Preliminary results of $\Delta I=1/2$ and 3/2, K to $\pi\pi$ Decay Amplitudes from Lattice QCD

Qi Liu

Columbia University, RBC and UKQCD Collaborations

July 19, 2010, LGT 2010

- Introduction
- $\pi\pi$ scattering
- $K^0 \to \pi\pi (I=0)$ contractions
- \bigcirc Results of A_0 and A_2
- conclusion

Introduction

We do a direct, brutal force calculation of K to $\pi-\pi$ amplitudes. Experiment facts:

• $\Delta I = \frac{1}{2}$ rule.

$$\frac{Re(A_0)}{Re(A_2)} = 25.7$$

• Direct CP violation in $K \to \pi\pi$ decays

$$Re(\epsilon'/\epsilon) = (1.65 \pm 0.26) \times 10^{-3}$$

 $\sim 16\%$ error (from PDG 2010 book)

Effective Harmiltonian

$$\langle (\pi\pi)_I | H_w | K^0 \rangle = A_I e^{i\delta_I} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us} \sum_{i=1}^{10} [(z_i(\mu) + \tau y_i(\mu)) \langle Q_i \rangle_I(\mu)]$$

Current-Current operators(1,2):

$$Q_2 = (\bar{s}_{\alpha}d_{\beta})_{V-A}(\bar{u}_{\beta}u_{\alpha})_{V-A}$$

QCD penguin operators(3,4,5,6):

$$Q_6 = (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\alpha})_{V+A}$$

Electroweak penguin operators(7,8,9,10):

$$Q_7 = \frac{3}{2}(\bar{s}_{\alpha}d_{\alpha})_{V-A}\sum_{\sigma=v,d} e_q(\bar{q}_{\beta}q_{\beta})_{V+A}$$

(Colored Decorate Heisens Decorate HVOCPullistrance and the CAL 1/2 and 2/2 K ... L. 10 2010 LCT 2010 ... A / 20

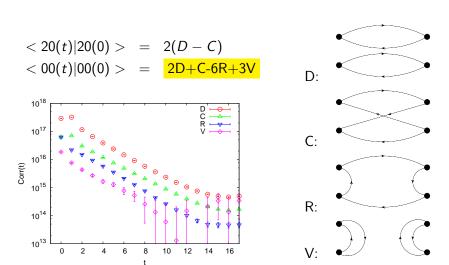
Overview of the Steps to get A_0 and A_2

- **1** Lattice calculation: $Q_i^{lat}(a)$
 - > $<\pi\pi(t)|\pi\pi(0)>=Z_{\pi\pi}Z_{\pi\pi}^*(e^{-E_{\pi\pi}t}+e^{-E_{\pi\pi}(T-t)}+C)$
 - $> < K | K > = Z_k Z_k^* (e^{-m_k t} + e^{-m_k (T-t)})$
 - $> <\pi\pi(t_{\pi})|Q_{i}(t)|K(0)> = \frac{Q_{i}^{lat}(a)}{Q_{i}^{*}}Z_{\pi\pi}^{*}Z_{k}e^{-E_{\pi\pi}t_{\pi}}e^{-(m_{k}-E_{\pi\pi})t}$
- **2** Renormalization: $Q_i^{cont}(\mu) = Z_{ij}(\mu, a)Q_j^{lat}(a)$
 - ▶ RI/MOM scheme vs. *MS* scheme
- **3** Wilson Coefficients: $z_i(\mu)$ and $y_i(\mu)$
- Finite volume effect: Lellouch Luscher factor

Computational specifics

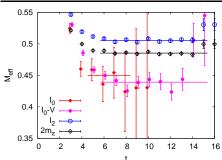
- Lattice:
 - ▶ 2+1 flavor DWF, $m_s = 0.032$, $m_l = 0.01$
 - ▶ $16^3 \times 32$ space time volume with $L_s = 16$
 - ▶ Box size L = 1.82fm, $m_{\pi} = 420$ MeV
- $K \to \pi\pi$ set up
 - ▶ Partially quenched strange quark $m_s(valence) = 0.066, 0.099, 0.165$
 - ▶ Periodic Boundary condition: Total momenum $\vec{P} = 0$, or $2\pi/L\hat{x}$
- Propagators: $D_w(t_{sink}; t_{src})$
 - Coulomb Gauge Fixed Wall Source and Sink
 - ▶ Propagators are calculated on all time slices T=32 (× 12 inversion)
 - \rightarrow Huge statistics \times 400 configurations
 - → Resolve signal from disconnect diagrams
 - ► Eigenvector accelerator code, provided by Ran Zhou

