$N_f = 2 + 1$ lattice QCD at the physical mass point

Determining the light quark masses

Laurent Lellouch

CPT Marseille

for the Budapest-Marseille-Wuppertal (BMW) collaboration

Dürr, Fodor, Frison, Hoelbling, Katz, Krieg, Kurth, Lellouch, Lippert, McNeile, Portelli, Ramos, Szabo, Vulvert

Work in progress

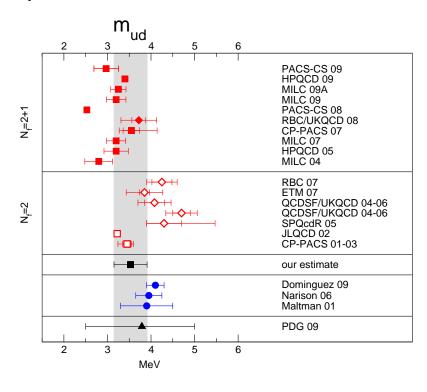
Special thanks to Dürr, Fodor and Hoelbling

Introduction

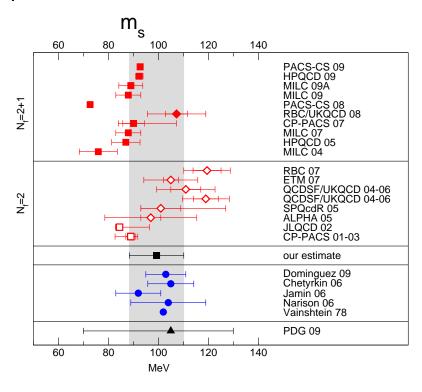
- The masses of the light u, d and s quarks are fundamental parameters of the Standard Model (SM)
- The stability of atoms, the nuclear reactions which power stars, the presence or absence of strong CP violation, etc. depend critically on their precise values
- Their values carry information about the flavor structure of physics beyond the SM
- Quarks are confined w/in hadrons
 - ⇒ a nonperturbative computation is required to determine them
- The deviation of $m_{ud} \equiv (m_u + m_d)/2$ from zero brings only very small corrections to most hadronic observables
 - ⇒ its determination is a needle in a haystack problem
- Fortunately, QCD spontaneously breaks chiral symmetry
 - ⇒ the masses of the resulting Nambu-Goldstone mesons are very sensitive to the light quark masses
- quark masses are an interesting first "measurement" to make w/ physical point LQCD simulations

Current knowledge of the light quark masses

The Flavianet Lattice Averaging Group (FLAG) has performed a detailed analysis of unquenched lattice determinations of the light quark masses



$$m_{ud}^{\overline{\text{MS}}}(2 \text{ GeV}) = \begin{cases} 3.53(38) \text{ MeV} & [11\%] \text{ FLAG} \\ 2.5 \div 5.0 \text{ MeV} & [30\%] \text{ PDG} \end{cases}$$



$$m_s^{\overline{\text{MS}}}(2 \,\text{GeV}) = \begin{cases} 99.(11) \,\text{MeV} & [11\%] \text{ FLAG} \\ 70 \div 130 \,\text{MeV} & [30\%] \text{ PDG} \end{cases}$$

Even extensive study by MILC does not control all systematics:

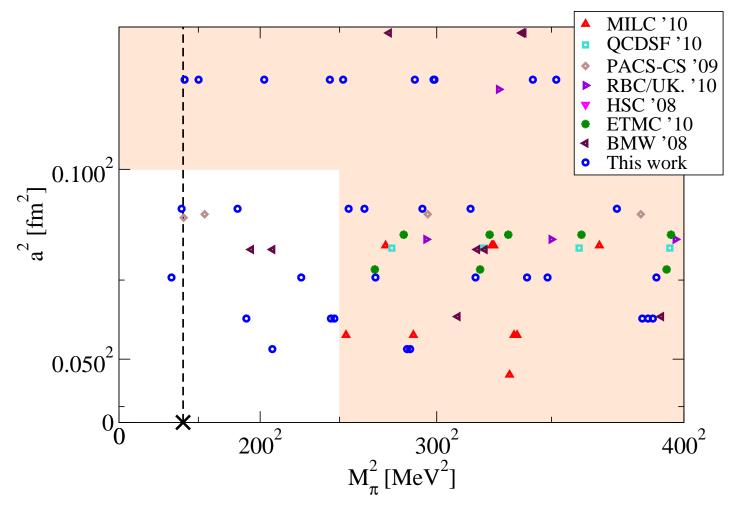
•
$$M_{\pi}^{\text{RMS}} \geq 260 \, \text{MeV}$$
 \Rightarrow $m_{ud}^{\text{MILC,eff}} \geq 3.7 \times m_{ud}^{\text{phys}}$

perturbative renormalization (albeit 2 loops)

