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Motivation
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‣ Precise predictions for ‘standard candles’:  
V (+ jet), top pair

‣ Missing piece for precise determination of 
pdf’s

‣ NLO corrections are often large (e.g.>50%): 
H production

‣ Main source of uncertainty in experimental 
results is often due to theory: αs 
measurement from shapes, jet rates

‣ NLO is effectively LO: energy distribution 
inside jets

‣ For reliable estimate of theory uncertainty

Why NNLO?
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Why NNLO?

Many matrix elements are known,
but yet vaguely used
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• NNLO corrections have been known to 
processes with fully inclusive final states for 
almost 30 years 

Chetyrkin et al, Van Neerven et al, Harlander-Kilgore

• Dedicated approches for simple final state
- 2jet electroproduction, H and V hadroproduction with SD

Anastasiou, Melnikov and Petriello
- H and V production with NLO + constrained-NNLO subtraction

Catani and Grazzini

• Antennae subtraction for two- and three-jet 
production in e+e- annihilation

Gehrmann et al, Weinzierl

(extension to include coloured initial state is 
in progress)                        Daleo et al, Pires and Glover

Status
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Problem

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m

≡
∫

m+2
dσRR

m+2Jm+2 +
∫

m+1
dσRV

m+1Jm+1 +
∫

m
dσVV

m Jm
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‣ matrix elements are known for σRR and σRV for many processes
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multiplicities are not on the horizon
‣ the three contributions are separately divergent in  d = 4 
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Approaches

Several options available - why a new one?
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Approaches

Sector Decomposition
(residuum subtraction)

✓ First method to 
yield physical 
cross sections

✓ Calculation is fully 
numerical

- Cancellation of 
poles also and 
depends on the jet 
function

- Can it handle final 
states with many 
coloured partons?

M. Czakon 2010:  yes

Several options available - why a new one?
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Approaches

Sector Decomposition
(residuum subtraction)

✓ First method to 
yield physical 
cross sections

✓ Calculation is fully 
numerical

- Cancellation of 
poles also and 
depends on the jet 
function

- Can it handle final 
states with many 
coloured partons?

M. Czakon 2010:  yes

Antennae subtraction

✓ Successfully applied 
to e+e- → 2, 3 jets

✓ Integration of the 
antennae over 
unresolved phase 
space is relatively 
easy

- Counterterms are 
nonlocal

- Cannot cut on 
factorized phase 
space

CS dipole subtraction

✓ Clear concept
✓ Explicit 

documentation for 
any process

- Cannot be extended 
to NNLO for 
arbitrary processes

Several options available - why a new one?
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to devise a subtraction scheme with

✓ fully local counterterms (efficiency and 
mathematical rigour)

✓ explicit expressions including colour (colour 
space natation is used)

✓ completely algorithmic construction (valid in 
any order of perturbation theory)

✓ option to constrain subtraction near singular 
regions (important check)

Goal
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Recipe for a
general subtraction scheme at NNLO

G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043
G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042

Z. Nagy, G. Somogyi, ZT hep-ph/0702273
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of subtractions is governed by jet functions

Structure

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

σNNLO
m+2 =

∫

m+2

{
dσRR

m+2Jm+2 − dσRR,A2
m+2 Jm −

(
dσRR,A1

m+2 Jm+1 − dσRR,A12
m+2 Jm

)}

σNNLO
m+1 =

∫

m+1

{(
dσRV

m+1+
∫

1
dσRR,A1

m+2

)
Jm+1−

[
dσRV,A1

m+1 +
( ∫

1
dσRR,A1

m+2

)
A1

]
Jm

}

σNNLO
m =

∫

m

{
dσVV

m +
∫

2

(
dσRR,A2

m+2 −dσRR,A12
m+2

)
+

∫

1

[
dσRV,A1

m+1 +
( ∫

1
dσRR,A1

m+2

)
A1

]}
Jm
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Ingredients

16Monday, July 5, 2010



• Universal IR structure of QCD (squared) matrix elements

- ε-poles of one-loop amplitudes: 