$\pi\pi$ scattering

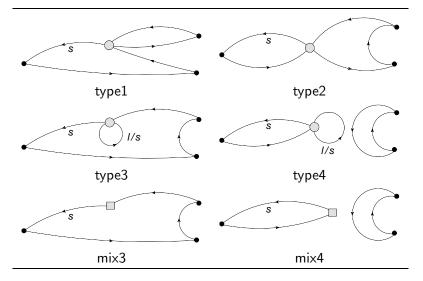


$\pi\pi$ energy

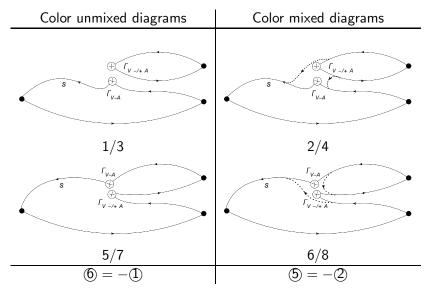
Р	E_{π}	E ₁₀	E_{I0V}	E ₁₂
0	0.24267(68)	0.450(17)	0.4392(59)	0.5054(15)
1	0.4698(35)	0.753(25)	0.6987(87)	0.7382(39)
Р	$E_{k}(0)$	$E_k(1)$	$E_k(2)$	
0	0.4255(6)	0.5070(6)	0.6453(7)	
1	0.5855(16)	0.6485(15)	0.7647(14)	

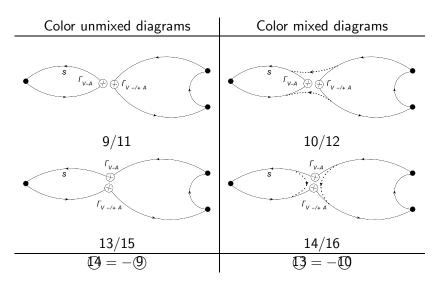


$K^0 o \pi\pi(I=0)$ contractions



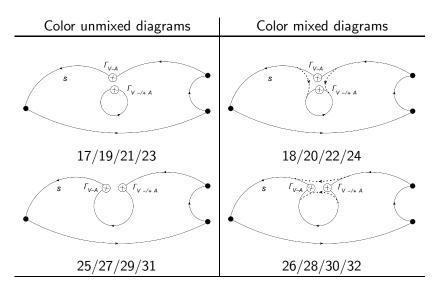
4□ > 4□ > 4 = > 4 = > = 90

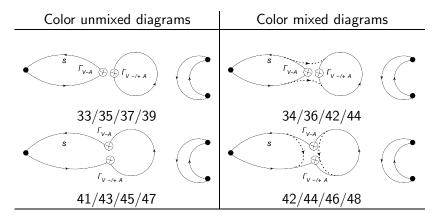




4回 > 4回 > 4 回

11 / 28





Contraction of Q_2 and Q_6

$$<00|Q_{2}|K^{0}> = i\frac{1}{\sqrt{3}}\{-2 - 2 \cdot 6 + 3 \cdot 10 + 3 \cdot 18 - 3 \cdot 34\}$$

$$<00|Q_{6}|K^{0}> = i\sqrt{3}\{-8 + 2 \cdot 2 - 6 + 2 \cdot 20 + 24 - 28 - 22 - 2 \cdot 35 - 40 + 44 + 48\}$$

For simplicity, we write the contribution to each operator as

$$< 00(t_{\pi})|Q_{i}(t)|K^{0}(0)>_{sub}$$

$$= < 00(t_{\pi})|Q_{i}(t)|K^{0}(0)> -\alpha_{i} < 00(t_{\pi})|\bar{s}\gamma_{5}d(t)|K^{0}(0)>$$

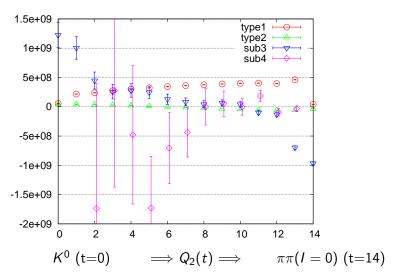
$$= Type1 + Type2 + Type3 + Type4 - Mix3 - Mix4$$

$$= Type1 + Type2 + (Type3 - Mix3) + (Type4 - Mix4)$$

$$= Type1 + Type2 + Sub3 + Sub4$$

The subtraction coefficient can be calculated from $\alpha_i = \frac{\langle 0|Q_i(t)|K^0(0)\rangle}{\langle 0|\bar{\epsilon}\gamma_i d(t)|K^0(0)\rangle}$

Operator Q_2



Qi Liu (Columbia University, RBC and UKQCPreliminary results of $\Delta I = 1/2$ and 3/2, K = July 19, 2010, LGT 2010 15 / 28

