$K \rightarrow(\pi \pi)_{I=2}$ Decay Amplitudes

Chris Sachrajda

School of Physics and Astronomy
University of Southampton Southampton SO17 1BJ UK

Future Directions in Lattice Gauge Theory LGT10,
CERN, July 19th - August 13th 2010

Southâmporn
School of Physics
and Astronomy

- In this talk, I will review the status of the computations of the $K \rightarrow(\pi \pi)_{I=2}$ decay amplitudes by the RBC-UKQCD collaboration.
T.Blum, P.Boyle, D. Broemmel, J. Flynn, N. Garron, E. Goode, T. Izubuchi, M. Lightman, Qi Liu, R. Mawhinney, N. Christ, C. Sachrajda, A. Soni et al.
- Preliminary results from this study were presented by E.Goode and M.Lightman at
- Lattice 2009:
$\Delta I=3 / 2, K \rightarrow \pi \pi$ Decays with Light, Non-Zero Momentum Pions
- Lattice 2010:
http://agenda.infn.it/contributionDisplay.py?contribld=11\&sessionld=22\&confld=2128
$\Delta I=3 / 2, K \rightarrow \pi \pi$ Matrix Elements with Nearly Physical Pion Masses
- Other aspects of the RBC/UKQCD kaon programme will be presented by Qi Liu (following talk) and Norman Christ.

Outline of Talk

School of Physics and Astronomy

11 Introduction
$2 K \rightarrow \pi \pi$ decay amplitudes from $K \rightarrow \pi$ Matrix Elements.
3 Direct evaluation of $K \rightarrow \pi \pi$ Decays - Infrared Issues
4 Calculation and Results
5. Conclusions

Outline of Talk

11 Introduction
$2 K \rightarrow \pi \pi$ decay amplitudes from $K \rightarrow \pi$ Matrix Elements.
3 Direct evaluation of $K \rightarrow \pi \pi$ Decays - Infrared Issues
4 Calculation and Results
5 Conclusions

All numerical results are preliminary.

- Of course we would like to evaluate all the $K \rightarrow \pi \pi$ matrix elements in lattice simulations and reconstruct A_{0} and A_{2} and understand the $\Delta I=1 / 2$ rule and the value of $\varepsilon^{\prime} / \varepsilon$ (see below).
- In the meantime however, we know $\operatorname{Re} A_{0}$ and $\operatorname{Re} A_{2}$ from experiment. In this talk I attempt to demonstrate that we can also compute $\operatorname{Re} A_{2}$.
- The experimental value of $\varepsilon^{\prime} / \varepsilon$ gives us one relation between $\operatorname{Im} A_{0}$ and $\operatorname{Im} A_{2}$, thus if we evaluate $\operatorname{Im} A_{2}$ then within the standard model we know $\operatorname{Im} A_{0}$ to some precision.

Thanks to Andrzej Buras for stressing this to me.
In this talk I attempt to demonstrate that we can indeed compute $\operatorname{Im} A_{2}$.

- I stress again that ultimately of course, we wish to do better than this.

Qi Liu - Following Talk

- At lowest order in the $\mathrm{SU}(3)$ chiral expansion one can obtain the $K \rightarrow \pi \pi$ decay amplitude by calculating $K \rightarrow \pi$ and $K \rightarrow$ vacuum matrix elements.
- In 2001, two collaborations published some very interesting (quenched) results on non-leptonic kaon decays in general and on the $\Delta I=1 / 2$ rule and $\varepsilon^{\prime} / \varepsilon$ in particular:

Collaboration(s)	$\operatorname{Re} A_{0} / \operatorname{Re} A_{2}$	$\varepsilon^{\prime} / \varepsilon$
RBC	25.3 ± 1.8	$-(4.0 \pm 2.3) \times 10^{-4}$
CP-PACS	$9 \div 12$	$(-7 \div-2) \times 10^{-4}$
Experiments	22.2	$(17.2 \pm 1.8) \times 10^{-4}$

- This required the control of the ultraviolet problem, the subtraction of power divergences and renormalization of the operators - highly non-trivial.
- Four-quark operators mix, for example, with two quark operators \Rightarrow power divergences:

- $\operatorname{Re} A_{0} / \operatorname{Re} A_{2}$ as a function of the meson mass.

- $\varepsilon^{\prime} / \varepsilon$ as a function of the meson mass.

- The RBC and CP-PACS simulations were quenched, and relied on the validity of lowest order χ PT in the region of approximately $400-800 \mathrm{MeV}$.
- Given the cancelations between different matrix elements (particularly O_{6} and O_{8}) the negative value of $\varepsilon^{\prime} / \varepsilon$ is not such an embarrassment but
- $\operatorname{Re} A_{0} / \operatorname{Re} A_{2}$ as a function of the meson mass.

- $\varepsilon^{\prime} / \varepsilon$ as a function of the meson mass.

- The RBC and CP-PACS simulations were quenched, and relied on the validity of lowest order χ PT in the region of approximately $400-800 \mathrm{MeV}$.
- Given the cancelations between different matrix elements (particularly O_{6} and O_{8}) the negative value of $\varepsilon^{\prime} / \varepsilon$ is not such an embarrassment but

Must do better!