Z. Kunszt, ZT 1994, S. Catani, M.H. Seymour 1996, S. Catani, S. Dittmaier, ZT 2000 

Ingredients

|M(1)
m ({p})〉 = −1

2
I(0)

1 (ε; {p})|M(0)
m ({p})〉+ O(ε0)

I(0)
1 (ε) =

αs

2π

∑

i



1
ε
γi −

1
ε2

∑

k !=i

T i · T k

(
4πµ2

sik

)ε



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|M(2)
m ({p})〉 =

−1
2

(
I(0)

1 (ε; {p})|M(1)
m ({p})〉+ I(1)

1 (ε; {p})|M(0)
m ({p})〉

)
+ O(ε0)

- ε-poles of two-loop amplitudes: 

S. Catani 1998, G. Sterman, M.E.Tejeda-Yeomans 2003, S. Moch, M. Mitov 2007
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• Universal IR structure of QCD (squared) matrix elements

- ε-poles of one- and two-loop amplitudes
- soft and collinear factorization of QCD matrix elements

tree-level 3-parton splitting, double soft current: 
J.M. Campbell, E.W.N. Glover 1997, S. Catani, M. Grazzini 1998

V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002
one-loop 2-parton splitting, soft gluon current: 

L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994 
Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9

D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000

Ingredients

17Monday, July 5, 2010



• Universal IR structure of QCD (squared) matrix elements

- ε-poles of one- and two-loop amplitudes
- soft and collinear factorization of QCD matrix elements

tree-level 3-parton splitting, double soft current: 
J.M. Campbell, E.W.N. Glover 1997, S. Catani, M. Grazzini 1998

V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002
one-loop 2-parton splitting, soft gluon current: 

L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994 
Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9

D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000

• Simple and general procedure for separating overlapping 
singularities (using a physical gauge)

Ingredients

17Monday, July 5, 2010



• Universal IR structure of QCD (squared) matrix elements

- ε-poles of one- and two-loop amplitudes
- soft and collinear factorization of QCD matrix elements

tree-level 3-parton splitting, double soft current: 
J.M. Campbell, E.W.N. Glover 1997, S. Catani, M. Grazzini 1998

V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002
one-loop 2-parton splitting, soft gluon current: 

L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994 
Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9

D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000

• Simple and general procedure for separating overlapping 
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Z. Nagy, G. Somogyi, ZT, 2007
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- ε-poles of one- and two-loop amplitudes
- soft and collinear factorization of QCD matrix elements
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• Simple and general procedure for separating overlapping 
singularities (using a physical gauge)

Z. Nagy, G. Somogyi, ZT, 2007

• Extension over whole phase space using momentum mappings

Ingredients

{p}n+s → {p̃}n
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‣ implement exact momentum conservation

‣ recoil distributed democratically 

⇒ can be generalized to any number of s 

unresolved partons

‣ different mappings for 

- collinear limit  pi||pr:

- soft limit  ps →0:

Momentum mappings

{p}n+s → {p̃}n

{p}n+1
Cir−→ {p̃}(ir)

n

{p}n+1
Ss−→ {p̃}(s)

n
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‣ implement exact momentum conservation

‣ recoil distributed democratically 

‣ different mappings for collinear and soft 
limits 

‣ lead to phase-space factorization

Momentum mappings

{p}n+s → {p̃}n
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‣ implement exact momentum conservation
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‣ different mappings for collinear and soft 
limits 

‣ lead to phase-space factorization

Momentum mappings

{p}n+s → {p̃}n
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define subtractions

