Physical Point Simulation in 2+1 Flavor Lattice QCD

Y.Kuramashi for PACS-CS Collaboration (Univ. of Tsukuba) based on PRD81(2010)074503

August 6, 2010 @ CERN

Plan of talk

- §1. The PACS-CS project
- §2. Reweighting method
- §3. Simulation and reweighting parameters
- $\S4.$ Results
- §5. Summary

$\S1$. The PACS-CS project

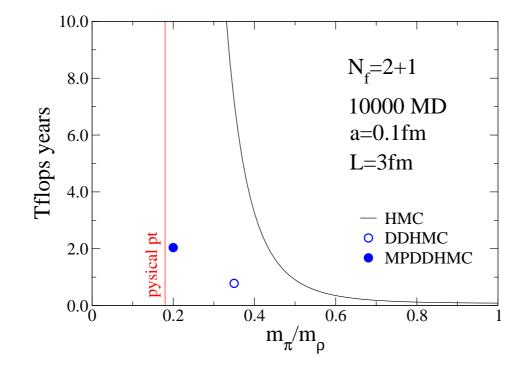
Parallel Array Computer System for Computational Sciences operation started on 1 July 2006 at CCS in U.Tsukuba

collaboration members
physicists:Collaboration members
physicists:CollaborationCollab

computer scientists: T.Boku, M.Sato, D.Takahashi, O.Tatebe Tsukuba T.Sakurai, H.Tadano

Physics plan

aim: 2+1 flavor QCD simulation at the physical point


	PACS-CS	CP-PACS/JLQCD
gauge action	Iwasaki	Iwasaki
quark action	clover with c_{SW}^{NP}	clover with c_{SW}^{NP}
a[fm]	$\gtrsim 0.1$	0.07,0.1,0.122
volume	$\gtrsim (3 \mathrm{fm})^3$	$\sim (2 \mathrm{fm})^3$
m_{ud}	physical point	64MeV
algorithm for ud	DDHMC with improvements	HMC
algorithm for s	UV-filtered exact PHMC	exact PHMC

strategy: physical point \Rightarrow enlarge volume \Rightarrow smaller a

Why physical point simulation?

- difficult to trace chiral logs for chiral extrapolation
- ChPT is not always a good guiding principle
- direct treatment of resonances based on phase shift $ho
 ightarrow \pi\pi$ decay: PRD76(2007)094506, LATTICE2010
- simulations with different up and down quark masses
- \Rightarrow there exist two types of problems

(1) Computational cost

drastic reduction with (Mass-Preconditioned) DDHMC PRD79(2009)034503

(2) Fine-tuning to physical point

physical point is known a posteriori, unfortunately need 3 simulation points within a few MeV differences around the physical point in 2+1 flavor case

 \Rightarrow demanding computational cost

try reweighting method both for ud and s quarks whose masses are slightly (and unfortunately) off the physical point

\S **2. Reweighting method**

original: $(\kappa_{ud}, \kappa_s) \Rightarrow target: (\kappa_{ud}^*, \kappa_s^*)$ assuming $\rho_q \equiv \kappa_q / \kappa_q^* \approx 1$

$$\langle \mathcal{O}[U](\kappa_{ud}^*,\kappa_s^*)\rangle_{(\kappa_{ud}^*,\kappa_s^*)} = \frac{\langle \mathcal{O}[U](\kappa_{ud}^*,\kappa_s^*)R_{ud}[U]R_s[U]\rangle_{(\kappa_{ud},\kappa_s)}}{\langle R_{ud}[U]R_s[U]\rangle_{(\kappa_{ud},\kappa_s)}}$$

reweighting factors

 $R_{ud}[U] = |\det[W[U](\rho_{ud})]|^2, \quad R_s[U] = \det[W[U](\rho_s)]$ where $W[U](\rho_q) \equiv \frac{D_{\kappa_q^*}[U]}{D_{\kappa_q}[U]}$