Unquenched Calculation

$$
O_{(27,1)}^{3 / 2}=(\bar{s} d)_{L}\left\{(\bar{u} u)_{L}-(\bar{d} d)_{L}\right\}+(\bar{s} u)_{L}(\bar{u} d)_{L}
$$

- RBC/(UKQCD) have repeated the calculation with the 24^{3} DWF ensembles in the pion-mass range $240-415 \mathrm{MeV}$.
- For illustration consider the determination of α_{27}, the LO LEC for the $(27,1)$ operator. Satisfactory fits were obtained, but again the corrections were found to be huge, casting serious doubt on the approach.
- Soft pion theorems are not sufficiently reliable \Rightarrow need to compute $K \rightarrow \pi \pi$ matrix elements.

> To arrive at this important conclusion required a truly major effort.

Unquenched Calculation

$$
O_{(27,1)}^{3 / 2}=(\bar{s} d)_{L}\left\{(\bar{u} u)_{L}-(\bar{d} d)_{L}\right\}+(\bar{s} u)_{L}(\bar{u} d)_{L}
$$

- RBC/(UKQCD) have repeated the calculation with the 24^{3} DWF ensembles in the pion-mass range $240-415 \mathrm{MeV}$.
- For illustration consider the determination of α_{27}, the LO LEC for the $(27,1)$ operator. Satisfactory fits were obtained, but again the corrections were found to be huge, casting serious doubt on the approach.
- Soft pion theorems are not sufficiently reliable \Rightarrow need to compute $K \rightarrow \pi \pi$ matrix elements.

> To arrive at this important conclusion required a truly major effort.

- J.Laiho et al. challenge this conclusion.
- We need to be able to calculate $K \rightarrow \pi \pi$ matrix elements directly.
- The main theoretical ingredients of the infrared problem with two-pions in the s-wave are now understood.
- Two-pion quantization condition in a finite-volume

$$
\delta\left(q^{*}\right)+\phi^{P}\left(q^{*}\right)=n \pi
$$

where $E^{2}=4\left(m_{\pi}^{2}+q^{* 2}\right), \delta$ is the s-wave $\pi \pi$ phase shift and ϕ^{P} is a kinematic function.
M.Lüscher, 1986, 1991, \cdots.

- The relation between the physical $K \rightarrow \pi \pi$ amplitude A and the finite-volume matrix element M

$$
|A|^{2}=8 \pi V^{2} \frac{m_{K} E^{2}}{q^{* 2}}\left\{\delta^{\prime}\left(q^{*}\right)+\phi^{P \prime}\left(q^{*}\right)\right\}|M|^{2},
$$

where $/$ denotes differentiation w.r.t. q^{*}.
L.Lellouch and M.Lüscher, hep-lat/0003023; C.h.Kim, CTS and S.Sharpe, hep-lat/0507006; N.H.Christ, C.h.Kim and T.Yamazaki hep-lat/0507009

- Computation of $K \rightarrow(\pi \pi)_{I=2}$ matrix elements does not require the subtraction of power divergences or the evaluation of disconnected diagrams.
- In principle, we understand how to calculate the $\Delta I=3 / 2 K \rightarrow \pi \pi$ matrix elements.
- Our aim is to calculate the matrix elements with as good a precision as we can.

$K \rightarrow(\pi \pi)_{I=2}$ Decays and the Wigner-Eckart Theorem

- The operators whose matrix elements have to be calculated are:

$$
\begin{aligned}
O_{(27,1)}^{3 / 2} & =\left(\bar{s}^{i} d^{i}\right)_{L}\left\{\left(\bar{u}^{j} u^{j}\right)_{L}-\left(\bar{d}^{j} d^{j}\right)_{L}\right\}+\left(\bar{s}^{i} u^{i}\right)_{L}\left(\bar{u}^{j} d^{j}\right)_{L} \\
O_{7}^{3 / 2} & =\left(\bar{s}^{i} d^{i}\right)_{L}\left\{\left(\bar{u}^{j} u^{j}\right)_{R}-\left(\bar{d}^{j} d^{j}\right)_{R}\right\}+\left(\bar{s}^{i} u^{i}\right)_{L}\left(\bar{u}^{j} d^{j}\right)_{R} \\
O_{8}^{3 / 2} & =\left(\bar{s}^{i} d^{j}\right)_{L}\left\{\left(\bar{u}^{j} u^{i}\right)_{R}-\left(\bar{d}^{j} d^{i}\right)_{R}\right\}+\left(\bar{s}^{i} u^{j}\right)_{L}\left(\bar{u}^{j} d^{i}\right)_{R}
\end{aligned}
$$

- It is convenient to use the Wigner-Eckart Theorem: (Notation - $O_{\Delta J_{z}}^{\Delta I}$)

$$
{ }_{I=2}\left\langle\pi^{+}\left(p_{1}\right) \pi^{0}\left(p_{2}\right)\right| O_{1 / 2}^{3 / 2}\left|K^{+}\right\rangle=\frac{3}{2}\left\langle\pi^{+}\left(p_{1}\right) \pi^{+}\left(p_{2}\right)\right| O_{3 / 2}^{3 / 2}\left|K^{+}\right\rangle,
$$

where
$-O_{3 / 2}^{3 / 2}$ has the flavour structure $(\bar{s} d)(\bar{u} d)$.
$-O_{1 / 2}^{3 / 2}$ has the flavour structure $(\bar{s} d)((\bar{u} u)-(\bar{d} d))+(\bar{s} u)(\bar{u} d)$.

