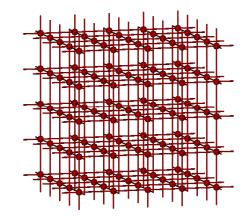
Kaon Physics from Lattice QCD

> CERN Theory Colloquium July 28, 2010

Norman H. Christ RBC/UKQCD Collaborations

Outline


- Introduction
- RBC/UKQCD physics program
- Domain wall fermions
- Low energy QCD
- $K^0 \overline{K}^0$ mixing
- $K \rightarrow \pi \pi \operatorname{decay}$

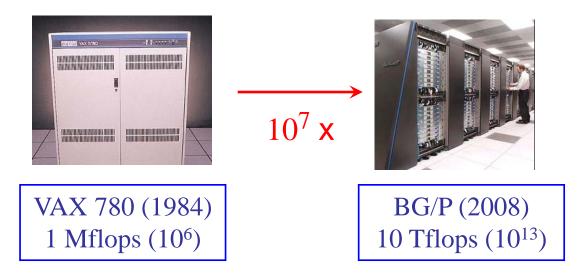
Introduction

CERN TH Colloquium, July 28, 2010 (3)

Lattice QCD

- Regulate using a space-time lattice.
- Evaluate Euclidean Feynman path integral numerically.
 - Precise non-perturbative formulation.
 - Potential numerical errors.

 $\sum_{n} \langle n | e^{-Ht} \mathcal{O} | n \rangle = \int d[U_{\mu}(n)] e^{-\mathcal{A}[U]_{\text{gauge}}} \det(D + m) \mathcal{O}[U]$


 $\det(D+m) = \int d[\phi] d[\phi^*] e^{-\phi^{\dagger} \frac{1}{(D+m)}\phi}$

• Evaluate using Monte Carlo methods with hybrid molecular dynamics + Langevin evolution.

Development of Lattice methods

- Introduced by Wilson in 1973
- 1st numerical evaluation by Creutz 1979.
- Driven by spectacular technological progress:

- Matching algorithmic innovation
- Requires large human and computer resources

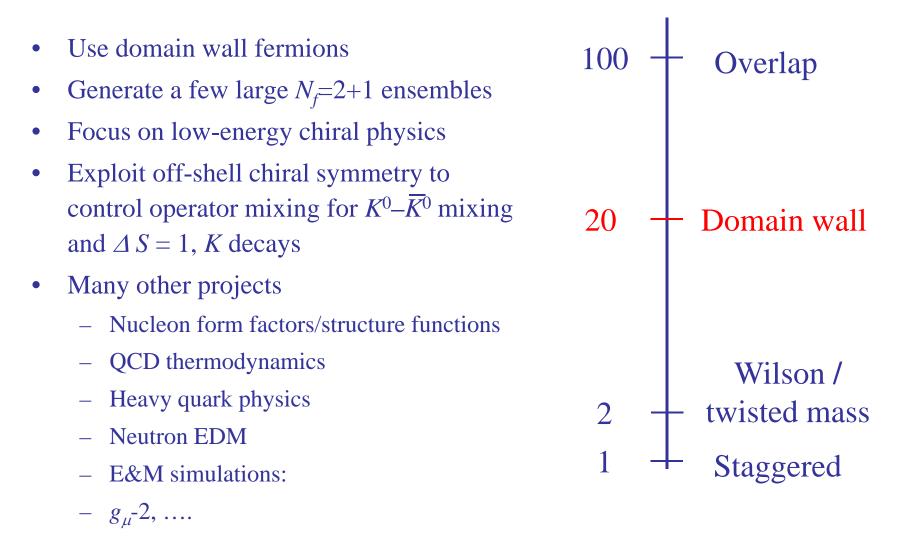
UKQCD Collaboration

• Edinburgh

- Rudy Arthur
- Peter Boyle
- Luigi del Debbio
- Nicolas Garron
- Chris Kelly
- Tony Kennedy
- Richard Kenway
- Chris Maynard
- Brian Pendleton
- James Zanotti

- Southampton
 - Dirk Brommel
 - Jonathan Flynn
 - Patrick Fritzsch
 - Elaine Goode
 - Chris Sachrajda

RBC Collaboration

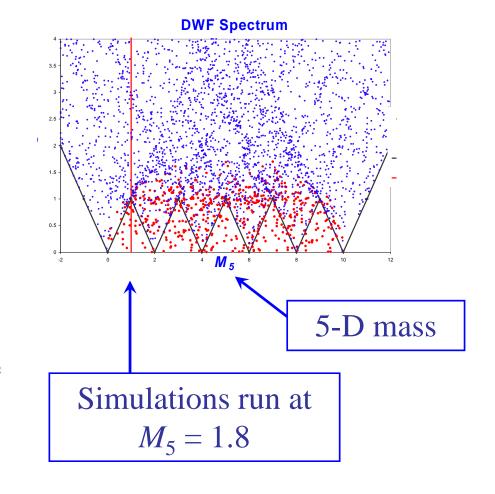

- Columbia
 - Norman Christ
 - Michael Endres
 - Xiao-Yong Jin
 - Matthew Lightman
 - Meifeng Lin (Yale)
 - Qi Liu
 - Robert Mawhinney
 - Hao Peng
 - Dwight Renfrew
 - Hantao Yin

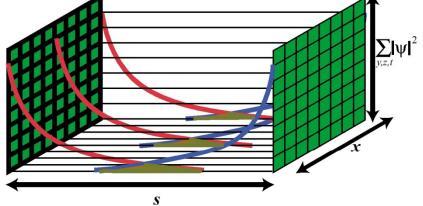
• RBRC

- Yasumichi Aoki
- Tom Blum (Connecticut)
- Saumitra Chowdhury (Connecticut)
- Chris Dawson (Virginia)
- Tomomi Ishikawa (Connecticut)
- Taku Izubuchi (BNL)
- Christopr Lehner
- Shigemi Ohta (KEK)
- Eigo Shintani
- Ran Zhou (Connecticut)

