Extraction of hadron interactions from Lattice QCD

Sinya AOKI University of Tsukuba

CERN Theory Institute
"Future directions in lattice gauge theory-LGT10" 19 July - 13 August, 2010, CERN, Geneva

HAL QCD Collaboration

S. Aoki (Tsukuba)
T. Doi (Tsukuba)
T. Hatsuda (Tokyo)
Y. Ikeda (Riken)
T. Inoue (Nihon)
K. Murano (KEK)
H. Nemura (Tohoku)
K. Sasaki (Tsukuba)

1. Motivation

Nuclear force is a basis for understanding ...

- Structure of ordinary and hyper nuclei

- Structure of neutron star
- Ignition of Type II SuperNova

Phenomenological NN potential

 (~ 40 parameters to fit 5000 phase shift data)

Plan of my talk

1. Motivation
2. Strategy in (lattice) QCD to extract "potential"
3. More structure: tensor potential
4. Inelastic scattering: octet baryon interactions
5. Baryon-Baryon interactions in an $\operatorname{SU}(3)$ symmetric world
6. Proposal for $S=-2$ inelastic scattering
7. H-dibaryon
8. New method for hadron interactions in lattice QCD
9. Summary and Discussion

2. Strategy in (lattice) QCD to extract "potential"

Challenge to Nambu's statement
"Even now, it is impossible to completely describe nuclear forces beginning with a fundamental equation."
Y. Nambu, "Quarks: Frontiers in Elementary Partcile Physics", World Scientific (1985)

Definition of "Potential" in (lattice) QCD ?

Previous attempt
Takahashi-Doi-Suganuma, AIP Conf.Proc. 842,249(2006)
calculate energy of Qqq +Qqq as a function of r between $2 Q$. Q:static quark, q: light quark

Quenched result

(a)

(b)

(c)

(d)
($\kappa=0.1650$)

Almost no dependence on r!
cf. Recent successful result in the strong coupling limit (deForcrand-Fromm, PRL104(2010)112005)

Quantum Field Theoretical consideration

- S-matrix below inelastic threshold. Unitarity gives

$$
S=e^{2 i \delta}
$$

- Nambu-Bethe-Salpeter (NBS) Wave function

$$
E=2 \sqrt{\mathbf{k}^{2}+m_{N}^{2}}
$$

$$
\varphi_{E}(\mathbf{r})=\langle 0| N(\mathbf{x}+\mathbf{r}, 0) N(\mathbf{x}, 0)|6 q, E\rangle
$$

QCD eigen-state with energy E and \#quark $=6$

$$
N(x)=\varepsilon_{a b c} q^{a}(x) q^{b}(x) q^{c}(x): \text { local operator }
$$

$$
\begin{aligned}
\varphi_{E}(\mathbf{r}) & =e^{i \mathbf{k} \cdot \mathbf{r}}+\int \frac{d^{3} p}{(2 \pi)^{3}} e^{i \mathbf{p} \cdot \mathbf{r}} \frac{E_{k}+E_{p}}{8 E_{p}^{2}} \frac{T(\mathbf{p},-\mathbf{p} \leftarrow \mathbf{k},-\mathbf{k})}{\mathbf{p}^{2}-\mathbf{k}^{2}-i \epsilon} \\
& +\mathcal{I}(\mathbf{r})
\end{aligned}
$$

inelastic contribution $\propto O\left(e^{-\sqrt{E_{t h}^{2}-E^{2}}|\mathbf{r}|}\right)$

$$
\text { C.-J.D.Lin et al., NPB69(2001) } 467
$$

$$
\text { CP-PACS Coll., PRD71 (2005) } 094504
$$

$$
r=|\mathbf{r}| \rightarrow \infty
$$

$$
\varphi_{E}^{l}(r) \longrightarrow A_{l} \frac{\sin \left(k r-l \pi / 2+\delta_{l}(k)\right)}{k r} \quad l=0,1,2, \cdots
$$

partial wave

Finite volume

allowed value: k_{n}^{2}

Lueshcer's formula

$$
\delta_{l}\left(k_{n}\right)
$$

Systemtic procedure to define the NN potential in lattice QCD

1. Choose your favorite operator: e.g. $N(x)=\varepsilon_{a b c} q^{a}(x) q^{b}(x) q^{c}(x)$
2. Measure the NBS amplitude:

$$
\varphi_{E}(\mathbf{r})=\langle 0| N(\mathbf{x}+\mathbf{r}, 0) N(\mathbf{x}, 0)|6 q, E\rangle
$$