Evaluation of $R_{ m ud}[U]$

introduce a complex bosonic field η

$$R_{ud}[U] = |\det[W[U](\rho_{ud})]|^2$$
$$= \langle e^{-|W^{-1}[U](\rho_{ud})\eta|^2 + |\eta|^2} \rangle_{\eta}$$

given a set of $\eta^{(i)}$ $(i = 1, ..., N_{\eta})$ with the Gaussian distribution

$$R_{ud}[U] = \lim_{N_{\eta} \to \infty} \frac{1}{N_{\eta}} \sum_{i=1}^{N_{\eta}} e^{-|W^{-1}[U](\rho_{ud})\eta^{(i)}|^{2} + |\eta^{(i)}|^{2}}$$

Evaluation of $R_{ m s}[U]$

assume det $W[U](\rho_{s})$ is positive $R_{s}[U] = \det [W[U](\rho_{s})]$ $= \langle e^{-|W^{-1/2}[U](\rho_{s})\eta|^{2} + |\eta|^{2}} \rangle_{\eta}$ Taylor expansion for $W^{-1/2}[U](\rho_{s})\eta$ $W^{-1}[U](\rho_{s}) = \frac{D_{\kappa_{s}}[U]}{D_{\kappa_{s}^{*}}[U]}$ $= 1 - (1 - \rho_{s}) \left(1 - (D_{\kappa_{s}^{*}}[U])^{-1}\right)$ $= 1 - X[U](\rho_{s})$

where $|1 - \rho_{\rm S}| \ll 1$ \Rightarrow expansion of $W^{-1/2}[U](\rho_{\rm S})\eta$ in terms of $X[U](\rho_{\rm S})$

Additional technique

Hasenfratz-Hoffmann-Schaefer

determinant breakup: divide $(\kappa_q^* - \kappa_q)$ into N_B subintervals

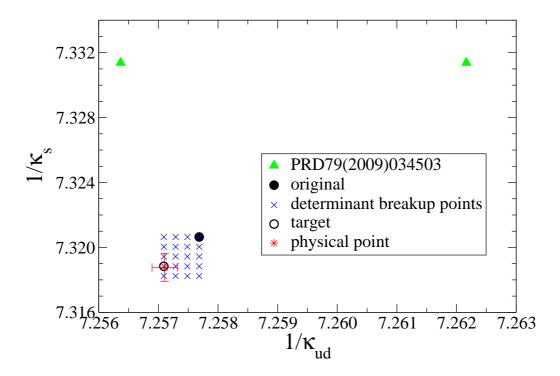
$$\kappa_q \Rightarrow \kappa_q + \Delta_q \Rightarrow \dots \Rightarrow \kappa_q + (N_B - 1)\Delta_q \Rightarrow \kappa_q^*$$

with $\Delta_q = (\kappa_q^* - \kappa_q)/N_B$

$$\det \left[W^{-1}[U](\rho_{q}) \right] = \det \left[W^{-1}[U] \left(\frac{\kappa_{q} + \Delta_{q}}{\kappa_{q}} \right) \right] \times \det \left[W^{-1}[U] \left(\frac{\kappa_{q} + 2\Delta_{q}}{\kappa_{q} + \Delta_{q}} \right) \right]$$
$$\times \ldots \times \det \left[W^{-1}[U] \left(\frac{\kappa_{q}^{*}}{\kappa_{q} + (N_{B} - 1)\Delta_{q}} \right) \right],$$

reduce fluctuations of the reweighting factors

$\S3.$ Simulation and reweighting parameters

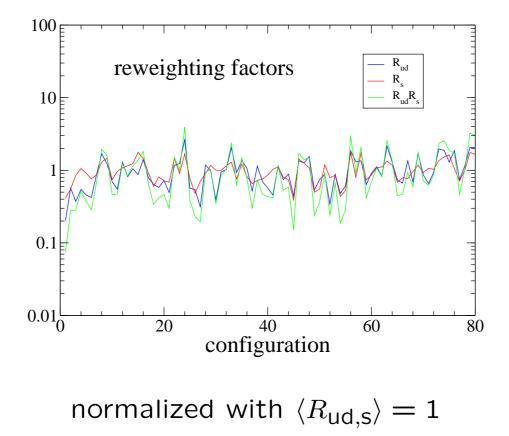

simulation parameters

- original: $(\kappa_{ud}, \kappa_s) = (0.137785, 0.136600)$
- 2000 MD time
- MP²DDHMC for ud quark with 8⁴ block, $\rho_1 = 0.9995$, $\rho_2 = 0.99$
- UV-filtered PHMC for s quark with $N_{poly} = 220$