Momentum mappings 

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

σNNLO
m+2 =

∫

m+2

{
dσRR

m+2Jm+2 − dσRR,A2
m+2 Jm −

(
dσRR,A1

m+2 Jm+1 − dσRR,A12
m+2 Jm

)}

σNNLO
m+1 =

∫

m+1

{(
dσRV

m+1+
∫

1
dσRR,A1

m+2

)
Jm+1−

[
dσRV,A1

m+1 +
( ∫

1
dσRR,A1

m+2

)
A1

]
Jm

}

σNNLO
m =

∫

m

{
dσVV

m +
∫

2

(
dσRR,A2

m+2 −dσRR,A12
m+2

)
+

∫

1

[
dσRV,A1

m+1 +
( ∫

1
dσRR,A1

m+2

)
A1

]}
Jm
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Integrating the counterterms
G. Somogyi, ZT arXiv:0807.0509

U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi, ZT arXiv:0807.0514
P. Bolzoni, S. Moch, G. Somogyi, ZT arXiv:0905.4390

22Monday, July 5, 2010



two types of singly-unresolved

Integrated counterterms

σNNLO = σRR
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m
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m+2
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( ∫
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convolution of the integral of AP-splitting 
function over ordinary phase space

Collinear integrals

∫ α0

0
dα (1− α)2d0−1

seirQ

2π

∫
dφ2(pi, pr; p(ir))

1
s1+κε

ir

P (κ)
fifr

(zi, zr; ε) , κ = 0, 1

dφ2(pi, pr; p(ir)) =
s−ε

ir

8π

(4π)ε

Γ(1− ε)
dsir dv δ

(
sir −Q2α

(
α + (1− α)x

))

× [v (1− v)]−ε Θ(1− v)Θ(v)
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convolution of the integral of AP-splitting 
function over ordinary phase space

Collinear integrals

∫ α0

0
dα (1− α)2d0−1

seirQ

2π

∫
dφ2(pi, pr; p(ir))

1
s1+κε

ir

P (κ)
fifr

(zi, zr; ε) , κ = 0, 1

zk+δε
r

s1+κε
ir

g(±)
I (zr) , zr =

αQ2 + (1− α)vseirQ

2αQ2 + (1− α)seirQ

δ Function g(±)
I (z)

0 gA 1

∓1 g(±)
B (1− z)±ε

0 g(±)
C (1− z)±ε

2F1(±ε,±ε, 1± ε, z)

±1 g(±)
D 2F1(±ε,±ε, 1± ε, 1− z)
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convolution of the integral of the eikonal 
factors over ordinary phase space

Soft integrals

J ∝ −
∫ y0

0
dy (1− y)d′

0−1 Q2

2π

∫
dφ2(pr, K;Q)

(
sik

sirskr

)1+κε

dφ2(pr, K;Q) =
(Q2)−ε

16π2

(4π)ε

Γ(1− ε)
Γ2(1− ε)
Γ(1− 2ε)

dεr ε1−2ε
r δ(y − εr)

× d(cos ϑ) d(cos ϕ)(sinϑ)−2ε(sinϕ)−1−2ε
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Integration of the counterterms over the unresolved 
phase space is difficult

collinear-type:

soft-type:

Basic forms of integrals

I ∝ x

∫ α0

0
dα α−1−(1+κ)ε (1− α)2d0−1 [α + (1− α)x]−1−(1+κ)ε

×
∫ 1

0
dv[v (1− v)]−ε

(
α + (1− α)xv

2α + (1− α)x

)k+δε

g

(
α + (1− α)xv

2α + (1− α)x

)

J ∝ −
∫ y0

0
dy (1− y)d′

0−1 Q2

2π

∫
dφ2(pr, K;Q)

(
sik

sirskr

)1+κε

K ∝
∫ y0

0
dy (1− y)d′

0−1 Q2

2π

∫
dφ2(pr, K;Q)2

(
1

sir

zi

zr

)1+κε
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two types of iterated singly-unresolved