The calculation that I have been dreaming of doing

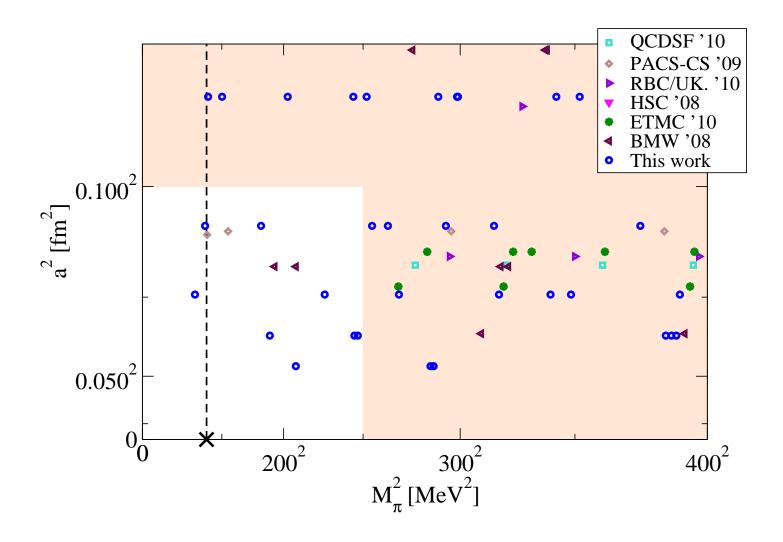
- $N_f = 2 + 1$ all the way down to $M_{\pi} \lesssim 135 \, \mathrm{MeV}$ to allow small interpolation to physical mass point
- Large $L \gtrsim 5 \, \text{fm}$ to have sub percent finite V errors
- At least three a < 0.1 fm for controlled continuum limit
- A reliable determination of the scale w/ a well measured physical observable
- Unitary, local gauge and fermion actions
- Full nonperturbative renormalization and continuum extrapolated running for determining RGI quark masses
- Complete analysis of systematic uncertainties

All simulations w/ $N_f \ge 2 + 1$ and $M_{\pi} \le 400 \, \text{MeV} \dots$ (points for our currently running, next-to-finest simulations at $\beta = 5.7$ are estimates)

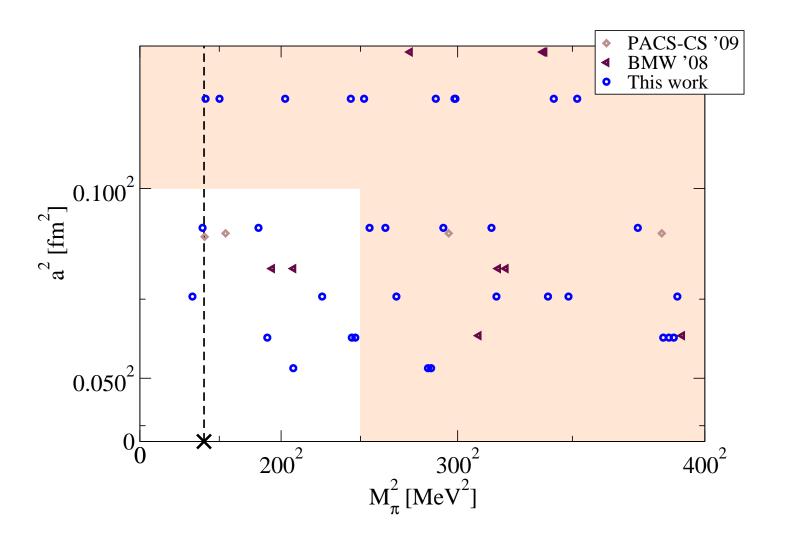


(from C. Hoelbling, Lattice 2010)

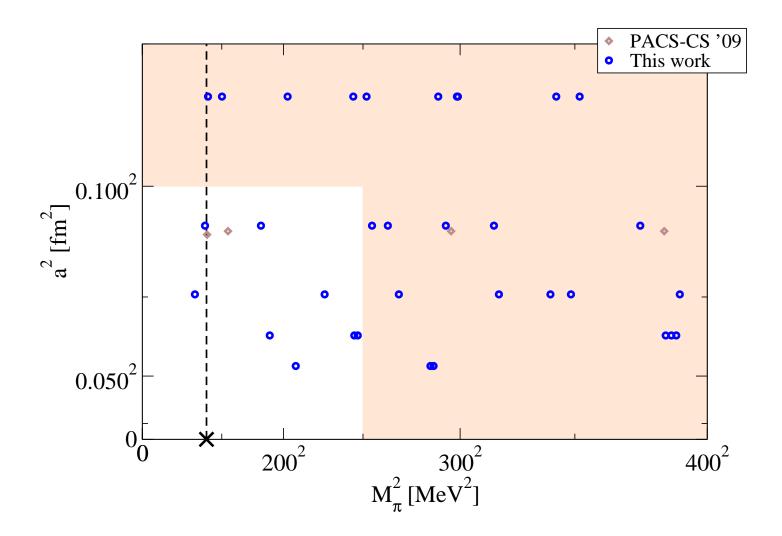
... and w/ unitary, local gauge and fermion actions...