Operator Q_2

$$<\pi\pi(t_{\pi})|Q_{i}(t)|K(0)> = Q_{i}^{lat}(a) Z_{\pi\pi}^{*}Z_{k}e^{-E_{\pi\pi}t_{\pi}}e^{-(m_{k}-E_{\pi\pi})t}$$

$$2e+09$$

$$1.5e+09$$

$$1e+09$$

$$5e+08$$

$$0$$

$$-5e+08$$

$$-1e+09$$

$$-2e+09$$

$$0$$

$$2$$

$$4$$

$$6$$

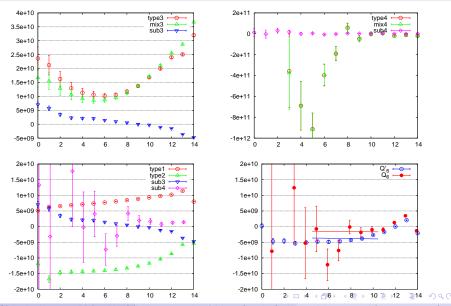
$$8$$

$$10$$

$$12$$

$$14$$

Operator Q_6



Fitting Results

i	$Q_i'(a)$	$Q_i(a)$	% to $Re(A_0)$	% to $Im(A_0)$
1	-6.5(38)e-03	-4(12)e-03	8.5	0
2	1.75(14)e-02	1.37(52)e-02	91.6	0
3	1.0(10)e-02	1.2(33)e-02	0.003	6.8
4	3.39(80)e-02	2.9(27)e-02	0.50	-61.1
5	-5.04(91)e-02	-1.7(30)e-02	-0.03	-2.7
6	-1.59(10)e-01	-6.4(40)e-02	-0.37	141.2
7	1.435(44)e-01	1.16(12)e-01	0.02	-0.48
8	4.42(11)e-01	3.49(24)e-01	-0.14	9.6
9	-1.50(29)e-02	-1.0(10)e-02	-0.0003	5.8
10	9.2(29)e-03	6.6(97)e-03	0003	0.82

 Q'_i means the result without the fully disconnected graph (no type4 graph). Fitting range [5:10]

□ → 4周 → 4 三 → 4 三 → 9 Q P

Combine everything together

$$A_{I} = \frac{G_{F}}{\sqrt{2}} V_{ud} V_{us} \sum_{i=1}^{10} \{ (z_{i}(2.15) + \tau y_{i}(2.15)) Z_{ij}(2.15, a) \langle Q_{j} \rangle_{I}(a) \}$$

- **1** Wilson Coefficients $z_i(2.15 GeV)$ and $y_i(2.15 GeV)$.
- Renormalization factor $Z_{ij}(2.15 \, GeV, a^{-1} = 1.73 \, GeV)$ Taken from Our group's previous paper(Shu Li).
- Finite Volumn effect (and normalization of states on lattice)
 - Lellouch Luscher factor

$$|A|^2 = 8\pi\gamma^2 \left(\frac{E_{\pi\pi}}{p}\right)^3 \left\{p\frac{\partial \delta(p)}{\partial p} + q\frac{\partial \phi(q)}{\partial q}\right\} |M|^2 = F^2 |M|^2$$

Free field limit ($\vec{P} = 0$ case)

$$|A|^2 = 4(2m_\pi)^2 m_K L^3 |M|^2 = F_f^2 |M|^2$$

These are derived by assuming that $< p|p'> = 2p_0(2\pi)^3\delta(\vec(p)-\vec(p'))$, and Particle states in finite volume are normalized to unity.

$Re(A_0)$ and $Im(A_0)$

Notice that $E_{I=0} = 0.450(17)$ and $E_{I=0vout} = 0.4392(59)$

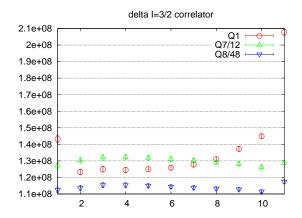
	1-0	()	1-00001	()	
m_K	F_f	$Re(A_0')(GeV)$	$Re(A_0)(GeV)$	$Im(A_0')(GeV)$	$Im(A_0)(GeV)$
0.4255(6)	40.5	$53.5(2.9)e^{-8}$	$40(11)e^{-8}$	$-87.8(7.4)e^{-12}$	$-30(28)e^{-12}$
0.5070(6)	44.2	$61.5(3.4)e^{-8}$	$50(14)e^{-8}$	$-95.7(7.8)e^{-12}$	$-68(38)e^{-12}$
on shell	-	$54.8(3.0)e^{-8}$	$43(12)e^{-8}$	$-89.2(7.5)e^{-12}$	$-41(31)e^{-12}$

From $t_\pi - t_K =$ 14, and fitting range [5:10]

Used Free field normalization of states.