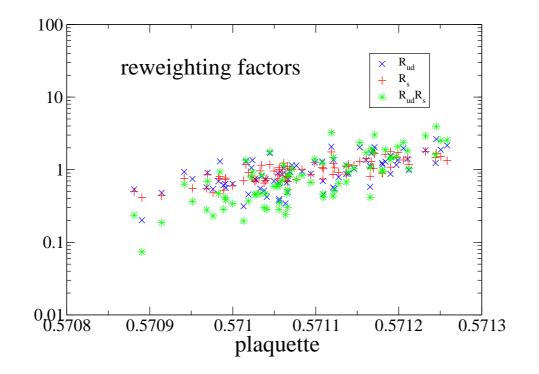
reweighting parameters

- target: $(\kappa_{ud}^*, \kappa_s^*) = (0.13779625, 0.13663375)$
- breakup intervals: $\Delta_{ud} = (0.13779625 0.13778500)/3$,
 - $\Delta_{\rm S} = (0.13663375 0.13660000)/3$
- $-N_{\eta} = 10$ for stochastic estimation of $R_{ud,s}$

location of the physical point

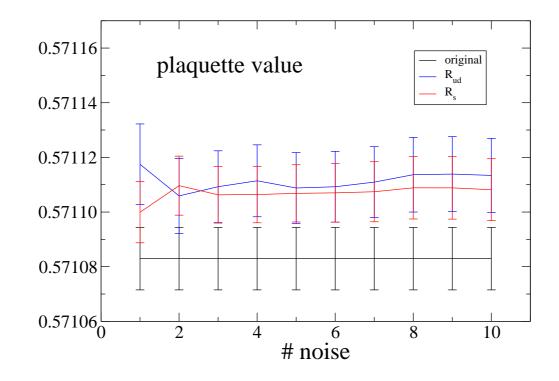


original and target points are fairly close $\Delta m_{\rm ud} \sim 1 {\rm MeV}, \; \Delta m_{\rm S} \sim 3 {\rm MeV}$


\S 4. Results

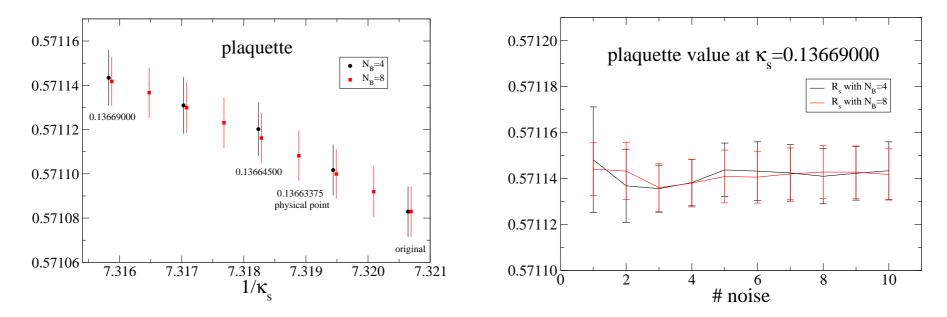
- results for $R_{ud,s}$
- reweighting for plaquette $$N_\eta$$ and N_B dependences
- effective masses for $m_{\pi},~m_{K},~m_{\eta_{\rm SS}}$ reweighting and partially quenching effects
- hadron spectrum