- BNL
 - Michael Creutz
 - Shinji Ejiri
 - Prasad Hegde
 - Chulwoo Jung
 - Frithjof Karsch
 - Swagato Mukherjee
 - Chuan Miao
 - Peter Petreczky
 - Amarjit Soni
 - Ruth Van de Water
 - Alexander Velytsky
 - Oliver Witzel

RBC – UKQCD Research Program

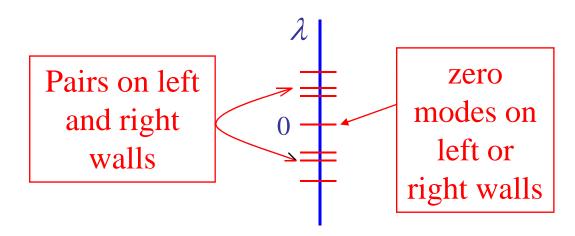

CERN TH Colloquium, July 28, 2010 (8)


Domain Wall Fermions

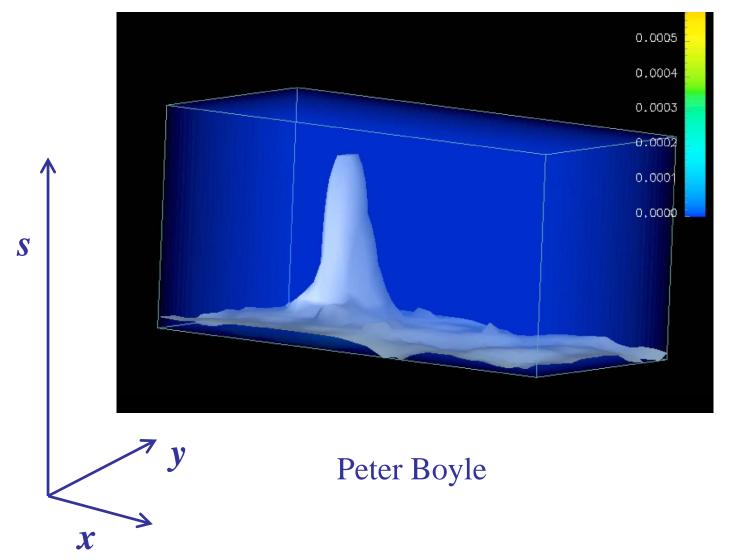
CERN TH Colloquium, July 28, 2010 (9)

Domain Wall Fermions

- Invented by Kaplan, 1993.
- 5-D theory with 4-D, chiral surface states.
- Typical 5-D extent of 16.
- $L_s \rightarrow \infty$ gives the overlap operator of Neuberger.



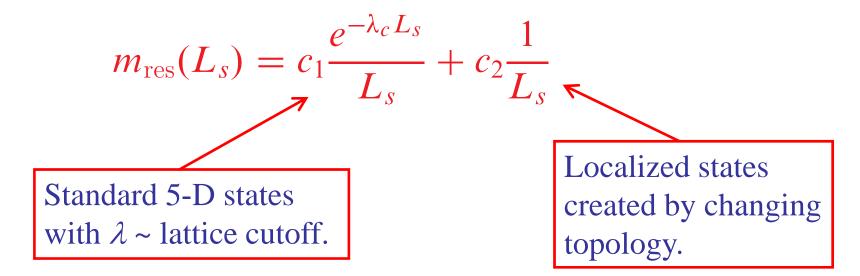
CERN TH Colloquium, July 28, 2010 (10)


The Ghost of Doubling Problem

• For the Dirac operator, eigenvalues are paired except for zero modes:

- If the Pontryagin index changes, all modes must mix between left and right walls.
- Tearing the gauge field must violate chirality!

Local chirality violation


CERN TH Colloquium, July 28, 2010 (12)

Lattice Chiral Symmetry Breaking

- For $L_s < \infty$ the right and left states can mix.
- Gives "residual" mass, $m_{\rm res}$, plus higher dimension operators:

$$\mathcal{L}_{\text{eff}} = \overline{\psi} \{ D^{\mu} \gamma^{\mu} + m \} \psi + m_{\text{res}} \overline{\psi} \psi + c_{\text{SW}} \overline{\psi} \sigma^{\mu\nu} \psi F^{\mu\nu}$$

• Both m_{res} and c_{SW} decrease rapidly as L_s grows or as $g^2 \rightarrow 0$:

Monte Carlo Ensembles

• RBC/UKQCD gauge ensembles:

Volume	1/a	L	m _π	Time units	m _{quark} a	Gauge Action
24 ³ x 64	1.73 GeV	2.7 fm	315 MeV	9000	0.005+0.0032	Iwasaki
			402 MeV	9000	0.01+0.0032	
32 ³ x 64	2.28 GeV	2.7 fm	290 MeV	7000	0.004+0.0006	
			350 MeV	8000	0.006+0.0006	
			410 MeV	6000	0.008+0.0006	
32 ³ x 64	1.4 GeV	4.5 fm	180 MeV	1000	0.001+0.0018	Iwasaki + DSDR
			250 MeV	1800	0.004+0.0018	

Low Energy QCD

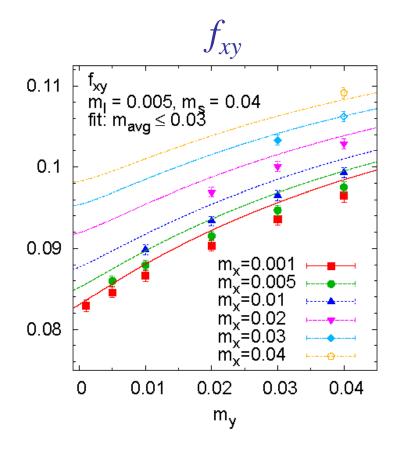
CERN TH Colloquium, July 28, 2010 (15)

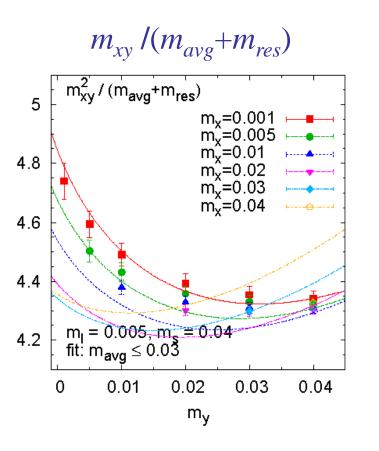
Compare with ChPT

- "Measure" pseudo-scalar decay constant and mass: $f_{xv}(m_x, m_v, m_l, m_h)$ and $m_{xv}(m_x, m_v, m_l, m_h)$
 - Valence quark masses: m_x and m_y