3. Define the non-local potential:

$$
\epsilon_{k}=\frac{\mathbf{k}^{2}}{2 \mu} \quad H_{0}=\frac{-\nabla^{2}}{2 \mu}
$$

$$
\left[\epsilon_{k}-H_{0}\right] \varphi_{E}(\mathbf{x})=\int d^{3} y U(\mathbf{x}, \mathbf{y}) \varphi_{E}(\mathbf{y})
$$

4. Velocity expansion: $\quad U(\mathbf{x}, \mathbf{y})=V(\mathbf{x}, \nabla) \delta^{3}(\mathbf{x}-\mathbf{y})$

$$
\begin{array}{ccc}
V(\mathbf{x}, \nabla)= & V_{0}(r)+V_{\sigma}(r)\left(\sigma_{\mathbf{1}} \cdot \sigma_{\mathbf{2}}\right)+V_{T}(r) S_{12}+V_{\mathrm{LS}}(r) \mathbf{L} \cdot \mathbf{S}+O\left(\nabla^{2}\right) \\
\text { LO } & \text { LO } & \text { NLO }
\end{array}
$$

5. Calculate observables: phase shift, binding energy etc.

NBS wave function on the lattice

4 point nucleon correlator

$$
\begin{aligned}
\mathcal{G}_{\alpha \beta}\left(\mathbf{x}, \mathbf{y}, t-t_{0} ; J^{P}\right) & \equiv\langle 0| n_{\beta}(\mathbf{y}, t) p_{\alpha}(\mathbf{x}, t) \overline{\mathcal{J}}_{p n}\left(t_{0} ; J^{P}\right)|0\rangle \\
& =\sum_{n} A_{n}\langle 0| n_{\beta}(\mathbf{y}, 0) p_{\alpha}(\mathbf{x}, 0)\left|E_{n}\right\rangle e^{-E_{n}\left(t-t_{0}\right)} \\
& \longrightarrow A_{0} \psi_{\alpha \beta}\left(\mathbf{r} ; J^{P}\right) e^{-e_{0}\left(t-t_{0}\right)} \\
& A_{n}=\left\langle E_{n}\right| \overline{\mathcal{J}}_{p n}\left(0 ; J^{P}\right)|0\rangle
\end{aligned}
$$

Wall source
$L=0 \quad \mathcal{J}_{p n}\left(t_{0} ; J^{P}\right)=P_{\beta \alpha}^{(s)}\left[p_{\alpha}^{\text {wall }}\left(t_{0}\right) n_{\beta}^{\text {wall }}\left(t_{0}\right)\right] \quad q\left(\mathbf{x}, t_{0}\right) \rightarrow q^{\text {wall }}\left(t_{0}\right)=\sum_{\mathbf{x}} q\left(\mathbf{x}, t_{0}\right)$
$\left(A_{1}\right) \quad\left(J, J_{z}\right)=\left(s, s_{z}\right) \quad P=+$
with Coulomb gauge fixing

cubic group

$$
\begin{aligned}
& \psi\left(r ;^{1} S_{0}\right)=P^{\left(A_{1}\right)} P^{(s=0)} \psi\left(\mathbf{r} ; 0^{+}\right) \equiv \frac{1}{24} \sum_{g \in O} P_{\beta \alpha}^{(s=0)} \psi_{\alpha \beta}\left(g^{-1} \mathbf{r} ; 0^{+}\right) \\
& \psi\left(r ;^{3} S_{1}\right)=P^{\left(A_{1}\right)} P^{(s=1)} \psi\left(\mathbf{r} ; 1^{+}\right) \equiv \frac{1}{24} \sum_{g \in O} P_{\beta \alpha}^{(s=1)} \psi_{\alpha \beta}\left(g^{-1} \mathbf{r} ; 1^{+}\right)
\end{aligned}
$$