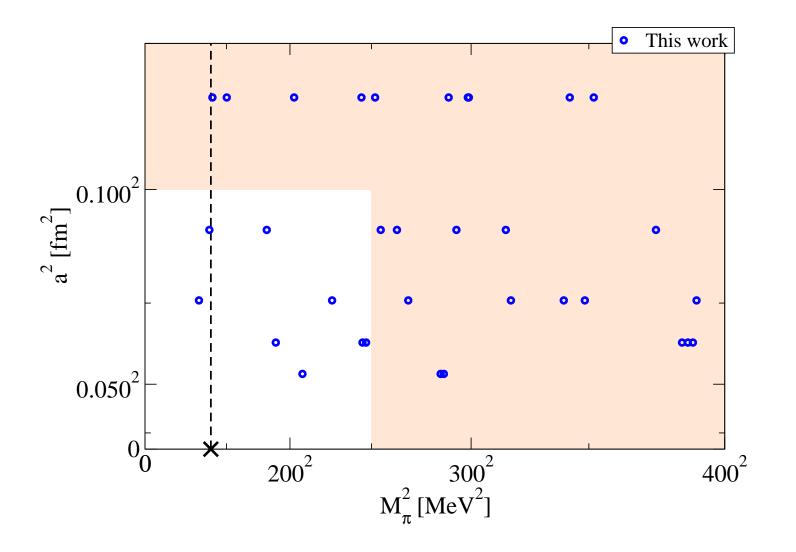
... and w/ sea u and d quarks clearly in the chiral regime, i.e. $M_{\pi}^{min} \leq 250 \,\mathrm{MeV}...$



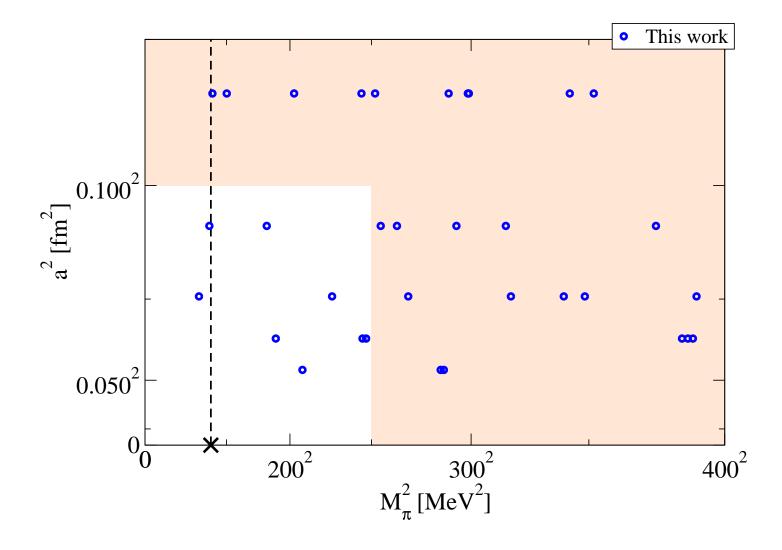
 \dots and w/ sea u and d quarks at or below physical mass point \dots



... and w/ volumes such that FV errors $\leq 0.5\%$ – PACS-CS has $LM_{\pi} = 1.97$...



... and w/ at least three $a \le 0.1 \, fm$...



How did we get there?

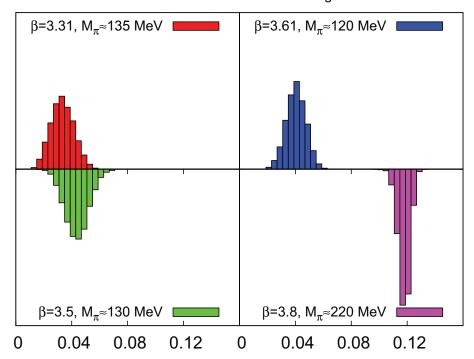
Dürr et al (BMW), PRD79 2009

- $N_f = 2 + 1$ QCD: degenerate u & d w/ mass m_{ud} and s quark w/ mass $m_s \sim m_s^{\rm phys}$
- 1) Discretization which balances improvement in gauge/fermionic sector and CPU cost:
 - tree-level $O(a^2)$ -improved gauge action (Lüscher et al '85)
 - tree-level O(a)-improved Wilson fermion (Sheikholeslami et al '85) w/ 2 HEX smearing (Morningstar et al '04, Hasenfratz et al '01, Capitani et al '06)
 - \Rightarrow approach to continuum is improved ($O(\alpha_s a, a^2)$) instead of O(a))
- 2) Highly optimized algorithms (see also Urbach et al '06):
 - Hybrid Monte Carlo (HMC) for u and d and Rational HMC (RHMC) for s
 - mass preconditioning (Hasenbusch '01)
 - multiple timescale integration of molecular dynamics (MD) (Sexton et al '92)
 - Higher-order (Omelyan) integrator for MD (Takaishi et al '06)
 - mixed precision acceleration of inverters via iterative refinement
- 3) Highly optimized codes for Blue Gene

How is our setup performing?