- Sea quark masses: m_l and m_h

• Compare with $SU(N_f) \ge SU(N_f) \ge SU(N_f)$

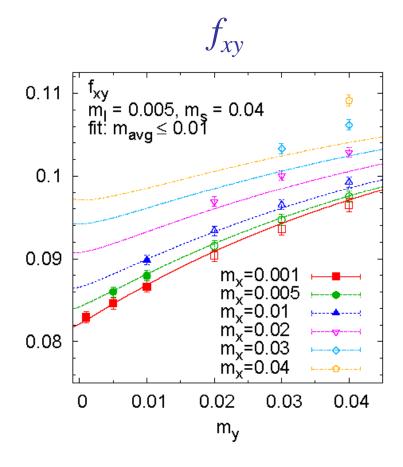

$$-N_f = 3 f_0 \text{ and } B_0 + L^{(3)}_{4,5,6,8}$$

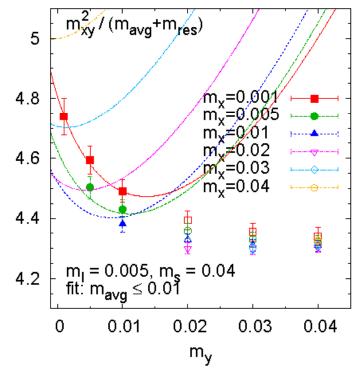

$$-N_f = 2 f \text{ and } B + L^{(2)}_{4,5,6,8}$$

• Use 1/a = 1.73 GeV ensemble. Phys. Rev. D78:114509 (2008)

SU(3) x SU(3) fails at m_K

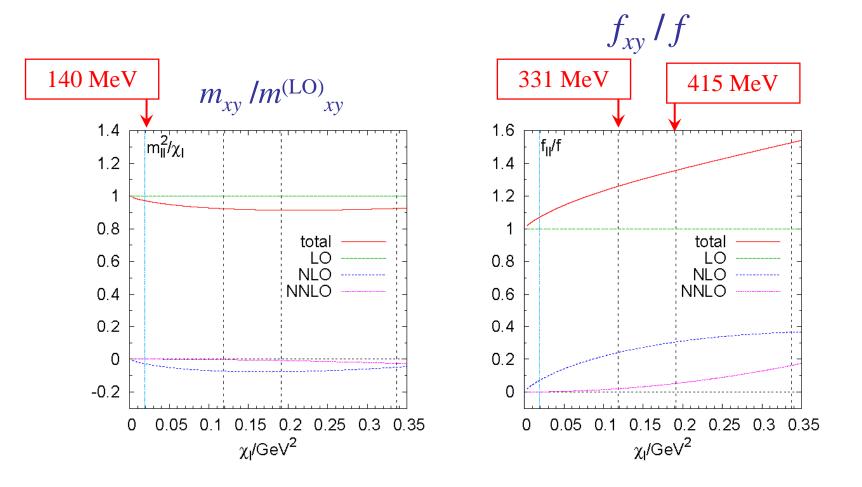
• Attempt to fit m_{xy} and f_{xy} for 242 MeV $\leq m_{xy} \leq 653$ MeV




CERN TH Colloquium, July 28, 2010 (17)

SU(2) x SU(2) is consistent

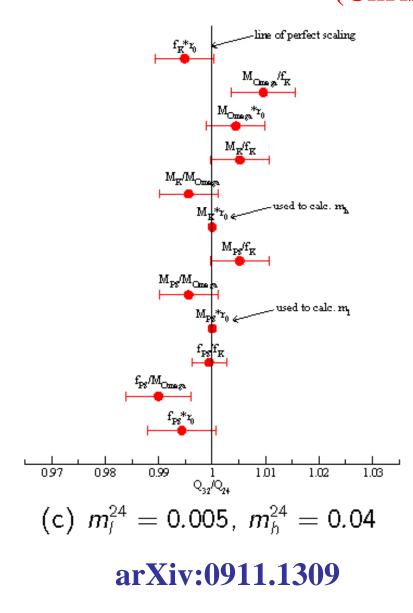
• Attempt to fit m_{xy} and f_{xy} for 242 MeV $\leq m_{xy} \leq 414$ MeV

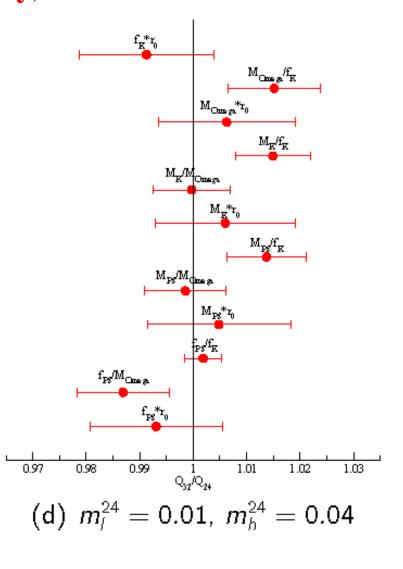

 $m_{xy} / (m_{avg} + m_{res})$

CERN TH Colloquium, July 28, 2010 (18)

Convergence of SU(2) x SU(2)

• Add 3 of 4 NNLO analytic terms; fit for 242 MeV $\leq m_{xy} \leq 546$ MeV

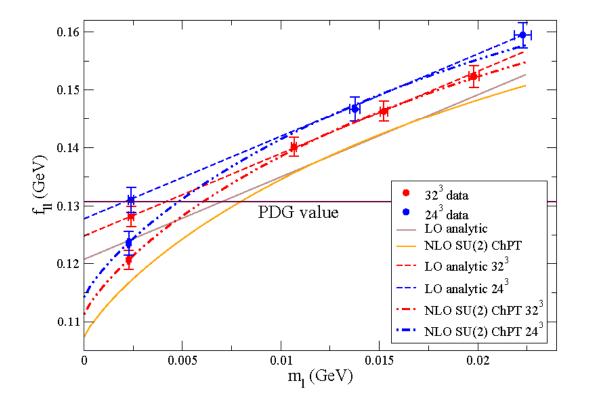



CERN TH Colloquium, July 28, 2010 (19)

