Excited State Spectroscopy from Lattice QCD

Robert Edwards Jefferson Lab

CERN 2010

Collaborators:
J. Dudek, B. Joo, M. Peardon, D. Richards, C.
Thomas, S. Wallace
Auspices of the Hadron Spectrum Collaboration

Spectroscopy

Spectroscopy reveals fundamental aspects of hadronic physics

- Essential degrees of freedom?
- Gluonic excitations in mesons - exotic states of matter?
- New spectroscopy programs world-wide
- E.g., BES III (Beijing), GSI/Panda (Darmstadt)
- Crucial complement to 12 GeV program at JLab.
- Excited nucleon spectroscopy (JLab)
- JLab GlueX: search for gluonic excitations.

Nuclear Physics \& Jefferson Lab

JLab undergoing a major upgrade

Future Hall D

- Lab doubling beam energy to 12 GeV
- Adding new experimental Hall

Excited states: anisotropy+operators+variational

- Anisotropic lattices with $\mathrm{N}_{\mathrm{f}}=2+1$ dynamical (clover)fermions
- Temporal lattice spacing $a_{+}<a_{s}$ (spatial lattice spacing)
- High temporal resolution \rightarrow Resolve noisy \& excited states
- Major project within USQCD - Hadron Spectrum Collab.

PRD 78 (2008) \& PRD 79 (2009)

- Extended operators
- Sufficient derivatives \rightarrow nonzero overlap at origin

$$
\text { PRD } 72 \text { (2005), PRD } 72 \text { (2005), } 0907.4516 \text { (PRD), 0909.0200 }
$$

- Variational method:
- Matrix of correlators \rightarrow project onto excited states

$$
\text { PRD } 76 \text { (2007), PRD } 77 \text { (2008), } 0909.0200
$$

$\mathrm{N}_{\mathrm{f}}=2+1$ Anisotropic Clover

$$
N_{f}=2+1(u, d+s)
$$

Using $\quad a_{t} m_{\Omega} \& \xi=3.5: a_{s}=0.1227(3) f m,\left(a_{t}\right)^{-1} \sim 5.640 \mathrm{GeV}$

$L_{s}(\mathrm{fm})$	1.96 fm	2.45 fm	2.95 fm	3.93 fm	5.89 fm
$m_{\pi}(\mathrm{MeV})$	$16^{3} \times 128$	$20^{3} \times 128$	$24^{3} \times 128$	$32^{3} \times 256$	$48^{3} \times 384$
700	11 k	11 k			
520	10 k	11 k			
450	11 k	10 k			
400	13 k	13 k	13 k	4 k	
230			12 k	7 k	
140					X

Spin and Operator Construction

Gamma matrices and derivatives in circular basis:
Couple to build any J,M via usual CG

$$
\mathcal{O}^{J M} \leftarrow\left(C G C^{\prime} s\right)_{i, j, k, l} \bar{\psi} \vec{\Gamma}_{i} \times\left[\vec{D}_{j} \vec{D}_{k} \ldots \vec{D}_{l}\right] \psi
$$

Only using symmetries of continuum QCD

Construct all possible operators up to 3 derivatives (3 units orbital angular momentum)

Subduce onto lattice irreps: "remembers" J

$$
\mathcal{O}_{\Lambda \lambda}^{[J]} \leftarrow \sum_{M} S_{J M}^{\Lambda \lambda} \mathcal{O}^{J M}
$$

Distillation

Replace smearing with low rank approximation

$$
\square(t)=V(t) V^{\dagger}(t) \Longrightarrow \square_{x y}(t)=\sum_{k=1}^{N} v_{x}^{(k)}(t) v_{y}^{(k) \dagger}(t)
$$