(quenched) potentials

Qualitative features of NN potential are reproduced!
Ishii-Aoki-Hatsuda, PRL90(2007)0022001
This paper has been selected as one of 21 papers in Nature Research Highlights 2007

Frequently Asked Questions

[Q1] Operator dependence of the potential [Q2] Energy dependence of the potential

[A1] choice of operator = scheme, cf. running coupling
$(N(x), U(x, y))$ is a combination to define ovservables
QM: $(\Phi, \mathrm{U}) \rightarrow$ observables
QFT: (asymptotic field, vertices) \rightarrow observables
EFT: (choice of field, vertices) \rightarrow observables

- local operator = convenient choice for reduction formula
[A2] $\mathrm{U}(\mathrm{x}, \mathrm{y})$ is E -independent by construction
- non-locality can be determined order by order in velocity expansion (cf. ChPT)

Non-local, E-independent

Local, E-dependent
$\left(E+\frac{\nabla^{2}}{2 m}\right) \varphi_{E}(\mathbf{x})=\int d^{3} y U(\mathbf{x}, \mathbf{y}) \varphi_{E}(\mathbf{y}) \quad V_{E}(\mathbf{x}) \varphi_{E}(\mathbf{x})=\left(E+\frac{\nabla^{2}}{2 m}\right) \varphi_{E}(\mathbf{x})$

Validity of the velocity expansion of U

Leading Order $\quad V_{C}(r)=\frac{\left(E-H_{0}\right) \varphi_{E}(\mathbf{x})}{\varphi_{E}(\mathbf{x})} \quad$ Local potential approximation

E-dependent

From E-dependence, one may determine higher order terms:

$$
V(\mathbf{x}, \nabla)=V_{C}(r)+V_{T}(r) S_{12}+V_{\mathrm{LS}}(r) \mathbf{L} \cdot \mathbf{S}+\left\{V_{D}(r), \nabla^{2}\right\}+\cdots
$$

Numerical check in quenched QCD

$$
\begin{aligned}
m_{\pi} & \simeq 0.53 \mathrm{GeV} \\
\mathrm{a} & =0.137 \mathrm{fm}
\end{aligned}
$$

K. Murano, N. Ishii, S. Aoki, T. Hatsuda

PoS Lattice2009 (2009)126.
Anti-Periodic B.C.

APBC BS wave function

$V c\left(r ;{ }^{1} S_{0}\right): P B C$ v.s. $A P B C t=9(x=+-5$ or $y=+-5$ or $z=+-5)$

Quenched QCD

$$
\begin{aligned}
& m_{\pi} \simeq 0.53 \mathrm{GeV} \\
& \mathrm{a}=0.137 \mathrm{fm}
\end{aligned}
$$

E-dependence of the local potential turns out to be very small at low energy in our choice of wave function.

3. More structure:tensor potential

Tensor potential

$$
\left(H_{0}+V_{C}(r)+V_{T}(r) S_{12}\right) \psi\left(\mathbf{r} ; 1^{+}\right)=E \psi\left(\mathbf{r} ; 1^{+}\right)
$$

mixing between ${ }^{3} S_{1}$ and ${ }^{3} D_{1}$ through the tensor force

$$
\begin{aligned}
& T_{1}(\operatorname{spin}) \otimes A_{1}(L=0)=T_{1}(J=1) \quad \longleftarrow \quad T_{1}(\operatorname{spin}) \otimes A_{1}(L=0)=T_{1}(J=1) \\
& T_{1}(\operatorname{spin}) \otimes E(L=2)=T_{1}(J=1) \oplus T_{2} \\
& \psi\left(\mathbf{r} ; 1^{+}\right)=\mathcal{P} \psi\left(\mathbf{r} ; 1^{+}\right)+\mathcal{Q} \psi\left(\mathbf{r} ; \mathbf{1}^{+}\right)
\end{aligned}
$$