Reweighting factors on each configuration

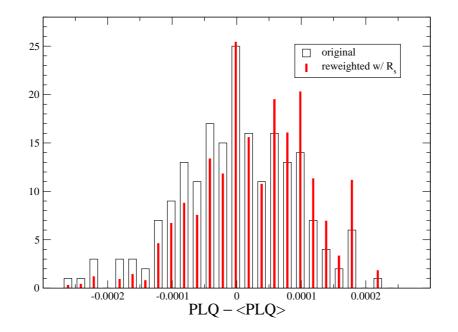


Reweighting factors vs. plaquette value

clear dependence as expected


N_η dependence of reweighted plaquette value

look converged for $N_{\eta} \gtrsim 4$


N_B dependence of reweighted plaquette value

test for $R_{\rm S}[\kappa_{\rm S} = 0.13660000 \rightarrow \kappa_{\rm S}^* = 0.13669000]$ with $N_B = 4$ and 8

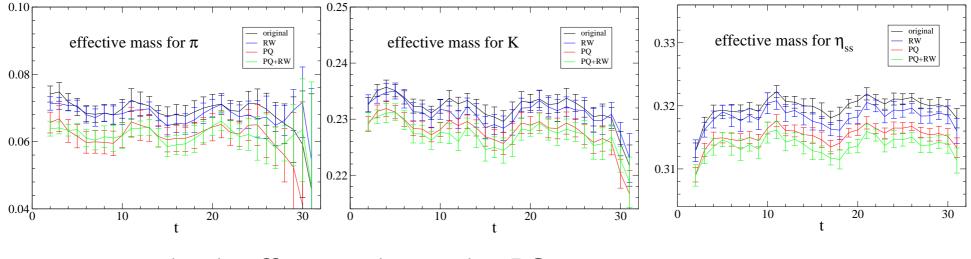
consistent even at $\kappa_{\rm S}^*=0.13669000$

Plaquette histogram w/ and w/o R_s test for $R_s[\kappa_s = 0.13660000 \rightarrow \kappa_s^* = 0.13664500]$ with $N_B = 2$

distribution is slightly moved toward larger values still almost degenerate

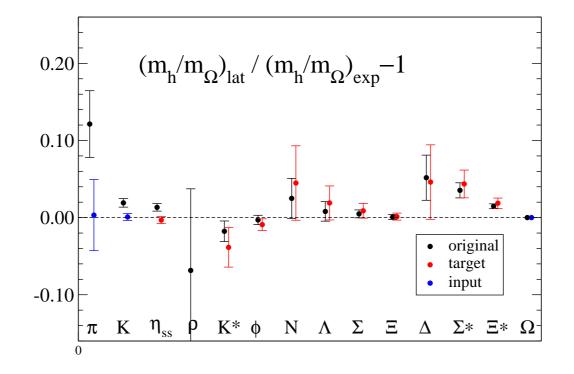
comments on Hasenfratz-Hoffmann-Schaefer's work

- 2 flavor Wilson-clover on a 16^4 , $(1.85 \text{ fm})^4$ lattice

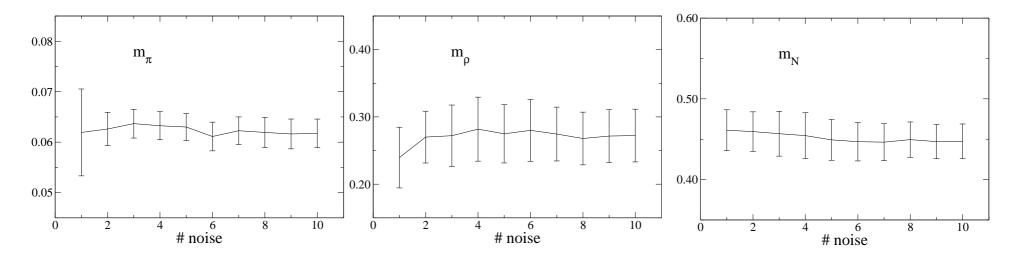

– reweighting from $m_{\rm ud} \approx 20~{\rm MeV}$ to $m_{\rm ud} \approx 5~{\rm MeV}$ to explore ϵ -regime

could be possible thanks to their small lattice volume (smaller volume \Rightarrow broader distribution)