Matrix elements of $\mathrm{v}_{\mathrm{k}}(\dagger) \rightarrow$ propagators, mesons, baryons, etc. Make correlators

$$
C_{M}^{(2)}\left(t^{\prime}, t\right)=\operatorname{Tr}\left[\Phi^{B}\left(t^{\prime}\right) \tau\left(t^{\prime}, t\right)\left\{\Phi_{1}^{A}(t) \cdot \tau(t, t) \cdot \Phi_{2}^{A}(t)\right\} \tau\left(t, t^{\prime}\right)\right]
$$

Gauge covariant, mom. conservation (source \& sink) \rightarrow reduced "noise"

Spectrum from variational method

Two-point correlator

$$
C(t)=\langle 0| \Phi^{\prime}(t) \Phi(0)|0\rangle
$$

$$
C(t)=\sum_{\mathfrak{n}} e^{-E_{\mathfrak{n}} t}\langle 0| \Phi^{\prime}(0)|\mathfrak{n}\rangle\langle\mathfrak{n}| \Phi(0)|0\rangle
$$

Matrix of correlators

Diagonalize:
eigenvalues \rightarrow spectrum eigenvectors \rightarrow wave function overlaps

> Benefit: orthogonality for near degenerate states

Determining spin on a cubic lattice?

Spin reducible on lattice
spin $2_{(5)} \rightarrow T 2_{(3)}+E_{(2)}$
coarse a

Might be dynamical degeneracies

Spin reduction \& (re)identification

Variational solution: $C_{i j}(t)=\langle 0| \phi_{i}(t) \phi_{j}(0)|0\rangle \rightarrow \sum_{\alpha} Z_{i}^{(\alpha)} Z_{j}^{(\alpha) *} e^{-m_{\alpha} t}$

Continuum

$$
\begin{aligned}
& \langle 0| \mathcal{O}\left|2^{-}(\overrightarrow{0}, r)\right\rangle=Z \\
& \downarrow
\end{aligned}
$$

$$
\begin{aligned}
\langle 0| \mathcal{O}_{T_{2}}\left|2^{-}(\overrightarrow{0}, r)\right\rangle & =Z_{T_{2}} \\
\langle 0| \mathcal{O}_{E}\left|2^{-}(\overrightarrow{0}, r)\right\rangle & =Z_{E}
\end{aligned}
$$

Method: Check if converse is true

Spin (re)identification

Isovector Meson Spectrum

Isovector Meson Spectrum

Isovector Meson Spectrum

Exotic matter

Exotics: world summary

Exotic matter

Vector isoscalars ($I=0$)

light-strange (/s) basis

$$
\begin{aligned}
\mathcal{O}_{l}^{\Gamma} & =\frac{1}{\sqrt{2}}(\bar{u} \boldsymbol{\Gamma} \mathbf{u}+\overline{\mathbf{d}} \boldsymbol{\Gamma} \mathbf{d}) \\
\mathcal{O}_{s}^{\Gamma} & =\bar{s} \Gamma \mathbf{s}
\end{aligned}
$$

$I=0$
Must include all disconnected diagrams
$\mathrm{N}_{\mathrm{f}}=2+1, \quad \mathrm{~m}_{\pi} \sim 400 \mathrm{MeV}, \mathrm{L} \sim 2 \mathrm{fm}$

Baryon Spectrum

"Missing resonance problem"

- What are collective modes?
- What is the structure of the states?
- Major focus of (and motivation for) JLab Hall B
- Not resolved experimentally @ 6GeV

Nucleon Mass Spectrum (Exp): 4*, 3*, 2*

Strange Quark Baryons

Strange quark baryon spectrum poorly known

Widths are small

Future:

- Narrow widths: easy(er) to extract (?)