$$
\mathcal{P} \psi_{\alpha \beta}\left(\mathbf{r} ; 1^{+}\right)=P^{\left(A_{1}\right)} \psi_{\alpha \beta}\left(\mathbf{r} ; 1^{+}\right) \quad \text { "projection" to L=0 } \quad{ }^{3} S_{1}
$$

$$
\mathcal{Q} \psi_{\alpha \beta}\left(\mathbf{r} ; 1^{+}\right)=\left(1-P^{\left(A_{1}\right)}\right) \psi_{\alpha \beta}\left(\mathbf{r} ; 1^{+}\right) \quad \text { "projection" to L=2 }{ }^{3} D_{1}
$$

$$
\begin{aligned}
& H_{0}[\mathcal{P} \psi](\mathbf{r})+V_{C}(r):[\mathcal{P} \psi](\mathbf{r})+V_{T}(r):\left[\mathcal{P} S_{12} \psi\right](\mathbf{r})=E[\mathcal{P} \psi](\mathbf{r}) \\
& \left.\left.H_{0}[\mathcal{Q} \psi](\mathbf{r})+V_{C}(r): \mathcal{Q} \psi\right](\mathbf{r})+V_{T}(r): \mathcal{Q} S_{12} \psi\right](\mathbf{r})=E[\mathcal{Q} \psi](\mathbf{r})
\end{aligned}
$$

Wave functions
Aoki, Hatsuda, Ishii, PTP 123 (2010)89
Quenched arXiv:0909.5585

Tensor Force and Central Force $\left(t-t_{0}=5\right)$

Potentials

Tensor Force and Central Force ($t-t_{0}=5$)

Quark mass dependence

Fit function

- Rapid quark mass dependence of tensor potential
- Evidence of one-pion exchange

$$
\begin{aligned}
V_{T}(r)= & b_{1}\left(1-e^{-b_{2} r^{2}}\right)^{2}\left(1+\frac{3}{m_{\rho} r}+\frac{3}{\left(m_{\rho} r\right)^{2}}\right) \frac{e^{-m_{\rho} r}}{r} \\
& +b_{3}\left(1-e^{-b_{4} r^{2}}\right)^{2}\left(1+\frac{3}{m_{\pi} r}+\frac{3}{\left(m_{\pi} r\right)^{2}}\right) \frac{e^{-m_{\pi} r}}{r}
\end{aligned}
$$

Full QCD Calculation

Full QCD

Quenched QCD
$\mathrm{L}=4.4 \mathrm{fm}$

* Large repulsive core than quenched * Large tensor force than quenched

Phase shift from V(r) in full QCD

4. Inelastic scattering: octet baryon interactions

Octet Baryon interactions

- no phase shift available for YN and YY scattering
- plenty of hyper-nucleus data will be soon available at J-PARC

- prediction from lattice QCD
- difference between NN and YN ?

3D Nuclear chart

Neutron Number

4-1. Baryon-Baryon interactions in an SU(3) symmetric world

$$
m_{u}=m_{d}=m_{s}
$$

1. First setup to predict $Y N, Y Y$ interactions not accessible in exp.
2. Origin of the repulsive core (universal or not)

$$
8 \times 8=\underbrace{27+8 \mathrm{~s}+1}_{\text {Symmetric }}+\underbrace{10^{*}+10+8 \mathrm{a}}_{\text {Anti-symmetric }}
$$

6 independent potential in flavor-basis

$$
\begin{array}{lll}
V^{(27)}(r), & V^{(8 \mathrm{~s})}(r), & V^{(1)}(r) \\
V^{\left(10^{*}\right)}(r), & V^{(10)}(r), & V^{(8 \mathrm{a})}(r)
\end{array}{ }^{1} S_{0}
$$

Potentials(full QCD)

$a=0.12 \mathrm{fm}, \mathrm{L}=2 \mathrm{fm}$ $m_{\mathrm{PS}} \simeq 840 \mathrm{MeV}$

27, 10*: same as before NN channel

8s, 10: strong repulsive core

8a: week repulsive core, deep attractive pocket

However, it is difficult to determine E precisely, due to contaminations from excited states.