Include 2nd lattice spacing

- Previous discussion based on two 24³ x 64, 1/a=1.73 GeV ensembles
- Now include three $32^3 \times 64$, 1/a=2.28 GeV ensembles
- Extrapolate to the continuum limit:
 - Use m_{Ω} to set the scale
 - Use m_{π} and m_{K} to determine the quark masses
 - Use scaling trajectories: fixed m_{π}/m_{Ω} and m_{K}/m_{Ω}
 - Note: $m_l^{\text{RI}}/m_h^{\text{RI}}$ will now vary with $O(a^2)$ errors along trajectory
- First examine scaling along unphysical trajectories

Scaling: 1.73 GeV (24³) – 2.32 GeV (32³) (Chris Kelly)



CERN TH Colloquium, July 28, 2010 (21)

Pseudo scalar decay constant

• Compare NLO ChPT and analytic fits

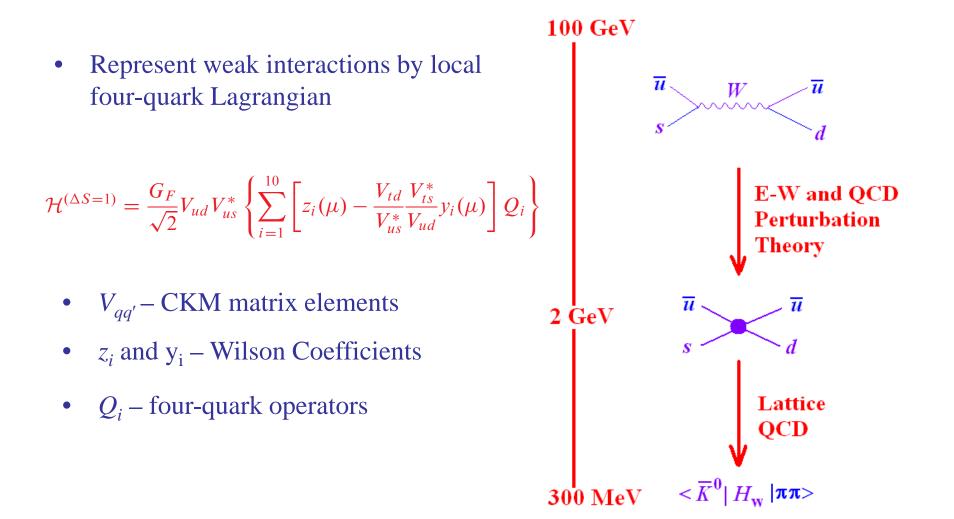
• Average ChPT and analytic: $f_{\pi} = 122.2 \ (2)_{\text{stat}} (5)_{\text{sys}} \text{ MeV}$

CERN TH Colloquium, July 28, 2010 (22)

Summary of preliminary results

f_{π} (MeV)	$122 (2)_{stat}(5)_{sys}$	130.7(0.37) [expt]
f_K (MeV)	$147(2)_{stat}(4)_{sys}$	159.8(1.5) [expt]
f_{π}/f_{K}	$1.208(8)_{stat}(27)_{sys}$	1.223(12) [expt]
m_{ud} (MeV)	$3.65(20)_{\text{stat}}(13)_{\text{sys}}(8)_{\text{ren}}$	3.39(15) [HPQCD]
m_s (MeV)	$97.3(1.4)_{\text{stat}}(0.2)_{\text{sys}}(2.1)_{\text{ren}}$	92.2(3) [HPQCD]
r_0 (fm)	$0.4864 (81)_{stat} (2)_{fv} (2)_{\chi}$	0.462(11)(4) [MILC]
<i>r</i> ₁ (fm)	$0.3331 (59)_{\text{stat}}(2)_{\text{fv}}(2)_{\chi}$	0.3117(6)(+12/-31) [MILC]
$\Sigma_{\rm MS}^{1/3}({\rm MeV})$	$251(4)_{stat}(2)_{ren}$	

CERN TH Colloquium, July 28, 2010 (23)


Kaon weak matrix elements

CERN TH Colloquium, July 28, 2010 (24)

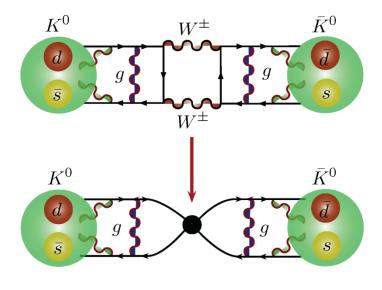
Weak Interaction Matrix Elements

- $K^0 \overline{K}^0$ mixing
 - CP violation: ε
- $K^0 \rightarrow \pi \pi$ decays
 - $\Delta I = 3/2, I_{\pi\pi} = 2$
 - $\Delta I = 1/2, \ I_{\pi\pi} = 0$
 - CP violation: ε'

Low Energy Effective Theory

CERN TH Colloquium, July 28, 2010 (26)

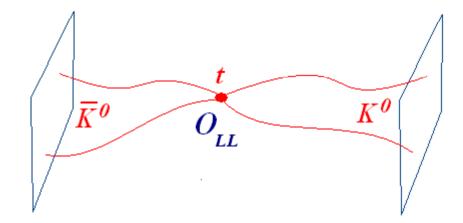
$K^0 - \overline{K}^0$ mixing

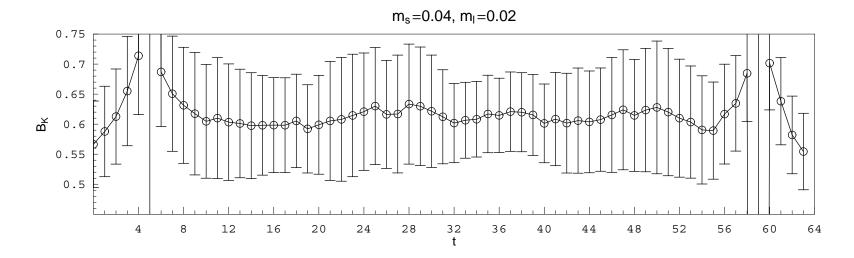

CERN TH Colloquium, July 28, 2010 (27)