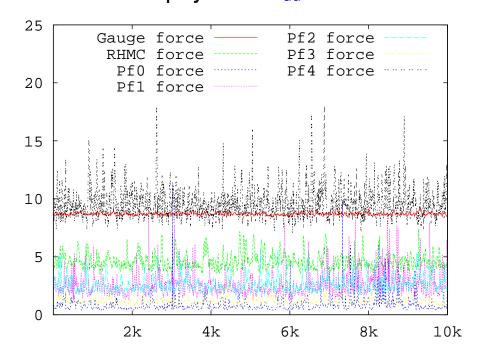
Ensembles w/ smallest m_q per β ; lightest pseudofermion

Inverse iteration count $(1/N_{cg})$



- $10^3/N_{CG}$ distribution is approx. Gaussian
- N_{CG} remains clearly bounded from above

Spacetime max. of MD forces for $\beta = 3.31$ at physical m_{ud}

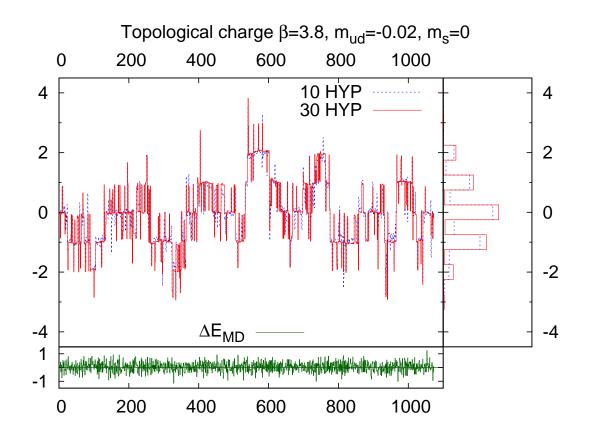


- No killer spikes
- \longrightarrow good acceptance $\geq 90\%$

Evolution of topological charge on finest lattice

 $a \simeq 0.054 \, \mathrm{fm}$ and $M_\pi \simeq 280 \, \mathrm{MeV}$ on $48^3 \times 64$ lattice

$$Q = rac{a^4}{(4\pi)^2} \sum_{x} \operatorname{Tr}[F_{\mu
u}^{\mathrm{HYP}}(x) \tilde{F}_{\mu
u}^{\mathrm{HYP}}]$$

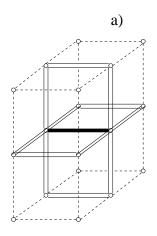


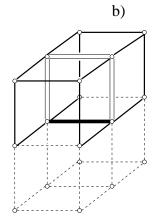
- Q fluctuates and evolves: integrated autocorrelation time $\sim O(10)$
- Q falls into integer centered bins
- Q distribution is reasonably symmetric
- No obvious ergodicity problem

What is 2 HEX smearing?

2 HEX smearing:

- Elementary smearing algorithm is stout (EXponential) smearing (Morningstar et al '04)
- Embedded into 2 steps of HYPercubic smearing (Hasenfratz et al '01)



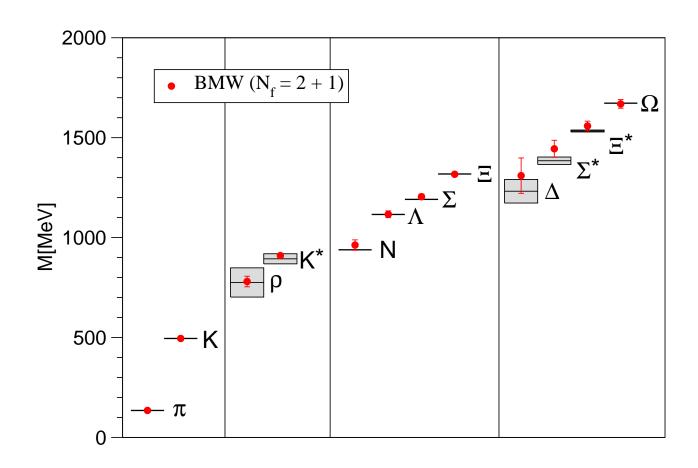


- Couples q(x) to $A_{\mu}(x + (3.5a)\hat{e})$ ($\hat{e}.\hat{e} = 1$) w/ weight $\sim 3 \times 10^{-5}$
- \rightarrow effective range: $\sqrt{\langle r^2 \rangle} = 1.1a$
- Ultralocal and effectively extends barely more than nearest neighbor
- Only differs from regular improved Wilson fermions by $O(\alpha_s a)$
- More local than previously used 6 stout smearing (Dürr et al, Science 322 (2008))

Is smearing a problem?

Dürr et al (BMW), Science 322 (2008) 1224

With 6 stout smearing and $M_{\pi} \gtrsim 190 \, \mathrm{MeV}$, light hadron spectrum is correctly reproduced

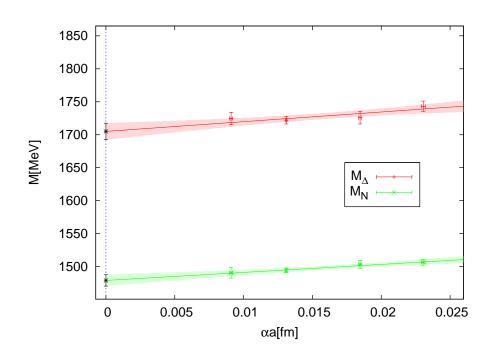


Does our smearing enhance discretization errors?