Schroedinger eq. predicts a bound state at $\mathrm{E}<-30 \mathrm{MeV}$

$\mathrm{E}[\mathrm{MeV}]$	$\mathrm{E} 0[\mathrm{MeV}]$	$\sqrt{\left\langle r^{2}\right\rangle}$	$[\mathrm{fm}]$
$\mathrm{E}=-30$	-0.018	24.7	
$\mathrm{E}=-35$	-0.72	4.1	
$\mathrm{E}=-40$	-2.49	2.3	

finite size effect is very large on this volume. (consistent with previous results.) simulations on larger volume is in progress.
$V(r)=a_{1} e^{-a_{2} r^{2}}+a_{3}\left(1-e^{-a_{4} r^{2}}\right)^{2}\left(\frac{e^{-a_{5} r}}{r}\right)^{2}$

4-2. Proposal for $S=-2$ In-elastic scattering

$$
m_{N}=939 \mathrm{MeV}, m_{\Lambda}=1116 \mathrm{MeV}, m_{\Sigma}=1193 \mathrm{MeV}, m_{\Xi}=1318 \mathrm{MeV}
$$

S=-2 System(I=0)

$$
M_{\Lambda \Lambda}=2232 \mathrm{MeV}<M_{N \Xi}=2257 \mathrm{MeV}<M_{\Sigma \Sigma}=2386 \mathrm{MeV}
$$

The eigen-state of QCD in the finite box is a mixture of them:

$$
\begin{gathered}
|S=-2, I=0, E\rangle_{L}=c_{1}(L)|\Lambda \Lambda, E\rangle+c_{2}(L)|\Xi N, E\rangle+c_{3}(L)|\Sigma \Sigma, E\rangle \\
E=2 \sqrt{m_{\Lambda}^{2}+\mathbf{p}_{1}^{2}}=\sqrt{m_{\Xi}^{2}+\mathbf{p}_{2}^{2}}+\sqrt{m_{N}^{2}+\mathbf{p}_{2}^{2}}=2 \sqrt{m_{\Sigma}^{2}+\mathbf{p}_{3}^{2}}
\end{gathered}
$$

In this situation, we can not directly extract the scattering phase shift in lattice QCD.

HAL's proposal

Let us consider 2-channel problem for simplicity. NBS wave functions for 2 channels at 2 values of energy:

$$
\begin{aligned}
\Psi_{\alpha}^{\Lambda \Lambda}(\mathbf{x}) & =\langle 0| \Lambda(\mathbf{x}) \Lambda(\mathbf{0})\left|E_{\alpha}\right\rangle \\
\Psi_{\alpha}^{\Xi N}(\mathbf{x}) & =\langle 0| \Xi(\mathbf{x}) N(\mathbf{0})\left|E_{\alpha}\right\rangle
\end{aligned}
$$

$$
\alpha=1,2
$$

They satisfy

$$
\begin{aligned}
& \left(\nabla^{2}+\mathbf{p}_{\alpha}^{2}\right) \Psi_{\alpha}^{\Lambda \Lambda}(\mathbf{x})=0 \\
& \left(\nabla^{2}+\mathbf{q}_{\alpha}^{2}\right) \Psi_{\alpha}^{\Xi N}(\mathbf{x})=0
\end{aligned}
$$

$$
|\mathbf{x}| \rightarrow \infty
$$

We define the "potential" from the coupled channel Schroedinger equation:

$$
\begin{aligned}
&\left(\frac{\nabla^{2}}{2 \mu_{\Lambda \Lambda}}+\frac{\mathbf{p}_{\alpha}^{2}}{2 \mu_{\Lambda \Lambda}}\right) \Psi_{\alpha}^{\Lambda \Lambda}(\mathbf{x})=V_{\text {diagonal }}^{\Lambda \Lambda \leftarrow \Lambda \Lambda}(\mathbf{x}) \Psi_{\alpha}^{\Lambda \Lambda}(\mathbf{x})+V^{\Lambda \Lambda \leftarrow \Xi N}(\mathbf{x}) \Psi_{\alpha}^{\Xi N}(\mathbf{x}) \\
&\left(\frac{\nabla^{2}}{2 \mu_{\Xi N}}+\frac{\mathbf{q}_{\alpha}^{2}}{2 \mu_{\Xi N}}\right) \Psi_{\alpha}^{\Xi N}(\mathbf{x})=V_{\text {off-diagonal }}^{\Xi N \leftarrow \Lambda \Lambda}(\mathbf{x}) \Psi_{\alpha}^{\Lambda \Lambda}(\mathbf{x})+V^{\Xi N \leftarrow \Xi N}(\mathbf{x}) \Psi_{\alpha}^{\Xi N}(\mathbf{x}) \\
& \text { off-diagonal }
\end{aligned}
$$