Indirect CP Violation

• CP violating phase of K^0 - $\overline{K^0}$ mixing amplitude specified by the CP odd parameter ε

$$\epsilon = \hat{B}_K \operatorname{Im} \lambda_t \frac{G_F^2 f_K^2 m_K M_W^2}{12\sqrt{2}\pi^2 \Delta M_K} \left\{ \operatorname{Re} \lambda_c \left[\eta_1 S_0(x_c) - \eta_3 S_0(x_c, x_t) \right] - \operatorname{Re} \lambda_t \eta_2 S_0(x_t) \right\} \exp(i\pi/4)$$
$$\langle \overline{K}^0 | Q^{(\Delta S = 2)}(\mu) | K^0 | \rangle \equiv \frac{8}{3} B_K(\mu) f_K^2 m_K^2$$

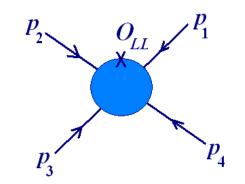

- $\lambda_k = V_{kd} V_{ks}^*$
- The matrix element B_K which can be only computed from lattice QCD.

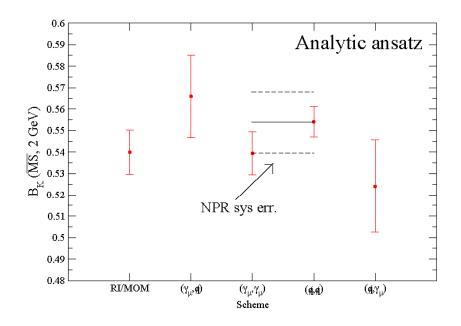


CERN TH Colloquium, July 28, 2010 (28)

Indirect CP Violation

- O_{LL} matrix element:
 - K^0 on right
 - \overline{K}^0 on left
 - Operator at t

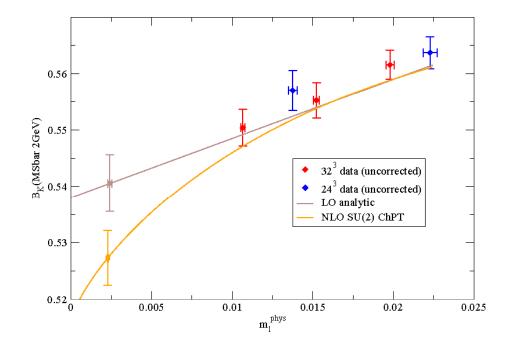

CERN TH Colloquium, July 28, 2010 (29)


Operator normalization: Z_{B_K}

- Use RI/MOM renormalization scheme (Rome/Southampton)
 - Fix to Landau gauge
 - Evaluate off-shell Green's functions
 - Impose momentum-space normalization condition:

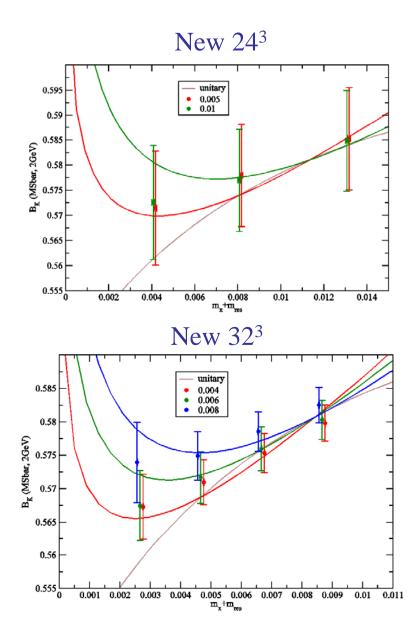
 $\Gamma_{abcd} \Lambda_{abcd}(p_1, p_2, p_3, p_4) \Big|_{\mu^2} = 1$

- Use non-exceptional momenta
- Try 4 choices for Γ_{abcd} and chose the two that agree best with perturbative running:

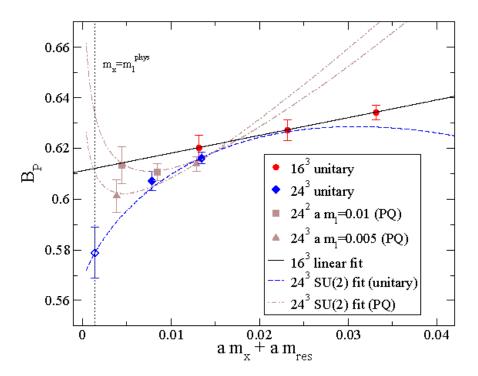


CERN TH Colloquium, July 28, 2010 (30)

Continuum results


- Results from two lattice spacings
 - Small, 1-2%, $O(a^2)$ errors
 - $-B_K = 0.524(10)_{\text{stat}}(28)_{\text{sys}}$ [PRL, 2008]

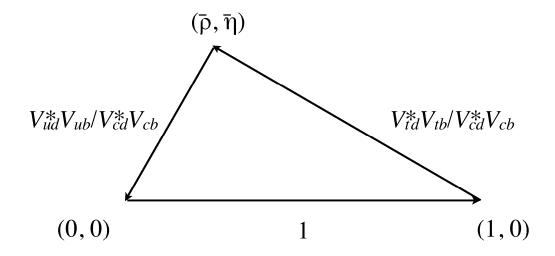
→ $B_K = 0.546(7)_{\text{stat}}(16)_{\chi}$ (3)_{FV} (14)_{ren} [preliminary]



CERN TH Colloquium, July 28, 2010 (31)

Case for ChPT weakens $24^3 \rightarrow 32^3$

Old 24³


CERN TH Colloquium, July 28, 2010 (32)

Comparison with Expt.