Light quark baryons in SU(6)

Conventional non-relativistic construction:

$$
u_{\uparrow}, u_{\downarrow}, d_{\uparrow}, d_{\downarrow}, s_{\uparrow}, s_{\downarrow}
$$

6 quark states in $\mathrm{SU}(6)$

$$
S U(6) \subseteq S U(3)_{\mathrm{Flavor}} \otimes S U(2)_{\mathrm{Spin}}
$$

Baryons

$$
\begin{aligned}
& \mathbf{6} \otimes \mathbf{6} \otimes \mathbf{6}=\mathbf{5 6}_{S} \oplus \mathbf{7 0}_{M S} \oplus \mathbf{7 0}_{M A} \oplus \mathbf{2 0}_{A} \\
& \text { Symmetric : }(\mathbf{1 0}, 4) \quad+(8,2) \quad=56 \\
& \text { Mixed :(10,2)+(8,4)+(8,2)+(1,2) =70 } \\
& \text { Antisymmetric : } \\
& (8,2) \quad+(1,4)=20
\end{aligned}
$$

Relativistic operator construction: SU(12)

Relativistic construction: 3 Flavors with upper/lower components

$$
S U(12) \subseteq S U(3)_{\mathrm{Flavor}} \otimes\left[S U(2)_{\mathrm{Upper} / \text { lower }} \otimes S U(2)_{\mathrm{Spin}}\right]
$$

Times space (derivatives)

$$
\text { Op }_{S} \leftarrow \text { Derivative }_{M} \otimes\left[\operatorname{Flavor}_{M} \otimes \operatorname{Dirac}_{M}\right]_{M}
$$

Color contraction is Antisymmetric \rightarrow Totally antisymmetric operators

More operators than SU(6): mixes orbital ang. momentum \& Dirac spin

Orbital angular momentum via derivatives

Couple derivatives onto single-site spinors:
Enough D's - build any J,M

$$
\mathcal{O}^{J M} \leftarrow\left(C G C^{\prime} s\right)_{i, j, k}\left[\vec{D}_{M}\right]_{i}\left[\vec{D}_{M}\right]_{j}\left[\Psi_{M}\right]_{k}
$$

Only using symmetries of continuum QCD

Use all possible operators up to 2 derivatives (2 units orbital angular momentum)

Nucleon \& Delta Spectrum

Nucleon \& Delta Spectrum

Hadronic decays

Current spectrum calculations: no evidence of multi-particle levels

Plot the non-interacting meson levels as a guide

$$
|A(\vec{p}) B(-\vec{p})\rangle \quad m_{A B}=\sqrt{m_{A}^{2}+\vec{p}^{2}}+\sqrt{m_{B}^{2}+\vec{p}^{2}}
$$

Require multi-particle operators - (lattice) helicity construction - annihilation diagrams
(c)

Extract $\delta(E)$ at discrete E

Phase Shifts: demonstration

$\pi \pi$ isospin $=2 \quad$ Extract $\delta_{0}(\mathrm{E})$ at discrete E

Phase Shifts: demonstration

$\pi \pi$ isospin=2

$\delta_{2}(\mathrm{E})$

Hardware: JLab GPU Clusters

GPU clusters: ~ 530 cards

Quads

2.4 GHz Nehalem 48 GB memory / node 117 nodes x 4 GPUs -> 468 GPUs

Singles
2.4 GHz Nehalem

24 GB memory / node
64 nodes x 1 GPU -> 64 GPUs

Inverter Strong Scaling: $V=32^{3} \times 256$

Prospects

- Strong effort in excited state spectroscopy
- New operator \& correlator constructions \rightarrow high lying states
- Finite volume extraction of resonance parameters - promising
- Progress! Still much more to do
- Initial results for excited state spectrum:
- Suggests baryon spectrum at least as dense as quark model
- Suggests multiple exotic mesons within range of Jlab's Hall D
- Resonance determination:
- Start at heavy masses: have some "elastic scattering"
- Use larger volumes \& smaller pion masses ($m_{\pi} \sim 230 \mathrm{MeV}$)
- Now: multi-particle operators \& annihilation diagrams (gpu-s)
- Need multi-channel finite-volume analysis for (in)elastic scattering
- Future:
- Transition FF-s, photo-couplings (0803.3020, 0902.2214)