$\mu:$ reduced mass

$$
\begin{gathered}
\binom{\left(E_{1}-H_{0}^{X}\right) \Psi_{1}^{X}(\mathbf{x})}{\left(E_{2}-H_{0}^{X}\right) \Psi_{2}^{X}(\mathbf{x})}=\left(\begin{array}{ll}
\Psi_{1}^{X}(\mathbf{x}) & \Psi_{1}^{Y}(\mathbf{x}) \\
\Psi_{2}^{X}(\mathbf{x}) & \Psi_{2}^{Y}(\mathbf{x})
\end{array}\right)\binom{V^{X \leftarrow X}(\mathbf{x})}{V^{X \leftarrow Y}(\mathbf{x})}
\end{gathered} \quad X \neq Y \quad \begin{array}{r}
X, Y=\Lambda \Lambda \text { or } \Xi N \\
E_{\alpha}=\frac{\mathbf{p}_{\alpha}^{2}}{2 \mu_{\Lambda \Lambda}}, \frac{\mathbf{q}_{\alpha}^{2}}{2 \mu_{\Xi N}} \quad X,
\end{array}
$$

$$
\binom{V^{X \leftarrow X}(\mathbf{x})}{V^{X \leftarrow Y}(\mathbf{x})}=\left(\begin{array}{cc}
\Psi_{1}^{X}(\mathbf{x}) & \Psi_{1}^{Y}(\mathbf{x}) \\
\Psi_{2}^{X}(\mathbf{x}) & \Psi_{2}^{Y}(\mathbf{x})
\end{array}\right)^{-1}\binom{\left(E_{1}-H_{0}^{X}\right) \Psi_{1}^{X}(\mathbf{x})}{\left(E_{2}-H_{0}^{X}\right) \Psi_{2}^{X}(\mathbf{x})}
$$

Using the potentials: $\quad\left(\begin{array}{cc}V^{\Lambda \Lambda \leftarrow \Lambda \Lambda}(\mathbf{x}) & V^{\Xi N \leftarrow \Lambda \Lambda}(\mathbf{x}) \\ V^{\Lambda \Lambda \leftarrow \Xi N}(\mathbf{x}) & V^{\Xi N \leftarrow \Xi N}(\mathbf{x})\end{array}\right)$
we solve the coupled channel Schroedinger equation in the infinite volume with an appropriate boundary condition.

For example, we take the incomming $\Lambda \Lambda$ state by hand.
In this way, we can avoid the mixture of several "in"-states.

$$
|S=-2, I=0, E\rangle_{L}=c_{1}(L)|\Lambda \Lambda, E\rangle+c_{2}(L)|\Xi N, E\rangle+c_{3}(L)|\Sigma \Sigma, E\rangle
$$

Lattice is a tool to extract the interaction kernel ("T-matrix" or "potential").