Integrated counterterms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

σNNLO
m+2 =

∫

m+2

{
dσRR

m+2Jm+2 − dσRR,A2
m+2 Jm −

(
dσRR,A1

m+2 Jm+1 − dσRR,A12
m+2 Jm

)}

σNNLO
m+1 =

∫

m+1

{(
dσRV

m+1+
∫

1
dσRR,A1

m+2

)
Jm+1−

[
dσRV,A1

m+1 +
( ∫

1
dσRR,A1

m+2

)
A1

]
Jm

}

σNNLO
m =

∫

m

{
dσVV

m +
∫

2

(
dσRR,A2

m+2 −dσRR,A12
m+2

)
+

∫

1

[
dσRV,A1

m+1 +
( ∫

1
dσRR,A1

m+2

)
A1

]}
Jm
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One of 25 subtraction terms: collinear-double collinear subtraction

Integrating iterated counterterms

CktC
(0)
ir;kt = (8παsµ

2ε)2
1

skt

1
ŝir

〈M(0)
m ({p̃})|P (0)

fkft
(zt,k; ε)P (0)

fifr
(ẑr,i; ε)|M(0)

m ({p̃})〉

× (1− αkt)2d0−2m(1−ε)(1− α̂kt)2d0−2m(1−ε)Θ(α0 − αkt)Θ(α0 − α̂ir)

obtained by an iterated mapping

{p}m+2
Ckt−→ {p̂}m+1

Cîr̂−→ {p̃} : dφm+2({p};Q) = dφm({p̃};Q)[dp̂1,m][dp1,m+1]

Then we define the function                                                 by

∫
[dp̂1,m][dp1,m+1]CktC

(0)
ir;kt ≡

[
αs

2π
Sε

(
µ2

Q2

)ε ]2

CktC
(0)
ir;ktT

2
ktT

2
ir|M(0)

m ({p̃})|2

CktC
(0)
ir;kt(x̃kt, x̃ir, ε,α0, d0)
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Use explicit parametrization of               and                   to write 

                                     as a linear combination of basic integrals                       

Integrating iterated counterterms

CktC
(0)
ir;kt(x̃kt, x̃ir, ε,α0, d0)

[dp̂1,m] [dp1,m+1]

I(4)
C (xk, xi; ε, α0, d0, k, l) = xkxi

×
∫ ! 0

0
dβ (1− β)2d0−2+2"β−1−" [β + (1− β)xi]−1−"

×
∫ ! 0

0
dα (1− α)2d0−1α−1−" [α + (1− α)(1− β)xk]−1−"

×
∫ 1

0
du u−" (1− u)−"

(
β + (1− β)xiu

2β + (1− β)xi

)l

×
∫ 1

0
dv v−" (1− v)−"

(
α + (1− α)(1− β)xkv

2α + (1− α)(1− β)xk

)k

, k, l = −1, 0, 1, 2
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Use explicit parametrization of               and                   to write 

                                     as a linear combination of basic integrals                       

Integrating iterated counterterms

CktC
(0)
ir;kt(x̃kt, x̃ir, ε,α0, d0)
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I(4)
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×
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×
∫ ! 0

0
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×
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du u−" (1− u)−"

(
β + (1− β)xiu

2β + (1− β)xi

)l

×
∫ 1

0
dv v−" (1− v)−"

(
α + (1− α)(1− β)xkv

2α + (1− α)(1− β)xk

)k

, k, l = −1, 0, 1, 2

sir(β,xi)-1-ε
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Use explicit parametrization of               and                   to write 

                                     as a linear combination of basic integrals                       

Integrating iterated counterterms

CktC
(0)
ir;kt(x̃kt, x̃ir, ε,α0, d0)

[dp̂1,m] [dp1,m+1]

I(4)
C (xk, xi; ε, α0, d0, k, l) = xkxi

×
∫ ! 0

0
dβ (1− β)2d0−2+2"β−1−" [β + (1− β)xi]−1−"

×
∫ ! 0

0
dα (1− α)2d0−1α−1−" [α + (1− α)(1− β)xk]−1−"

