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§1. The PACS-CS project
Parallel Array Computer System for Computational Sciences

operation started on 1 July 2006 at CCS in U.Tsukuba
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Physics plan

aim: 2+1 flavor QCD simulation at the physical point

PACS-CS CP-PACS/JLQCD
gauge action Iwasaki Iwasaki
quark action clover with cNP

SW clover with cNP
SW

a[fm] ∼> 0.1 0.07,0.1,0.122
volume ∼> (3fm)3 ∼ (2fm)3

mud physical point 64MeV
algorithm for ud DDHMC with improvements HMC
algorithm for s UV-filtered exact PHMC exact PHMC

strategy: physical point ⇒ enlarge volume ⇒ smaller a
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Why physical point simulation?

• difficult to trace chiral logs for chiral extrapolation

• ChPT is not always a good guiding principle

• direct treatment of resonances based on phase shift

ρ → ππ decay: PRD76(2007)094506, LATTICE2010

• simulations with different up and down quark masses

⇒ there exist two types of problems
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(1) Computational cost
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(2) Fine-tuning to physical point

physical point is known a posteriori, unfortunately

need 3 simulation points within a few MeV differences around the

physical point in 2+1 flavor case

⇒ demanding computational cost

try reweighting method both for ud and s quarks

whose masses are slightly (and unfortunately) off the physical point
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§2. Reweighting method

original:(κud, κs) ⇒ target:(κ∗
ud, κ∗

s) assuming ρq ≡ κq/κ∗
q ≈ 1

〈O[U ](κ∗
ud, κ∗

s)〉(κ∗
ud,κ∗

s)
=

〈O[U ](κ∗
ud, κ∗

s)Rud[U ]Rs[U ]〉(κud,κs)

〈Rud[U ]Rs[U ]〉(κud,κs)

reweighting factors

Rud[U ] = |det [W [U ](ρud)]|2 , Rs[U ] = det [W [U ](ρs)]

where W [U ](ρq) ≡
Dκ∗q

[U ]

Dκq[U ]
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Evaluation of Rud[U ]

introduce a complex bosonic field η

Rud[U ] = |det [W [U ](ρud)]|2

= 〈e−|W−1[U ](ρud)η|2+|η|2〉η

given a set of η(i) (i = 1, . . . , Nη) with the Gaussian distribution

Rud[U ] = lim
Nη→∞

1

Nη

Nη∑
i=1

e−|W−1[U ](ρud)η
(i)|2+|η(i)|2
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Evaluation of Rs[U ]

assume detW [U ](ρs) is positive

Rs[U ] = det [W [U ](ρs)]

= 〈e−|W−1/2[U ](ρs)η|2+|η|2〉η

Taylor expansion for W−1/2[U ](ρs)η

W−1[U ](ρs) =
Dκs[U ]

Dκ∗
s
[U ]

= 1 − (1 − ρs)
(
1 − (Dκ∗

s
[U ])−1

)
= 1 − X[U ](ρs)

where |1 − ρs| ≪ 1

⇒ expansion of W−1/2[U ](ρs)η in terms of X[U ](ρs)
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Additional technique Hasenfratz-Hoffmann-Schaefer

determinant breakup: divide (κ∗
q − κq) into NB subintervals

κq ⇒ κq + ∆q ⇒. . . ⇒ κq + (NB − 1)∆q ⇒ κ∗
q

with ∆q = (κ∗
q − κq)/NB

det
[
W−1[U ](ρq)

]
= det

[
W−1[U ]

(
κq + ∆q

κq

)]
× det

[
W−1[U ]

(
κq + 2∆q

κq + ∆q

)]

× . . . × det

[
W−1[U ]

(
κ∗

q

κq + (NB − 1)∆q

)]
,

reduce fluctuations of the reweighting factors
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§3. Simulation and reweighting parameters

simulation parameters

– original: (κud,κs)=(0.137785,0.136600)
– 2000 MD time
– MP2DDHMC for ud quark with 84 block, ρ1 = 0.9995, ρ2 = 0.99
– UV-filtered PHMC for s quark with Npoly = 220

reweighting parameters

– target: (κ∗
ud,κ

∗
s)=(0.13779625,0.13663375)

– breakup intervals: ∆ud = (0.13779625 − 0.13778500)/3,
– breakup intervals: ∆s = (0.13663375 − 0.13660000)/3
– Nη = 10 for stochastic estimation of Rud,s
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location of the physical point
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original and target points are fairly close

∆mud ∼ 1MeV, ∆ms ∼ 3MeV
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§4. Results

• results for Rud,s

• reweighting for plaquette

Nη and NB dependences

• effective masses for mπ, mK, mηss

reweighting and partially quenching effects

• hadron spectrum
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Reweighting factors on each configuration
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Reweighting factors vs. plaquette value
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Nη dependence of reweighted plaquette value
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NB dependence of reweighted plaquette value

test for Rs[κs = 0.13660000 → κ∗
s = 0.13669000] with NB = 4 and 8
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Plaquette histogram w/ and w/o Rs

test for Rs[κs = 0.13660000 → κ∗
s = 0.13664500] with NB = 2
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comments on Hasenfratz-Hoffmann-Schaefer’s work

– 2 flavor Wilson-clover on a 164, (1.85 fm)4 lattice

– reweighting from mud ≈ 20 MeV to mud ≈ 5 MeV

to explore ϵ-regime

could be possible thanks to their small lattice volume

(smaller volume ⇒ broader distribution)

our usage is restricted to fine-tuning for small ∆mud,s
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PS effective masses

reweighting effect, partially quenching effect and their sum
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Hadron spectrum in comparison with experiment
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Nη dependence of hadron masses

0 2 4 6 8 10
# noise

0.05

0.06

0.07

0.08
mπ

0 2 4 6 8 10
# noise

0.20

0.30

0.40 mρ

0 2 4 6 8 10
# noise

0.40

0.50

0.60

m
N

look converged for Nη∼>4 as in the plaquette case

24



§5. Summary

– fine-tuning of mud,s to the physical point

– with reweighting technique

– starting point for precision measurements

– (6fm)3 box simulation is under way
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BACKUP
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Plaquette histogram w/ and w/o Rud

test for Rud[κud = 0.13778500 → κ∗
ud = 0.13780000] with NB = 2
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Jackknife analysis on PS meson masses
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Finite size effects based on ChPT

Colangero-Dürr-Haefeli, NPB721(2005)136
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ρ → ππ decay based on phase shift

Lüscher, NPB354(1991)531 〈Oππ(t)O†
ππ(0)〉 〈Oππ(t)O†

ρ(0)〉
〈Oρ(t)O†

ππ(0)〉 〈Oρ(t)O†
ρ(0)〉

 ⇒ Eeigen ⇒ phase shift

group Ref. #flavor mπ [MeV] gρππ

CP-PACS PRD76(07)094506 2 330 6.25(67)
QCDSF LAT08 2 240–810 5.3(+2.1)(−1.5)
ETMC LAT10 2 290–480 6–7 (mud → 0)
PACS-CS LAT10 2+1 410 5.24(51)
BMW LAT10 2+1 200,340 5.5(2.9),6.6(3.4)

physical value: gph
ρππ = 5.98(2) from Γph

ρ
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