Preliminary results from HAL QCD Collaboration

2+1 flavor full QCD

$$
\begin{array}{ll}
\mathrm{a}=0.1 \mathrm{fm}, \mathrm{~L}=2.9 \mathrm{fm} \\
m_{\pi} \simeq 870 \mathrm{MeV} \quad \text { Diagonal part of potential matrix }
\end{array}
$$

Non-diagonal part of potential matrix

$$
\begin{aligned}
& V_{\Lambda \Lambda-N E} \\
& \mathrm{~V}_{\Lambda \Lambda-\Sigma \Sigma} \\
& \mathrm{V}_{\mathrm{N} \Xi-\Sigma \Sigma} \\
& V_{A-B} \simeq V_{B-A} \\
& \text { Hermiticity! (non-trivial check) }
\end{aligned}
$$

4-3. H-dibaryon

1. $S=-2$ singlet state become the bound state in flavor $S U(3)$ limit.
2. In the real world (s is heavier than u, d), some resonance appears above $\wedge \wedge$ but below $\equiv \mathrm{N}$ threshold.
3. We can check this scenario using the lattice QCD.
3.1.The potential in $S U(3)$ limit
3.2. The 3×3 potential matrix in real world
4. Trial demonstration:
```
Inoue for HAL QCD Collaboration
```

4.1. Use potential in $\mathrm{SU}(3)$ limit
4.2. Introduce only mass difference from $2+1$ simulation

Potentials in particle basis in $\operatorname{SU}(3)$ limit

$$
\left(\begin{array}{c}
\Lambda \Lambda \\
\Sigma \Sigma \\
\Xi N
\end{array}\right)=U\left(\begin{array}{c}
\mid 27 \\
|8\rangle \\
|1\rangle
\end{array}\right), U\left(\begin{array}{ccc}
V^{(27)} & & \\
& V^{(8)} & \\
& & V^{(1)}
\end{array}\right) U^{t} \rightarrow\left(\begin{array}{ccc}
V^{\Lambda \Lambda} & V^{\Lambda \Lambda} & V^{\Lambda \Lambda} \\
& V^{\Sigma \Sigma} & V_{E N}^{\Sigma \Sigma} \\
& & V^{E_{N}}
\end{array}\right)
$$

where $T_{0}^{(1)}=-25, T_{0}^{(8)}=25, T_{0}^{(27)}=-5[\mathrm{MeV}]$ are used
$S=-2, I=0,{ }^{1} S_{0}$ scattering
$E^{(1)}=-40 \mathrm{MeV}$
bound state
$\operatorname{Re}[E]$ [MeV]

resonance

5. New method for hadron interactions in lattice QCD

Inelastic scattering II: particle production

$E \geq E_{t h}=2 m_{N}+m_{\pi}$
NBS wave function

$$
\begin{aligned}
\varphi_{E}(\mathbf{r}) & =e^{i \mathbf{k} \cdot \mathbf{r}}+\int \frac{d^{3} p}{(2 \pi)^{3}} e^{i \mathbf{p} \cdot \mathbf{r}} \frac{E_{k}+E_{p}}{8 E_{p}^{2}} \frac{T(\mathbf{p},-\mathbf{p} \leftarrow \mathbf{k},-\mathbf{k})}{\mathbf{p}^{2}-\mathbf{k}^{2}-i \epsilon} \\
& +\mathcal{I}(\mathbf{r})
\end{aligned}
$$

$$
\text { inelastic contribution } \quad N N \pi \leftarrow N N \quad \propto e^{i \mathbf{q} \cdot \mathbf{r}} \quad|\mathbf{q}|=O\left(E-E_{t h}\right)
$$

Consider additional NBS wave function

$$
\varphi_{E, \pi}(\mathbf{r}, \mathbf{y})=\langle 0| N(\mathbf{r}+\mathbf{x}, 0) \pi(\mathbf{y}+\mathbf{x}, 0) N(\mathbf{x}, 0)|6 q, E\rangle
$$

Note that

$$
|6 q, E\rangle=c_{1}|N N, E\rangle_{\mathrm{in}}+c_{2}|N N \pi, E\rangle_{\mathrm{in}}+\cdots
$$

