} \left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\right]^{2} \left\{\frac{C_{A}^{2} + 2C_{A}C_{F} + 6C_{F}^{2}}{\epsilon^{4}} + \left[\frac{11C_{A}^{2}}{2} + \frac{50C_{A}C_{F}}{3} + 12C_{F}^{2}\right] - \frac{C_{A}T_{R}n_{f}}{3} - \frac{C_{A}^{2}T_{R}n_{f}}{C_{F}} - 4C_{F}T_{R}n_{f} + \left(\frac{5C_{A}^{2}}{2} - C_{A}C_{F} - 8C_{F}^{2}\right) \ln y_{12} - \frac{C_{A}(5C_{A} + 8C_{F})}{2} (\ln y_{13} + \ln y_{23}) + (C_{A}^{2} + 6C_{A}2C_{F} - 4C_{F}^{2})\Sigma(y_{0}, D_{0}') + 4C_{F}(C_{A} - C_{F})\Sigma(y_{0}, D_{0}' - 1) \right] \frac{1}{\epsilon^{3}} + O(\epsilon^{-2}) \right\}$$

Higher order expansion coefficients are cumbersome

Present status

Integration of the doubly-unresolved counterterms in progress (most difficult)

$$\sigma^{\text{NNLO}} = \sigma^{\text{RR}}_{m+2} + \sigma^{\text{RV}}_{m+1} + \sigma^{\text{VV}}_{m} = \sigma^{\text{NNLO}}_{m+2} + \sigma^{\text{NNLO}}_{m+1} + \sigma^{\text{NNLO}}_{m}$$

$$\sigma^{\text{NNLO}}_{m+2} = \int_{m+2} \left\{ d\sigma^{\text{RR}}_{m+2} J_{m+2} - d\sigma^{\text{RR}, A_2}_{m+2} J_m - \left(d\sigma^{\text{RR}, A_1}_{m+2} J_{m+1} - d\sigma^{\text{RR}, A_{12}}_{m+2} J_m \right) \right\}$$

$$\sigma^{\text{NNLO}}_{m+1} = \int_{m+1} \left\{ \left(d\sigma^{\text{RV}}_{m+1} + \int_{1} d\sigma^{\text{RR}, A_1}_{m+2} \right) J_{m+1} - \left[d\sigma^{\text{RV}, A_1}_{m+1} + \left(\int_{1} d\sigma^{\text{RR}, A_1}_{m+2} \right)^{A_1} \right] J_m \right\}$$

$$\sigma^{\text{NNLO}}_{m} = \int_{m+1} \left\{ d\sigma^{\text{VV}}_{m} + \int_{2} \left(d\sigma^{\text{RR}, A_2}_{m+2} - d\sigma^{\text{RR}, A_{12}}_{m+2} \right) + \int_{1} \left[d\sigma^{\text{RV}, A_1}_{m+1} + \left(\int_{1} d\sigma^{\text{RR}, A_1}_{m+2} \right)^{A_1} \right] \right\} J_{m}$$

Conclusions

Conclusions

- ✓ We have set up a general subtraction scheme for computing NNLO jet cross sections, for processes with no coloured particles in the initial state
- ✓ We have investigated various methods to integrate the counterterms
- √ We used the MB method to perform the integration of all but doubly-unresolved counterterms. The SD method was used to provide independent checks
- * The integration of the doubly-unresolved counterterm is feasible with our methods, and is work in progress