- Is the CKM matrix unitary?
- Check orthogonality of 1st and 3rd columns:

 $V_{ud}^{*}V_{ub} + V_{cd}^{*}V_{cb} + V_{td}^{*}V_{tb} = 0$

$$\left(\begin{array}{cccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array}\right)$$

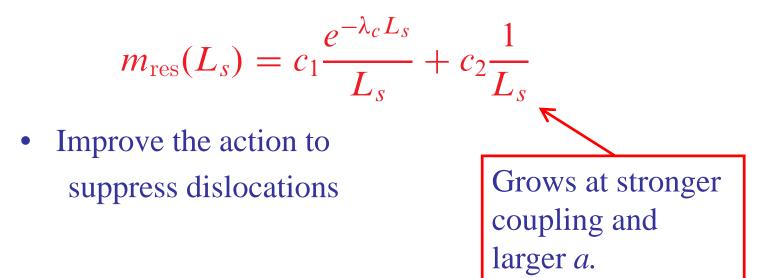
CERN TH Colloquium, July 28, 2010 (33)

Comparison with Expt.

• Some tension between ε_K and other constraints:

1.0 χ^2 /d.o.f. = 1.6 C.L. = 17% ΔM_d 0.8 S_{UK} 0.6 α $\overline{\eta}$ 0.4 \odot ϵ_K 0.2 ub 0.0 $\frac{0.0}{\rho}$ -0.5 0.5 -1.01.0

Laiho, Lunghi, Van de Water, arXiv:0910.2928


CERN TH Colloquium, July 28, 2010 (34)

Decrease the quark mass!

CERN TH Colloquium, July 28, 2010 (35)

Decrease the quark mass

- Finite m_{quark} a larger problem than finite *a*
- Smaller $m_{\pi} \rightarrow$ larger volume \rightarrow larger a

Iwasaki + DSDR Action

• Use determinant ratio:

 $\frac{\det\{(D^{4D}_{\text{Wilson}} + M_5 - i \varepsilon_f \gamma^5)^{\dagger} (D^{4D}_{\text{Wilson}} + M_5 + i \varepsilon_f \gamma^5)\}}{\det\{(D^{4D}_{\text{Wilson}} + M_5 - i \varepsilon_b \gamma^5)^{\dagger} (D^{4D}_{\text{Wilson}} + M_5 + i \varepsilon_b \gamma^5)\}} = \prod_{i} \frac{\lambda_i^2 + \varepsilon_f^2}{\lambda_i^2 + \varepsilon_b^2}$

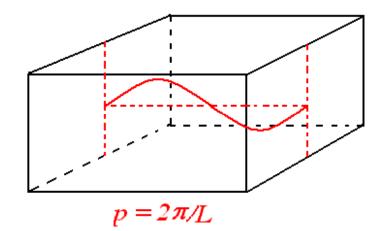
- $det{D^{4D}_{Wilson} + M_5}$: Vranas GapDWF

- ε_b : JLQCD reduction of short distance disturbance.
- $\varepsilon_f \neq 0$: Allows topology change.
- Calculation begun in June 2009 ($\varepsilon_{\rm f} = 0.02$ $\varepsilon_{\rm b} = 0.5$)

Present status

 $a \approx 0.14 \text{ fm}, \ 1/a \approx 1.4 \text{ GeV}, \ m_{\text{res}} \approx \ 0.0018 \ (4 \text{ MeV})$

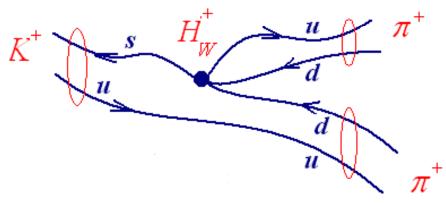
Volume	<i>m</i> _π (MeV)	<i>m</i> _l	Time units	Lm_{π}
32 ³ x 64	180	0.001	1000	4.2
32 ³ x 64	250	0.0042	1800	5.7

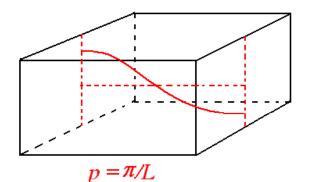

- L = 4.5 fm
- Scaling errors $\leq 5\%$
- Partially quenched: $m_l = 0.0001 \rightarrow m_{\pi} = 145 \text{ MeV}$
- Determine effect of lighter quarks on f_{π} , f_{K} , B_{K}
- Study QCD Thermodynamics
- Study $K \rightarrow \pi \pi$ decays

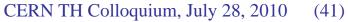
$K \rightarrow \pi \pi$ Decays

CERN TH Colloquium, July 28, 2010 (39)

Calculate π - π final state directly

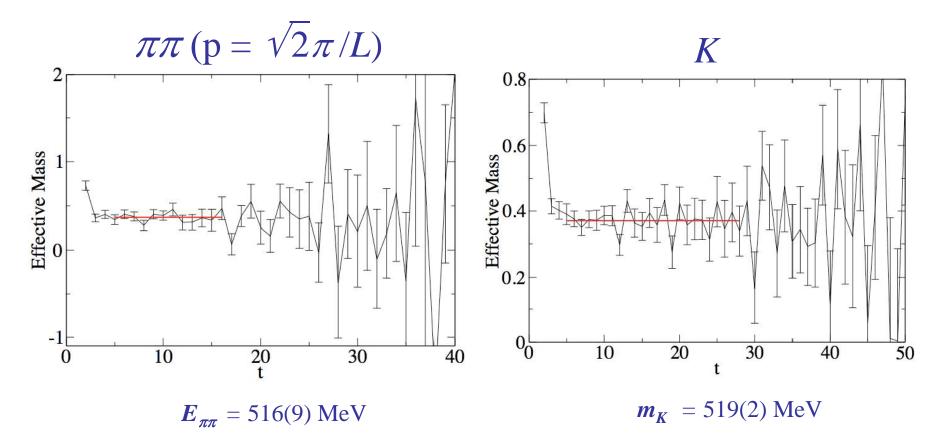

- SU(3) ChPT failure: Abandon $\langle K|H_W|\pi \rangle$ & $\langle K|H_W|0 \rangle \rightarrow \langle K|H_W|\pi\pi \rangle$
- Maiani-Testa theorem (1990):
 - Euclidean space methods use e^{-Ht} to project onto lowest energy state
 - For π - π state this state will have zero relative momentum
- Lellouch-Luscher method (2000):
 - Use finite-volume quantization
 - Adjust volume so 1st or 2nd excited state has correct p
 - Correctly include π π interactions
 - Extra finite-volume normalization factor.