×
∫ 1

0
du u−" (1− u)−"

(
β + (1− β)xiu

2β + (1− β)xi

)l

×
∫ 1

0
dv v−" (1− v)−"

(
α + (1− α)(1− β)xkv

2α + (1− α)(1− β)xk

)k

, k, l = −1, 0, 1, 2

sir(β,xi)-1-ε

skt (α,β,xk)-1-ε
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Use explicit parametrization of               and                   to write 

                                     as a linear combination of basic integrals                       

Integrating iterated counterterms

CktC
(0)
ir;kt(x̃kt, x̃ir, ε,α0, d0)

[dp̂1,m] [dp1,m+1]

I(4)
C (xk, xi; ε, α0, d0, k, l) = xkxi

×
∫ ! 0

0
dβ (1− β)2d0−2+2"β−1−" [β + (1− β)xi]−1−"

×
∫ ! 0

0
dα (1− α)2d0−1α−1−" [α + (1− α)(1− β)xk]−1−"

×
∫ 1

0
du u−" (1− u)−"

(
β + (1− β)xiu

2β + (1− β)xi

)l

×
∫ 1

0
dv v−" (1− v)−"

(
α + (1− α)(1− β)xkv

2α + (1− α)(1− β)xk

)k

, k, l = −1, 0, 1, 2

sir(β,xi)-1-ε

skt (α,β,xk)-1-ε

Zr;i(β,xi,u)
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Use explicit parametrization of               and                   to write 

                                     as a linear combination of basic integrals                       

Integrating iterated counterterms

CktC
(0)
ir;kt(x̃kt, x̃ir, ε,α0, d0)

[dp̂1,m] [dp1,m+1]

I(4)
C (xk, xi; ε, α0, d0, k, l) = xkxi

×
∫ ! 0

0
dβ (1− β)2d0−2+2"β−1−" [β + (1− β)xi]−1−"

×
∫ ! 0

0
dα (1− α)2d0−1α−1−" [α + (1− α)(1− β)xk]−1−"

×
∫ 1

0
du u−" (1− u)−"

(
β + (1− β)xiu

2β + (1− β)xi

)l

×
∫ 1

0
dv v−" (1− v)−"

(
α + (1− α)(1− β)xkv

2α + (1− α)(1− β)xk

)k

, k, l = −1, 0, 1, 2

sir(β,xi)-1-ε

skt (α,β,xk)-1-ε

Zr;i(β,xi,u)

Zk;t (α,β,xi,v)
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to compute the integrals:

‣ IBP’s to reduce to master integrals + solution 
of MI’s by differential equations

‣ MB representations to extract poles 
structure + summation of nested series

‣ SD

Three methods
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Three methods

Method Analytical Numerical

IBP

✓ Singly-unresolved 
integrals

-  Bottleneck is the 
proliferation of 
denominators

✓ Evaluating analytical 
expressions

-   No numbers without 
full analytical results

MB

✓ Iterated singly 
unresolved integrals

-  Bottleneck is the 
evaluation of sums

✓ Direct numerical 
evalution of MB 
integrals possible

✓ Fast and accurate

SD
✓  Easy to automate

-  Only in principle, 
except for leading pole

✓ Straightforward

-   In general slower & 
less accurate than MB
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Analytical vs. numerical
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Matter of principle:

Analytical vs. numerical
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‣ Cancellation of poles requires the coefficients of poles in integrated 
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Analytical vs. numerical
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‣ Analytical forms are fast and accurate compared to numerical ones

However:
‣ Analytical results show that the integrated counterterms are 

smooth functions of the kinematic variables

Hence:

Analytical vs. numerical
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Matter of principle:
‣ Cancellation of poles requires the coefficients of poles in integrated 

counterterms in analytical form

‣ Analytical forms are fast and accurate compared to numerical ones

However:
‣ Analytical results show that the integrated counterterms are 

smooth functions of the kinematic variables

Hence:
‣ Finite terms of integrated counterterms can be given in form of 

interpolating tables or approximating functions. Thus numerical form 
— computed once with required precision — is sufficient.