Coupled channel equations

$$
\begin{aligned}
&\left(E-H_{0}\right) \varphi_{E}(\mathbf{x})=\int d^{3} y U_{11}(\mathbf{x} ; \mathbf{y}) \varphi_{E}(\mathbf{y})+\int d^{3} y d^{3} z U_{12}(\mathbf{x} ; \mathbf{y}, \mathbf{z}) \varphi_{E, \pi}(\mathbf{y}, \mathbf{z}) \\
&\left(E-H_{0}\right) \varphi_{E, \pi}(\mathbf{x}, \mathbf{y})=\int d^{3} z U_{21}(\mathbf{x}, \mathbf{y} ; \mathbf{z}) \varphi_{E}(\mathbf{z})+\int d^{3} z d^{3} w U_{22}(\mathbf{x}, \mathbf{y} ; \mathbf{z}, \mathbf{w}) \varphi_{E, \pi}(\mathbf{z}, \mathbf{w}) \\
&\left(E_{i}-H_{0}\right) \varphi_{E_{i}}(\mathbf{x})=V_{11}(\mathbf{x}) \varphi_{E_{i}}(\mathbf{x})+V_{12}(\mathbf{x}, \mathbf{x}) \varphi_{E_{i}, \pi}(\mathbf{x}, \mathbf{x}) \\
&\left(E_{i}-H_{0}\right) \varphi_{E_{i}, \pi}(\mathbf{x}, \mathbf{y})= V_{21}(\mathbf{x}, \mathbf{y}) \varphi_{E_{i}}(\mathbf{x})+V_{22}(\mathbf{x}, \mathbf{y}) \varphi_{E_{i}, \pi}(\mathbf{x}, \mathbf{y}) \\
& \text { Velocity expansion at LO, two values of E } \\
& \\
& V_{11}(\mathbf{x}): N N \leftarrow N N \quad \\
& V_{21}(\mathbf{x}, \mathbf{y}): N N \pi \leftarrow N N \quad V_{12}(\mathbf{x}, \mathbf{x}): N N \leftarrow N N \pi \\
& \text { Solve Schroedinger equation with these potentials and a specific B.C. }
\end{aligned}
$$

General prescription

- Consider a QCD eiegnstate with given quantum numbers Q and energy E .
- Take all possible combinations with Q of stable particles whose threshold is below or near E .

$$
\text { ex. } Q=6 q: \quad N N, N N \pi, N N \pi \pi, N N K^{+} K^{-}, N N \bar{N} N, \cdots
$$

- Calculate NBS wave functions for all combinations.
- Extract coupled-channel potentials in a finite volume.
- Solve Schroedinger equation with these potentials in the infinite volume with a suitable B.C. to obtain physical observables.

In practice, of course, final states more than 2 particles are very difficult to deal with.

6. Summary and Discussion

Summary

- Potentials from NBS wave function are useful tools to extract hadron interactions in lattice QCD. Finite size effect is smaller and quark mass dependence is milder than the phase shift.
- Velocity expansion is needed. Validity can be checked.(Murano)
- Combined with Schroedinger equation in the infinite box. Rotational symmetry is recovered.
- NN, tensor force; NY,YY (Nemura); SU(3) limit (Inoue)
Nemura-Ishii-Aoki-Hatsuda, PLB673(2009)136.

Inoue et al.(HAL QCD), arXiv:1007.3559.

- Others: $\mathrm{N}-\mathrm{\eta}_{\mathrm{c}}$ (Kawanai-Sasaki), $\mathrm{p}-\mathrm{K}^{+}$(Ikeda)

Ikeda et al.(HAL QCD), arXiv:1002.2309.

- Inelastic scattering can also be analysed in terms of coupled channel "potentials".
- $\wedge \wedge$ scattering (Sasaki), H-dibaryon as a resonance
- unstabel particle as a resonace
- ρ meson, Δ, Roper etc.
- exotic: penta-quark (Ikeda), X, Y etc.
- Parity odd part of potentials, LS force (Murano, Ishii)
- 3-Baryon forces : NNN (Doi) , BBB-> Neutron star
- Theoretical understanding of the repulsive core
- OPE analysis + pQCD+RG

Aoki-Balog-Weisz, JHEP05(2010)008(Nf=2);
arXiv: $1007.4117(\mathrm{Nf}=3)$.

- AdS/QCD Hashimoto-lizuka-Yi, arXiv:1003.4988
- Weak decay ?

$\pi^{+} \pi^{-}$scattering (ρ meson width)

Finite volume method

ETMC: Feng-Jansen-Renner, PLB684(2010)