 \Rightarrow scaling study: $N_f = 3$ w/ 2 HEX action, 4 lattice spacings ($a \simeq 0.06 \div 0.15$ fm), $M_{\pi}L > 4$ fixed and

$$M_{\pi}/M_{
ho} = \sqrt{2(M_{K}^{ph})^{2} - (M_{\pi}^{ph})^{2}}/M_{\phi}^{ph} \sim 0.67$$

i.e.
$$m_q \sim m_s^{ph}$$



- M_N and M_Δ are linear in $\alpha_s a$ out to $a \sim 0.15 \, \mathrm{fm}$
- \Rightarrow very good scaling: discret. errors $\leq 2\%$ out to $a \sim 0.15 \, \mathrm{fm}$
- Continuum limit results perfectly consistent w/ analogous 6 stout analysis in Dürr et al (BMW), PRD79 (2009)

Does our smearing enhance discretization errors?

Perhaps 2 HEX works for spectral quantities but not for short distance dominated quantities

 \Rightarrow repeat ALPHA's quenched milestone determination of $r_0(m_s + m_{ud})^{\overline{\rm MS}}(2\,{\rm GeV})$

Perform quenched calculation w/ Wilson glue and 2 HEX fermions

- 5 β w/ $a \sim 0.06 \div 0.15$ fm
- At least 4 m_q per β w/ $M_{\pi}L >$ 4 and fixed $L \simeq 1.84 \mathrm{fm}$
- Calculate

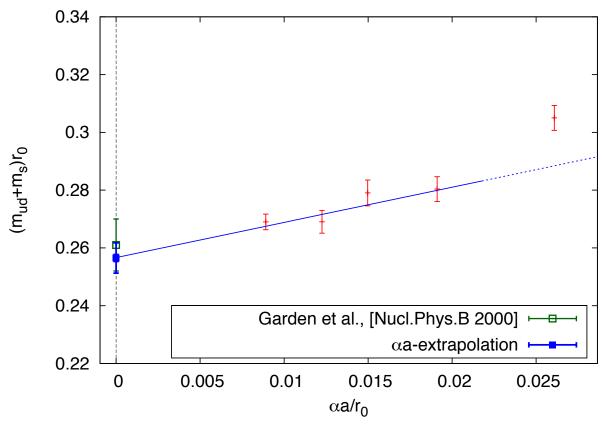
$$m(\mu) = \frac{(1 - am^W/2)m^W}{Z_S(\mu)}$$

$$\mathbf{w}/m^W = m^{\text{bare}} - m^{\text{crit}}$$

- Determine $Z_S(\mu)$ using RI/MOM NPR (Martinelli et al '95) and run nonperturbatively in continuum to $\mu = 3.5 \, \text{GeV}$ (see below)
- Interpolate in $r_0 M_{PS}$ to $r_0 M_K^{phys}$
- $m^{\text{RI}}(3.5 \,\text{GeV}) \longrightarrow m^{\overline{\text{MS}}}(2 \,\text{GeV})$ perturbatively

Quenched check: determination of $r_0(m_s + m_{ud})$

Perform continuum extrapolation of $r_0(m_s + m_{ud})^{\overline{\rm MS}}$ (2 GeV) (preliminary)



With full systematic analysis

$$r_0(m_s + m_{ud})^{\overline{\rm MS}}(2\,{
m GeV}) = 0.261(4)(4)$$

Perfect agreement w/ ALPHA $r_0(m_s + m_{ud})^{\overline{\rm MS}}(2\,{\rm GeV}) = 0.261(9)$

$N_f = 2 + 1$ simulation parameters

38 + 9, $N_f = 2 + 1$ phenomenological runs:

- 5 $a \simeq 0.054 \div 0.116 \,\mathrm{fm}$
- $M_{\pi}^{min} \simeq 135$, 130, 120, 190, 220 MeV
- L up to 6 fm and such that $\delta_{\rm FV} \leq 0.5\%$ on M_π for all runs
- 10 + 3 different values of m_s around m_s^{phys}
- Determine lattice spacing using M_{Ω}

17 + 4, $N_f = 3$ RI/MOM runs at same β as phenomenological runs:

- At least 4 $m_q \in [m_s^{phys}/3, m_s^{phys}]$ per β for chiral extrapolation
- $L \ge 1.7 \, \text{fm}$ in all runs

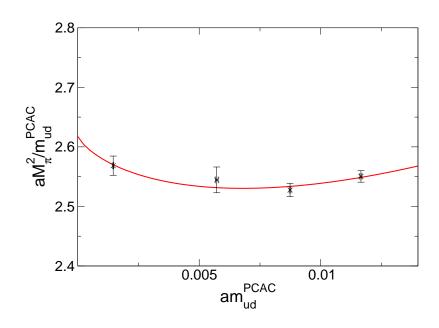
Do we see chiral logs?