CERN TH Colloquium, July 28, 2010 (40)

$\Delta \mathbf{I} = 3/2 \quad K \to \pi \, \pi$

- I = 2 final state has no vacuum overlap.
- Use twisted boundary conditions (Changhoan Kim, hep-lat/0210003).
- I = 2 quantum number must be carried by four I=1/2 valence quarks.
 - Twist only valence quarks Sachrajda and Villadoro (hep-lat/0411033).
 - Safe to use slightly different valence and sea quark masses.

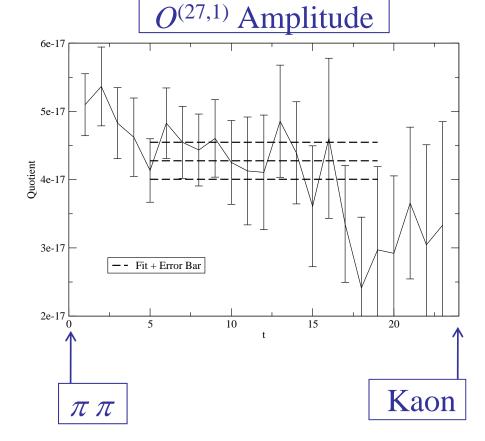

$\Delta I = 3/2 \ K \rightarrow \pi \, \pi$

(Matthew Lightman and Elaine Goode)

- Use 4.5 fm DSDR DWF ensembles.
 - $-m_{\pi} = 250 \text{ and } 180 \text{ MeV}$
 - 1/a = 1.4 GeV
 - Finite *a* errors $\leq 5\%$.
- Use physical valence light quark mass.
 - Sea quark mass dependence of $I=2, K \rightarrow \pi \pi$ expected to be very small
 - − $m_{\text{sea}} = 0.008 \rightarrow 0.004, < 3\%$ (Lightman, arXiv:0906.1847 [hep-lat])
- Use anti-periodic boundary condition in two space directions (47 *configurations preliminary*!)
 - $m_{\pi} = 145.6(5) \text{ MeV}$
 - $m_K = 519(2)$
 - $E_{\pi\pi} = 516(9) \text{ MeV}$

$\Delta I = 3/2 \quad K \rightarrow \pi \pi$ (Matthew Lightman and Elaine Goode)

 $\pi\pi$ and K effective mass: $m_{\text{eff}}(t) = \ln(C(t) / C(t+1))$


CERN TH Colloquium, July 28, 2010 (43)

$< \pi \pi | O^{(27,1)} | K >$ from 47 configurations

(Matthew Lightman and Elaine Goode)

Quantity	This Calculation	Physical
m_{π}	145.6(5) MeV	139.6 MeV
m_K	519(2) MeV	493.7 MeV
$E_{\pi\pi}(p_{\pi}\approx 0)$	294(1) MeV	-
$E_{\pi\pi}(p_{\pi}\approx\sqrt{2}\pi/L)$	516(9) MeV	493.7 MeV
$E_{\pi\pi}(p_{\pi}\approx\sqrt{2}\pi/L)-m_K$	-2.7(8.3) MeV	0 MeV

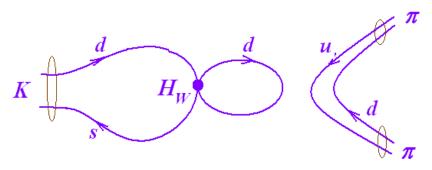
<i>O</i> ^(27,1)	0.000945(56)
O ^(8,8)	0.0192(11)
<i>O</i> ^{(8,8)m}	0.0641(38)

Determine physical A₂ (Matthew Lightman and Elaine Goode)

• Recall $\langle \pi \pi (I=2) | \mathcal{L}_W(0) | K \rangle = A_2 e^{i\delta_2}$

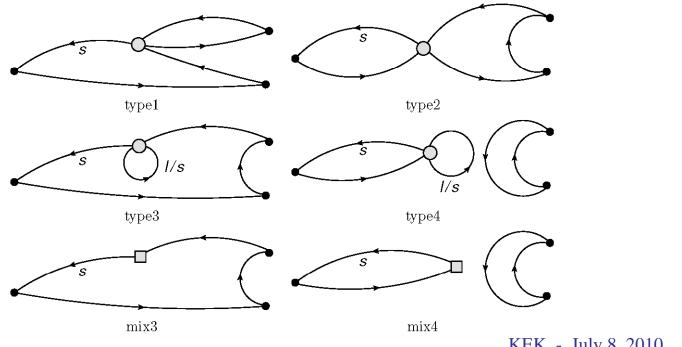
$$A_{2} = \frac{\sqrt{3}}{2\sqrt{2}} \frac{1}{\pi q_{\pi}} \sqrt{\frac{\partial \phi}{\partial q_{\pi}} + \frac{\partial \delta}{\partial q_{\pi}}} L^{3/2} a^{-3} G_{F} V_{ud} V_{us} \sqrt{m_{K}} E_{\pi\pi}$$
$$\times \sum_{i,j} \frac{C_{i}(\mu) Z_{ij}(\mu)}{\sqrt{\pi \pi |Q_{j}|K}} \langle \pi \pi |Q_{j}|K \rangle$$

- $\operatorname{Re}(A_2)$ dominated by single operator $O^{(27,1)}$.
- Determine Lellouch-Luscher factor.