Analytical vs. numerical
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Results
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singly-unresolved

Integrated counterterms

∫

1
dσRR,A1

m+2 = dσR
m+1 ⊗ I(0)

1 ({p}m+1; ε)

Ensures  common collinear limit for S1il and S1rl if pi||pr 
(essential for iteration & colour coherence: Ti·Tl+Tr·Tl=T(ir)·Tl)

yiQ ≡ xi =
2pi ·Q
Q2

Yik,Q =
yik

yiQykQ

I(0)
1 ({p}m+1; ε) =

αs

2π
Sε

(
µ2

Q2

)ε ∑

i

[
C(0)

1,i (yiQ; ε) T 2
i +

∑

k !=i

S(0)ik
1 (Yik,Q; ε)T i ·T k

]
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singly-unresolved

Integrated counterterms

∫

1
dσRR,A1

m+2 = dσR
m+1 ⊗ I(0)

1 ({p}m+1; ε)

I(0)
1 ({p}m+1; ε) =

αs

2π
Sε

(
µ2

Q2

)ε ∑

i

[
C(0)

1,i (yiQ; ε) T 2
i +

∑

k !=i

S(0)ik
1 (Yik,Q; ε)T i ·T k

]
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singly-unresolved

Integrated counterterms

∫

1
dσRR,A1

m+2 = dσR
m+1 ⊗ I(0)

1 ({p}m+1; ε)

I(0)
1 ({p}m+1; ε) =

αs

2π
Sε

(
µ2

Q2

)ε ∑

i

[
C(0)

1,i (yiQ; ε) T 2
i +

∑

k !=i

S(0)ik
1 (Yik,Q; ε)T i ·T k

]
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singly-unresolved

Integrated counterterms

∫

1
dσRR,A1

m+2 = dσR
m+1 ⊗ I(0)

1 ({p}m+1; ε)

I(0)
1 ({p}m+1; ε) =

αs

2π
Sε

(
µ2

Q2

)ε ∑

i

[
C(0)

1,i (yiQ; ε) T 2
i +

∑

k !=i

S(0)ik
1 (Yik,Q; ε)T i ·T k

]

∫

1
dσRV,A1

m+1 = dσV
m ⊗ I(0)

1 ({p}m; ε) + dσB
m ⊗ I(1)

1 ({p}m; ε)

I(1)
1 ({p}m; ε) ∝

∑

i

[
C(1)

1,i (yiQ; ε) T 2
i +

∑

k !=i

S(1)ik
1 (Yik,Q; ε) T i ·T k

+
∑

k !=i

∑

l !=i,k

S(1)ikl
1 (Yik,Q, Yil,Q, Ykl,Q; ε)

∑

a,b,c

fabcT
a
i T b

kT c
l

]
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can now be computed by numerical 

Monte Carlo integrations

Regularized RR and RV contributions

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

σNNLO
m+2 =

∫

m+2

{
dσRR

m+2Jm+2 − dσRR,A2
m+2 Jm −

(
dσRR,A1

m+2 Jm+1 − dσRR,A12
m+2 Jm

)}

σNNLO
m+1 =

∫

m+1

{(
dσRV

m+1+
∫

1
dσRR,A1

m+2

)
Jm+1−

[
dσRV,A1

m+1 +
( ∫

1
dσRR,A1

m+2

)
A1

]
Jm

}

σNNLO
m =

∫

m

{
dσVV

m +
∫

2

(
dσRR,A2

m+2 −dσRR,A12
m+2

)
+

∫

1

[
dσRV,A1

m+1 +
( ∫

1
dσRR,A1

m+2

)
A1

]}
Jm
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Example: 3-jet event shapes 