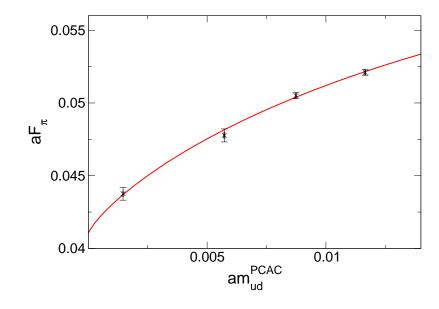
Simultaneous fit of M_{π}^2 and F_{π} vs m_{ud} to NLO SU(2) χ PT expressions (Gasser et al, '84)

$$M_{\pi}^2 = M^2 \left[1 - \frac{1}{2} x \log \left(\frac{\Lambda_3^2}{M^2} \right) \right]$$
 $F_{\pi}^2 = F \left[1 + x \log \left(\frac{\Lambda_4^2}{M^2} \right) \right]$

w/ $M^2 = 2Bm_{ud}$ and $x = M^2/(4\pi F)^2$

Fixed $a \simeq 0.09 \, \mathrm{fm}$ and $M_\pi \simeq 130 \to 400 \, \mathrm{MeV}$ (preliminary)





Consistent w/ NLO χ PT . . .

VWI and AWI masses: ratio-difference method

With $N_f = 2 + 1$, O(a)-improved Wilson fermions, can construct the following renormalized, O(a)-improved quantities (using Bhattacharya et al '06)

$$(m_s - m_{ud})^{\text{VWI}} = (m_s^{\text{bare}} - m_{ud}^{\text{bare}}) \frac{1}{Z_S} \left[1 - \frac{b_S}{2} a(m_{ud}^{\text{W}} + m_s^{\text{W}}) - \bar{b}_S a(2m_{ud}^{\text{W}} + m_s^{\text{W}}) \right] + O(a^2)$$

w/ $m^{W} = m^{\text{bare}} - m^{\text{crit}}$ and

$$\frac{m_s^{\text{AWI}}}{m_{ud}^{\text{AWI}}} = \frac{m_s^{\text{PCAC}}}{m_{ud}^{\text{PCAC}}} \left[1 + (b_A - b_P) \, a(m_s^{\text{bare}} - m_{ud}^{\text{bare}}) \right]$$

w/

$$m^{ ext{PCAC}} \equiv rac{1}{2} rac{\sum_{ec{x}} \langle ar{\partial}_{\mu} \left[A_{\mu}(x) + a c_{A} \partial_{\mu} P(x)
ight] P(0)
angle}{\sum_{ec{x}} \langle P(x) P(0)
angle}$$

and $b_{A,P,S} = 1 + O(\alpha_s)$, $\bar{b}_{A,P,S} = O(\alpha_s^2)$, $c_A = O(\alpha_s)$

Ratio-difference method (cont'd)

Define

$$d \equiv am_s^{\text{bare}} - am_{ud}^{\text{bare}}, \qquad r \equiv \frac{m_s^{\text{PCAC}}}{m_{ud}^{\text{PCAC}}}$$

and subtracted bare masses

$$am_{ud}^{\mathrm{sub}} \equiv \frac{d}{r-1}, \qquad am_s^{\mathrm{sub}} \equiv \frac{rd}{r-1}$$

Then, with our tree-level O(a)-improvement, renormalized masses can be written

$$m_{ud} = \frac{m_{ud}^{\text{sub}}}{Z_{\text{S}}} \left[1 - \frac{a}{2} (m_{ud}^{\text{sub}} + m_{\text{s}}^{\text{sub}}) \right] + O(\alpha_{\text{s}} a)$$

$$m_s = \frac{m_s^{\text{sub}}}{Z_S} \left[1 - \frac{a}{2} (m_{ud}^{\text{sub}} + m_s^{\text{sub}}) \right] + O(\alpha_s a)$$

Benefits:

- Only Z_S (non-singlet) is required and difficult RI/MOM Z_P is circumvented
- No need to determine m^{crit}

Improved RI/MOM for Z_S

Determine $Z_S^{RI}(\mu, a)$ nonperturbatively in RI/MOM scheme, from truncated, forward quark two-point functions in Landau gauge (Martinelli et al '95), computed on specifically generated $N_f = 3$ gauge configurations

Use
$$S(p) o ar{S}(p) = S(p) - \mathrm{Tr}_D[S(p)]/4$$
 (Becirevic et al '00)

- \Rightarrow tree-level O(a) improvement
- ⇒ significant improvement in S/N
- \Rightarrow recover usual massless RI/MOM scheme for $m^{RGI} \rightarrow 0$

For controlled errors, require:

- (a) $\mu \ll 2\pi/a$ for $a \to 0$ extrapolation
- (b) $\mu \gg \Lambda_{QCD}$ if masses are to be used in perturbative context
- i.e. the window problem, which we solve as follows

Ad (a): RI/MOM at sufficiently low scale

Controlled continuum extrapolation of renormalized mass

- \Rightarrow renormalize at μ where RI/MOM $O(\alpha_s a)$ errors are small for all β
 - For coarsest ($\beta = 3.31$) lattice, $2\pi/a \simeq 11$ GeV
 - Restrict study of $Z_S^{\rm RI}(\mu,a)$ to $\mu \lesssim \pi/2a \simeq 2.7\,{\rm GeV}$ $(\beta=3.31)$
 - Pick $\mu \in [1.2, 1.8]$ GeV as common renormalization point for all β
 - Can take $a \rightarrow 0$
 - \Rightarrow continuum $m^{RI}(\mu)$ determined fully nonperturbatively ...
 - ... but at $\mu \gtrsim \Lambda_{\rm QCD}$
 - \Rightarrow not very useful for phenomenology since perturbative error large at such μ