For I=0, it is very difficult to apply Lellouch Luscher factor here given the small volume. Numerically, $\partial \phi(q)/\partial q$ becomes divergent at $q^2=-0.06639$ which correspond to $E_{I0}=0.441$. Luscher's derivation requires that the Interaction range R < L/2. If we plug in $E_{I0}=0.450$, we'll get $F=90\approx 2F_{\rm f}$.

$\Delta I = 3/2 \ K \rightarrow \pi\pi$ correlators.



Zero momentum results (420MeV pion mass)

$Re(A_2)$ and $Im(A_2)$, Used Lellouch Luscher factor

m_K	E_{I2}	F	$Re(A_2)(GeV)$	$Im(A_2)(GeV)$
0.5070(6)	0.5054(15)	36.8(2)	$7.629(64)e^{-8}$	$-1.102(11)e^{-12}$

From $t_{\pi}-t_{K}$ =12, fitting range [5:7] to get more accurate result.

Compare with A_0 :

$Re(A'_0)$	$Re(A_0)$	$Im(A'_0)$	$Im(A_0)$
$54.8(3.0)e^{-8}$	$43(12)e^{-8}$	$-89.2(7.5)e^{-12}$	$-41(31)e^{-12}$

At this highly unphysical kinematics point: $m_{\pi}=420 MeV$

•
$$\frac{Re(A_0):K^0(778) \to \pi(420)\pi(420)}{Re(A_2):K^0(874) \to \pi(420)\pi(420)} \sim 6$$
 (or 13 using the LL factor)

•
$$\epsilon' = ie^{i(\delta_2 - \delta_0)} \frac{1}{\sqrt{2}} \frac{Re(A_2)}{Re(A_0)} \left[\frac{Im(A_2)}{Re(A_2)} - \frac{Im(A_0)}{Re(A_0)} \right] \sim ie^{i(\delta_2 - \delta_0)} 10(9)e^{-6}$$

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣へ○

Non zero total Momemtum, 420MeV pion, $\vec{P} = 679 MeV$

 $Re(A_2)$ and $Im(A_2)$

E_K	E_{I2}	F	$Re(A_2)(GeV)$	$Im(A_2)(GeV)$
0.6485(15)	0.7382(39)	43.5(3)	$11.11(11)e^{-8}$	$-0.744(16)e^{-12}$
0.7647(14)	0.7382(39)	43.5(3)	$12.23(12)e^{-8}$	$-0.604(14)e^{-12}$

 $Re(A_0)$ and $Im(A_0)$ Barely see a signal even without the fully disconnected graph. Lellouch Luscher factor are calculated $(p \neq 0)$.

E_K	E ₁₀	F	$Re(A'_0)(GeV)$	$Im(A'_0)(GeV)$
0.6485(15)	0.6987(87)	38(1)	$44(16)e^{-8}$	$-91(30)e^{-12}$
0.7647(14)	0.6987(87)	38(1)	$36(12)e^{-8}$	$-57(24)e^{-12}$

From $t_{\pi} - t_{K} = 12$, fitting range [5:8]

Conclusion

We did a trial direct $K \to \pi\pi$ for both $\Delta I = 1/2$ and 3/2 calculation.

- Pros
 - A direct calculation is possible.
 - Divergent subtraction is needed and shown.
 - ▶ 25% statistical errors for Re(A₀)
 - ▶ Compare results from 100 confs and 400 confs. Error does scale like $1/\sqrt{N}$
- Cons
 - ▶ $16^3 \times 32$ lattice
 - ▶ $m_{\pi} = 420 MeV$
 - Zero momentum or too big error

Future

We need huge ammount of statistics.

- ullet Computer: Faster machine \sim 100. (comes late this year)
- ullet Algorithm: Deflation, EigenCG, multigrid, other CG ~ 10 ?

Toward physical case

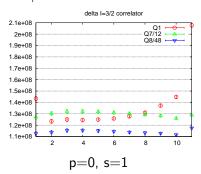
- $32^3 \times 64$ lattice
- $m_{\pi} = 140 \text{MeV}$: Better signal for the disconnected graph because signal decrease slower while the noisy is a constant.
- Big volume: Means more statistics
- How to include momentum: G-parity or Periodic Boundary condition?

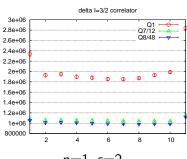
How much is it more difficult? for each configuration, it is $\sim 32 * 5 * 2 = 3200$ times more difficult.

Thank you!

Back Up

$\Delta I = 3/2 \ K \to \pi\pi$ correlators. Both cases are close to on shell.





p=1, s=2