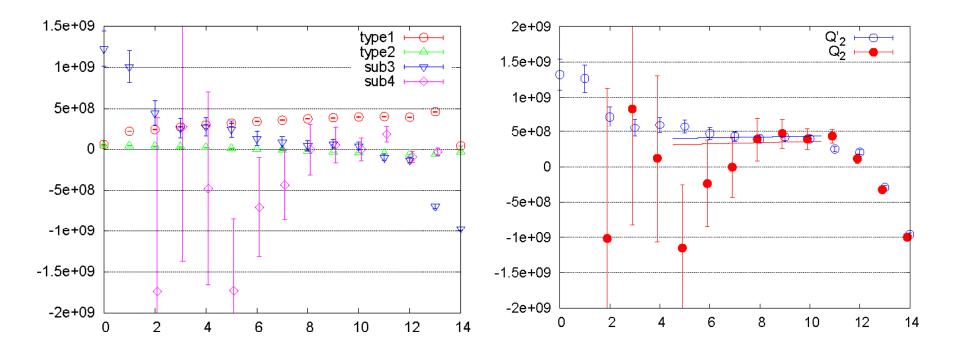

$$\frac{\partial \phi}{\partial q_{\pi}} = 5.141 \qquad \qquad \frac{\partial \delta}{\partial q_{\pi}} = 0.305$$

- $\operatorname{Re}(A_2) = 1.56(7)_{\operatorname{stat}}(25)_{\operatorname{sys}} 10^{-8} \operatorname{GeV} [\operatorname{Expt:} 1.5 \ 10^{-8} \operatorname{GeV}]$
- $Im(A_2)$ equally easy, awaits NPR Z factors.

$\Delta I = 1/2$

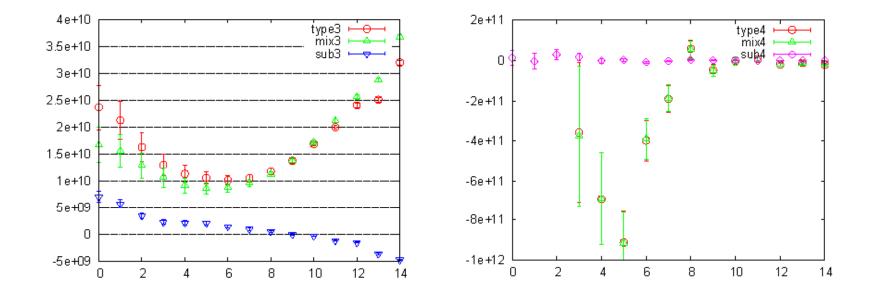

CERN TH Colloquium, July 28, 2010 (46)

• Made much more difficult by disconnected diagrams:

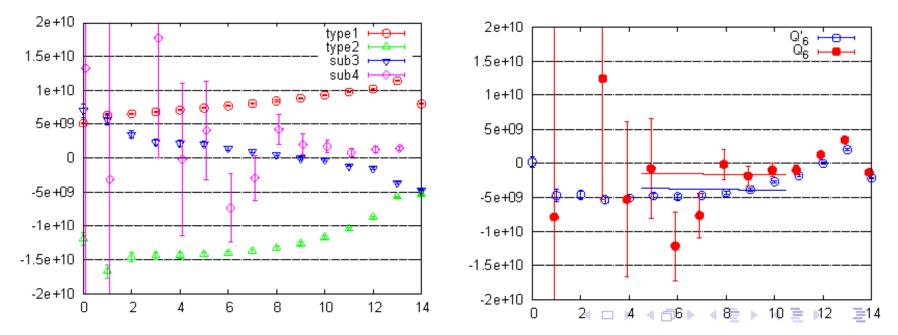


- Experiment on 16³ x 32 ensembles.
- $1/a = 1.73 \text{ GeV}, m_{\pi} = 420 \text{ MeV}, L = 1.8 \text{ fm}$
- Start with 4000 time units, measure on every 10.
- Adjust valence strange mass for on-shell, threshold kinematics ($\pi \pi$ state is unitary)

- Code 50 different contractions
- For each of 400 configurations invert with source at each of 32 times.
- Use Ran Zhou's deflation code


• Results for Q2, largest part of $Re(A_0)$:

- Re $(A_0) = 43(12) \ 10^{-8}$
- Recall, $p = 0, m_{\pi} = 420 \text{ MeV}!$


KEK - July 8, 2010 (49)

• Removing quadratic divergence from Q_6 :

- Subtraction is needed even though it vanishes on-shell
- Off-shell excited states contributions are large.

• Results for Q_6 , largest part of im (A_0) :

• No result – errors are too large.

• If Q_6' (without disconnected part) is physical then need 4 x statistics?

Future prospects

- Re (A_2) and Im (A_2) known soon to 10%

 - $\left. \begin{array}{c} 48^3 \times 64 \text{ will allow unitary pions} \\ \begin{array}{c} \text{Second lattice spacing} \rightarrow 2-3\% \text{ error} \end{array} \right| 1 \text{ Tf yr} \rightarrow 10 \text{ Tf yr} \end{array}$

Re (A_0) and Im (A_0) with physical kinematics

$\Delta I = \frac{1}{2}$ rule: Re(A_0)/Re(A_2)	$\epsilon' = \frac{ie^{i(\delta_2 - \delta_0)}}{\sqrt{2}} \frac{\text{Re}A_2}{\text{Re}A_0} \left[\frac{\text{Im}A_2}{\text{Re}A_2} - \frac{\text{Im}A_0}{\text{Re}A_0} \right]$
	Factor Pflops vr

	Factor	Pflops yr
2000 configurations	1	1.40
$5^2 \cdot 3$ statistics for $p != 0$	75	105
Benefit of 2x time slices	0.5	52.50
Benefit of split sources	0.25	13.13
Gain from lighter kaon mass	0.53	3.69
Reduced precision	0.75	2.77
Benefit of large volume $16^3 \rightarrow 32^3$	0.13	0.35
Deflation	0.3	0.10

CERN TH Colloquium, July 28, 2010 (52)

Summary

- Low energy QCD with DWF
 - SU(3) × SU(3) ChPT fails at m_K
 - SU(2) x SU(2) ChPT consistent $240 \le m_{\pi} \le 420$ MeV but not compelling – a linear ansatz fits the data better
- Discretization errors small $\leq 1\%$.
- Finite quark mass errors more important ~ 8%
- $K^0 \overline{K}^0$ mixing in "tension" with standard model.
- $K \rightarrow \pi \pi \operatorname{decay}$
 - $\Delta I = 3/2$ now possible
 - $\Delta I = 1/2$ in two years?