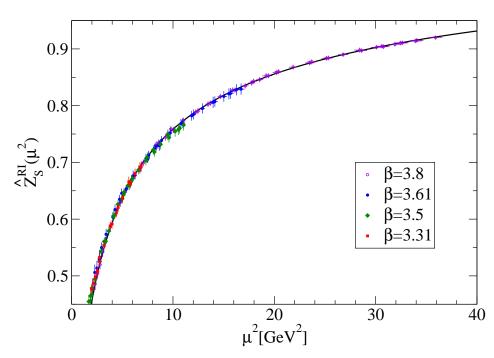
Ad (b): nonperturbative continuum running to 4.2 GeV

To make result useful, run nonperturbatively in continuum limit up to perturbative scale

For μ : 1.2 \rightarrow 4.2 GeV, always have at least 3 a (including the β = 3.7 results to come) w/ $\mu \lesssim \pi/2a$

⇒ can determine nonperturbative running in continuum limit

$$R^{\rm RI}(\mu, 4.2\,{
m GeV}) = \lim_{a \to 0} \frac{Z_{S}^{\rm RI}(4.2\,{
m GeV}, a)}{Z_{S}^{\rm RI}(\mu, a)}$$



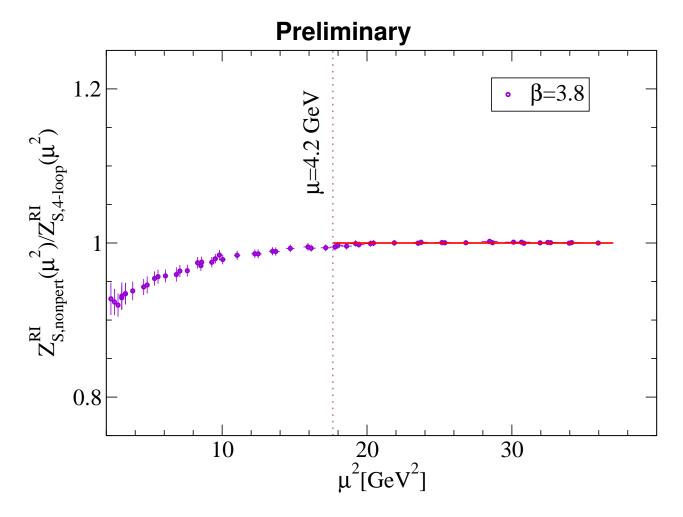
Rescaled $Z_S^{ m RI}(\mu,a_eta)$ for eta < 3.8 to \sim match $Z_S^{ m RI}(\mu,a_{eta=3.8})$

Preliminary

Running is very similar at all 4 β \Rightarrow flat $a \rightarrow 0$ extrapolation

Ad (b): running above 4.2 GeV

For $\mu > 4.2$ GeV, 4-loop perturbative running agrees w/ nonperturbative running on our finer lattices

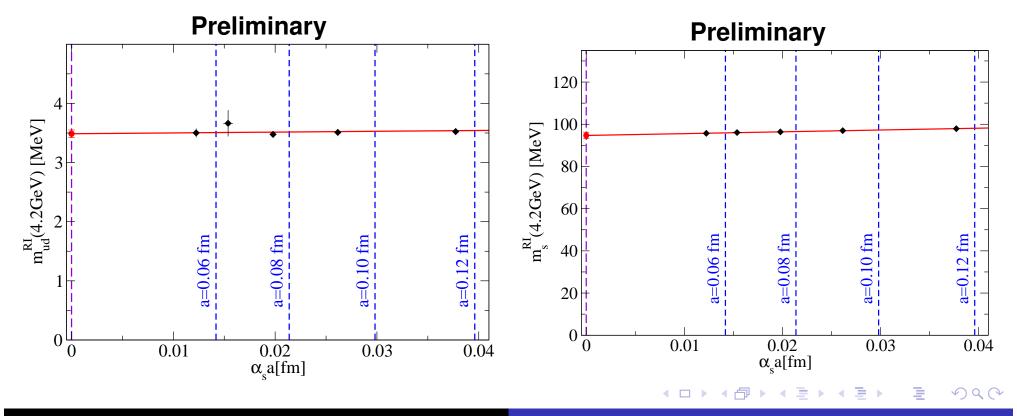


Continuum extrapolation of renormalized masses

Renormalized quark masses **interpolated** in M_{π}^2 & M_K^2 to physical point using:

- *SU*(2) χPT
- or low-order polynomial anszätze
- w/ cuts on pion mass $M_{\pi} < 340, 400 \,\mathrm{MeV}$

Example of continuum extrapolations (statistical errors shown here)