✓Constructed dσ5 and dσ4 for e+e- → 3 jets 
(regularized RR and RV) 
✓Checked numerically that (for J = C or 1 - T)
‣in all singly- and doubly-unresolved limits

‣in all singly unresolved limits

➡ the counterterms are fully local

dσRR,A2
5 J3 + dσRR,A1

5 J4 − dσRR,A12
5 J3

dσRR
5

→ 1

dσRV,A1
4 J3 −

∫
1 dσRR,A1

5 J4 −
( ∫

1 dσRR,A1
5

)
A1J3

dσRV
4

→ 1
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can now be computed by numerical 
Monte Carlo integrations

Regularized RR and RV contributions

-0.1

0

0.1

0.2

1/
0
C
d
/d
C

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
C

RV piece
RR piece

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1/
0
C
d
/d
C

C-parameter distribution
LO result
NLO result
NLO+RR+RV

-0.1

0

0.1
1/

0
(1
-T
)
d
/d
T

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0
T

RV piece
RR piece

0.0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

1/
0
(1
-T
)
d
/d
T

Thrust distribution
LO result
NLO result
NLO+RR+RV
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after summing over unresolved flavours

Rest of integrated counterterms

∫

1

( ∫

1
dσRR,A1

m+2

)
A1 = dσB

m⊗
[
1
2

{
I(0)

1 ({p}m; ε), I(0)
1 ({p}m; ε)

}
+ IR×(0)

1 ({p}m; ε)
]
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after summing over unresolved flavours

Rest of integrated counterterms

✓  

∫

1

( ∫

1
dσRR,A1

m+2

)
A1 = dσB

m⊗
[
1
2

{
I(0)

1 ({p}m; ε), I(0)
1 ({p}m; ε)

}
+ IR×(0)

1 ({p}m; ε)
]
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after summing over unresolved flavours

Rest of integrated counterterms

✓  
IR×(0)

1 ({p}m+1; ε) ∝
∑

i

[
CR×(0)

i (yiQ; ε) T 2
i +

∑

k "=i

SR×(0),ik(Yik,Q; ε) T i ·T k

]✓  

∫

1

( ∫

1
dσRR,A1

m+2

)
A1 = dσB

m⊗
[
1
2

{
I(0)

1 ({p}m; ε), I(0)
1 ({p}m; ε)

}
+ IR×(0)

1 ({p}m; ε)
]
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after summing over unresolved flavours

Rest of integrated counterterms

∫

1
dσRR,A12

m+2 = dσB
m ⊗ I(0)

12 ({p}m; ε)

✓  
IR×(0)

1 ({p}m+1; ε) ∝
∑

i

[
CR×(0)

i (yiQ; ε) T 2
i +

∑

k "=i

SR×(0),ik(Yik,Q; ε) T i ·T k

]✓  

✓  

∫

1

( ∫

1
dσRR,A1

m+2

)
A1 = dσB

m⊗
[
1
2

{
I(0)

1 ({p}m; ε), I(0)
1 ({p}m; ε)

}
+ IR×(0)

1 ({p}m; ε)
]
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after summing over unresolved flavours

Rest of integrated counterterms

∫

1
dσRR,A12

m+2 = dσB
m ⊗ I(0)

12 ({p}m; ε)

∫

1
dσRR,A2

m+2 = dσB
m ⊗ I(0)

2 ({ }m; ε)

✓  
IR×(0)

1 ({p}m+1; ε) ∝
∑

i

[
CR×(0)

i (yiQ; ε) T 2
i +

∑

k "=i

SR×(0),ik(Yik,Q; ε) T i ·T k

]✓  

✓  

? 