our usage is restricted to fine-tuning for small $\Delta m_{\rm ud,s}$


PS effective masses

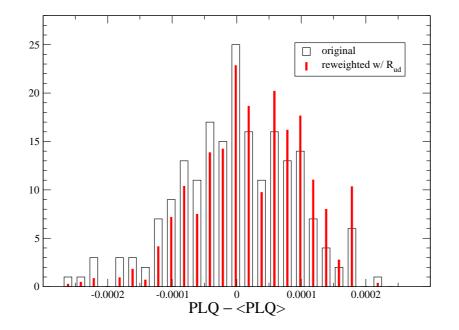
reweighting effect, partially quenching effect and their sum


both effects reduces the PS meson masses

Hadron spectrum in comparison with experiment

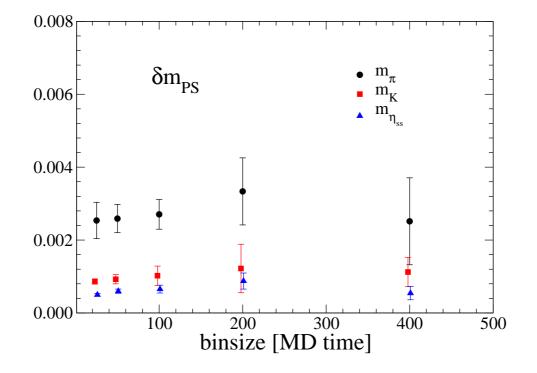
 m_π/m_Ω , m_K/m_Ω are properly tuned

N_η dependence of hadron masses


look converged for $N_\eta{\gtrsim}4$ as in the plaquette case

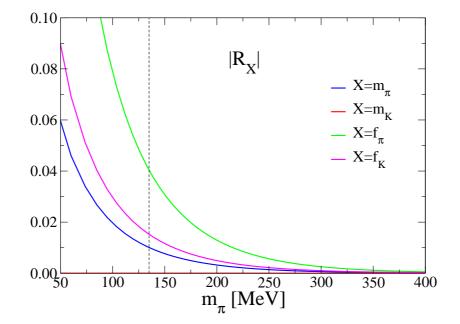
\S **5.** Summary

- fine-tuning of $m_{\rm ud,s}$ to the physical point with reweighting technique
- starting point for precision measurements
- (6fm)³ box simulation is under way


BACKUP

Plaquette histogram w/ and w/o R_{ud} test for $R_{ud}[\kappa_{ud} = 0.13778500 \rightarrow \kappa_{ud}^* = 0.13780000]$ with $N_B = 2$

distribution is slightly moved toward larger values similar behavior as strange case


Jackknife analysis on PS meson masses

autocorrelation is rather small

Finite size effects based on ChPT

Colangero-Dürr-Haefeli, NPB721(2005)136

 $R_{m_{\rm PS}}>0$ and $R_{f_{\rm PS}}<0$ at most a few % at the physical point

$\rho \rightarrow \pi \pi$ decay based on phase shift

$$\begin{pmatrix} \langle \mathcal{O}_{\pi\pi}(t)\mathcal{O}_{\pi\pi}^{\dagger}(0) \rangle & \langle \mathcal{O}_{\pi\pi}(t)\mathcal{O}_{\rho}^{\dagger}(0) \rangle \\ \langle \mathcal{O}_{\rho}(t)\mathcal{O}_{\pi\pi}^{\dagger}(0) \rangle & \langle \mathcal{O}_{\rho}(t)\mathcal{O}_{\rho}^{\dagger}(0) \rangle \end{pmatrix} \Rightarrow \mathsf{E}_{\mathsf{eigen}} \Rightarrow \mathsf{phase \ shift}$$

group	Ref.	#flavor	m_π [MeV]	$g_{ ho\pi\pi}$
CP-PACS	PRD76(07)094506	2	330	6.25(67)
QCDSF	LAT08	2	240-810	5.3(+2.1)(-1.5)
ETMC	LAT10	2	290–480	6–7 ($m_{ud} ightarrow 0$)
PACS-CS	LAT10	2+1	410	5.24(51)
BMW	LAT10	2+1	200,340	5.5(2.9),6.6(3.4)

physical value: $g_{\rho\pi\pi}^{\text{ph}} = 5.98(2)$ from $\Gamma_{\rho}^{\text{ph}}$