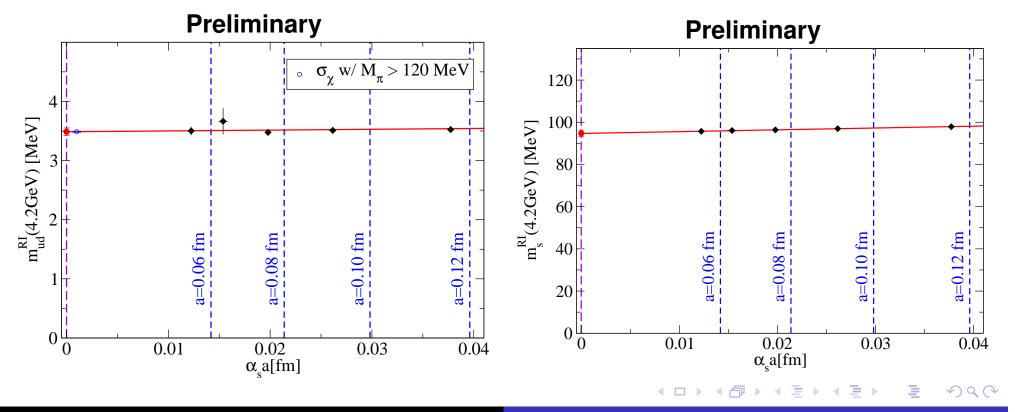
Continuum extrapolation of renormalized masses

Renormalized quark masses **interpolated** in M_{π}^2 & M_K^2 to physical point using:

- SU(2) χPT
- or low-order polynomial anszätze
- w/ cuts on pion mass $M_{\pi} < 340, 400 \,\mathrm{MeV}$

Example of continuum extrapolations (statistical errors shown here)

... and syst. error due to chiral interp.



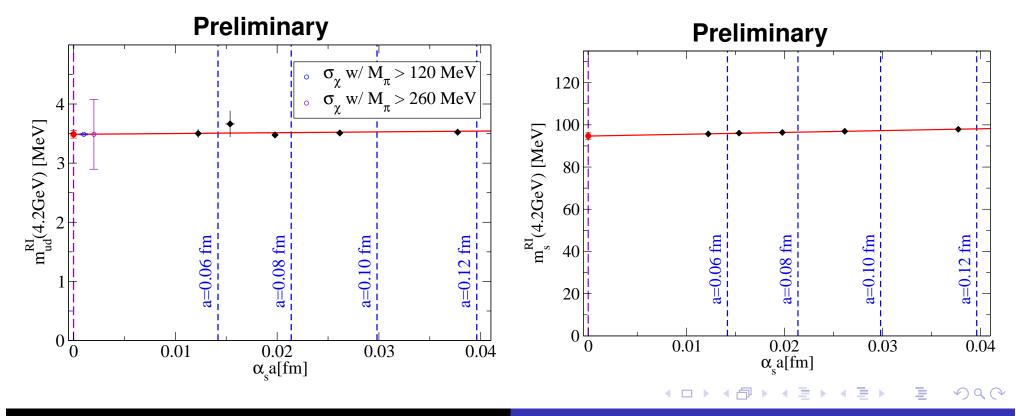
Continuum extrapolation of renormalized masses

Renormalized quark masses **interpolated** in M_{π}^2 & M_K^2 to physical point using:

- SU(2) χPT
- or low-order polynomial anszätze
- w/ cuts on pion mass $M_{\pi} < 340, 400 \,\mathrm{MeV}$

Example of continuum extrapolations (statistical errors shown here)

... and syst. error due to chiral extrap. if $M_{\pi} \leq M_{\pi}^{\rm RMS}|_{\rm MILC}^{\rm min} \simeq 260\,{\rm MeV}$ data are excluded



Conclusions

- $N_f = 2 + 1$ simulations have been performed all the way down to m_{ud}^{phys} and below w/ $m_s \simeq m_s^{phys}$:
 - 5 $a \simeq 0.054 \div 0.116 \,\mathrm{fm}$
 - $M_{\pi}^{min} \simeq 135, 130, 120, 190, 220 \,\mathrm{MeV}$
 - L up to 6 fm and such that $\delta_{\rm FV} \leq 0.5\%$ on M_{π} for all runs
- \rightarrow eliminates large systematic error associated w/ reaching m_{ud}^{phys}
- Described an RI/MOM procedure which includes continuum limit, nonperturbative running
- → eliminates large systematic error associated w/ the "window" problem
- Currently finalizing analysis of light quark masses
- Systematic error will be estimated following an extended frequentist approach (Dürr et al, Science '08)
 - \rightarrow expect total uncertainty on m_{ud} and m_s to be of order $2 \div 3\%$
- \Rightarrow will significantly improve knowledge of m_{ud} and m_s whose errors are, at present, 11% [FLAG] \div 30% [PDG]

Conclusions

- MILC and HPQCD claim results w/ similar uncertainties, but these are obtained from simulations w/ $M_{\pi}^{\rm RMS} \geq 260 \, {\rm MeV}$
- Imposing the cut $M_{\pi} \geq 260 \, \text{MeV}$ on our results

$$\Rightarrow \delta_{\chi} m_{ud} \sim 0.3\% \longrightarrow \delta_{\chi} m_{ud} \sim 15\%$$

- \Rightarrow assumptions on mass dependence of results, which go beyond NLO SU(2) χ PT, must be made
- Fully controlled LQCD calculations can now be envisaged w/out any assumptions on light quark mass dependence of results
- The dream of simulating QCD w/ no ifs nor buts is finally becoming a reality