∫

1

( ∫

1
dσRR,A1

m+2

)
A1 = dσB

m⊗
[
1
2

{
I(0)

1 ({p}m; ε), I(0)
1 ({p}m; ε)

}
+ IR×(0)

1 ({p}m; ε)
]
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I12 and I2 have the same colour and flavour 
decomposition

Rest of integrated counterterms

I(0)
12 ({p}m; ε) ∝

{ ∑

i

[
C(0)

12,fi
T 2

i +
∑

k

C(0)
12,fifk

T 2
k

]
T 2

i

+
∑

j,l

[
S(0),(j,l)

12 CA +
∑

i

CS(0),(j,l)
12,fi

T 2
i

]
T jT l

+
∑

i,k,j,l

S(0),(i,k)(j,l)
12 {T iT k,T jT l}

}

The coefficients depend on ε (poles starting at 
O(ε-4)), kinematics and PS cut parameters
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Illustration: e+e- →2 jets

Insertion operator I12 

T 2
1 = T 2

2 = −T 1T 2 = CF , y12 =
2p1 ! p2

Q2
= 1

I(0)
12 (p1, p2; ε) =

=
[

αs

2π
Sε

(
µ2

Q2

)ε ]2{2CF(3CF − CA)
ε4

+
CF

6

[
20CA + 81CF − 4TRnf

+ 12(3CA − 2CF)Σ(y0, D
′
0) + 12(2CA − CF)Σ(y0, D

′
0 − 1)

]
1
ε3

+ O(ε−2)
}

|M(0)
2 (1q, 2q̄)|2Born squared matrix element:

Colour and kinematics are trivial:

Insertion operator from iterated subtraction:

Higher order expansion coefficients are cumbersome
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Illustration: e+e- →3 jets

Insertion operator I12 

Born squared matrix element:

Colour is still trivial:

Insertion operator from iterated subtraction:

Higher order expansion coefficients are cumbersome

|M(0)
3 (1q, 2q̄, 3g)|2

T 2
1 = T 2

2 = CF , T 2
3 = CA , T 1T 2 =

CA − 2CF

2
, T 1T 3 = T 2T 3 = −CA

2

I(0)
12 (p1, p2, p3; ε) =

=
[

αs

2π
Sε

(
µ2

Q2

)ε ]2{C2
A + 2CACF + 6C2

F

ε4
+

[
11C2

A

2
+

50CACF

3
+ 12C2

F

− CATRnf

3
− C2

ATRnf

CF
− 4CFTRnf +

(
5C2

A

2
− CACF − 8C2

F

)
ln y12

− CA(5CA + 8CF)
2

(ln y13 + ln y23) + (C2
A + 6CA2CF − 4C2

F)Σ(y0, D
′
0)

+ 4CF(CA − CF)Σ(y0, D
′
0 − 1)

]
1
ε3

+ O(ε−2)
}
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Integration of the doubly-unresolved 
counterterms in progress (most difficult)

Present status

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

σNNLO
m+2 =

∫

m+2

{
dσRR

m+2Jm+2 − dσRR,A2
m+2 Jm −

(
dσRR,A1

m+2 Jm+1 − dσRR,A12
m+2 Jm

)}

σNNLO
m+1 =

∫

m+1

{(
dσRV

m+1+
∫

1
dσRR,A1

m+2

)
Jm+1−

[
dσRV,A1

m+1 +
( ∫

1
dσRR,A1

m+2

)
A1

]
Jm

}

σNNLO
m =

∫

m

{
dσVV

m +
∫

2

(
dσRR,A2

m+2 −dσRR,A12
m+2

)
+

∫

1

[
dσRV,A1

m+1 +
( ∫

1
dσRR,A1

m+2

)
A1

]}
Jm
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Conclusions
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✓ We have set up a general subtraction scheme for computing NNLO 
jet cross sections, for processes with no coloured particles in the 
initial state

✓ We have investigated various methods to integrate the 
counterterms

✓ We used the MB method to perform the integration of all but 
doubly-unresolved counterterms. The SD method was used to 
provide independent checks

✴ The integration of the doubly-unresolved counterterm is feasible 
with our methods, and is work in progress

Conclusions
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