- We can then use antiperiodic boundary conditions for the u-quark say, so that the $\pi \pi$ ground-state is $\left\langle\pi^{+}(\pi / L) \pi^{+}(-\pi / L)\right|$.
- Do not have to isolate an excited state.
- Size (L) needed for physical $K \rightarrow \pi \pi$ decay halved ($6 \mathrm{fm} \rightarrow 3 \mathrm{fm}$).
- Use the Wigner-Eckart Theorem to relate the physical $K \rightarrow \pi^{+} \pi^{0}$ matrix element to that for $K \rightarrow \pi^{+} \pi^{+}$

$$
{ }_{I=2}\left\langle\pi^{+}\left(p_{1}\right) \pi^{0}\left(p_{2}\right)\right| O_{1 / 2}^{3 / 2}\left|K^{+}\right\rangle=\frac{3}{2}\left\langle\pi^{+}\left(p_{1}\right) \pi^{+}\left(p_{2}\right)\right| O_{3 / 2}^{3 / 2}\left|K^{+}\right\rangle
$$

- Calculate the $K \rightarrow \pi^{+} \pi^{+}$matrix element with the u-quark with twisted boundary conditions with twisting angle θ.
- Perform a Fourier transform of one of the pion interpolating operators with additional momentum $-2 \pi / L$.
The ground state now corresponds to one pion with momentum θ / L and the other with momentum $(\theta-2 \pi) / L$.
- The corresponding $\pi \pi$ s-wave phase-shift can then be obtained by the Lüscher formula as a function of $\theta \Rightarrow$ this allows for the derivative of the phase-shift to be evaluated directly at the masses being simulated.
- We have carried this procedure out in an exploratory calculation. Fig
- Unfortunately this technique does not work for $K \rightarrow(\pi \pi)_{I=0}$ decays.

Exploratory Evaluation of the Lellouch-Lüscher Factor

C.h. Kim and CTS, arXiv:1003.3191
LL factor

$$
m_{q}=0.004
$$

LL factor

$$
m_{q}=0.002
$$

- Use the Wigner-Eckart Theorem to relate the physical $K \rightarrow \pi^{+} \pi^{0}$ matrix element to that for $K \rightarrow \pi^{+} \pi^{+}$

$$
{ }_{I=2}\left\langle\pi^{+}\left(p_{1}\right) \pi^{0}\left(p_{2}\right)\right| O_{1 / 2}^{3 / 2}\left|K^{+}\right\rangle=\frac{3}{2}\left\langle\pi^{+}\left(p_{1}\right) \pi^{+}\left(p_{2}\right)\right| O_{3 / 2}^{3 / 2}\left|K^{+}\right\rangle
$$

- Calculate the $K \rightarrow \pi^{+} \pi^{+}$matrix element with the d-quark with twisted boundary conditions with twisting angle θ.
- Perform a Fourier transform of one of the pion interpolating operators with additional momentum $-2 \pi / L$.
The ground state now corresponds to one pion with momentum θ / L and the other with momentum $(\theta-2 \pi) / L$.
- The corresponding $\pi \pi$ s-wave phase-shift can then be obtained by the Lüscher formula as a function of $\theta \Rightarrow$ this allows for the derivative of the phase-shift to be evaluated directly at the masses being simulated.
- We have carried this procedure out in an exploratory calculation. Fig
- Unfortunately this technique does not work for $K \rightarrow(\pi \pi)_{I=0}$ decays.

Hard-Pion Chiral Perturbation Theory

- We argued that $\operatorname{SU}(2) \mathrm{ChPT}$ can be used for $K_{\ell 3}$ form factors at $q^{2}=0$ (and other q^{2} where the kaon is not soft) .
J.Flynn, CTS, arXiV:0809.1229.

$$
\begin{aligned}
f^{0}(0)=f^{+}(0) & =F_{+}\left(1-\frac{3}{4} \frac{m_{\pi}^{2}}{16 \pi^{2} f^{2}} \log \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)+c_{+} m_{\pi}^{2}\right) \\
f^{-}(0) & =F_{-}\left(1-\frac{3}{4} \frac{m_{\pi}^{2}}{16 \pi^{2} f^{2}} \log \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)+c_{-} m_{\pi}^{2}\right)
\end{aligned}
$$

- It is possible to calculate the chiral logarithm because this comes from a soft internal loop.
- This idea has been extended to $K \rightarrow \pi \pi$ decays, J.Bijnens and A Celis, arXiv:0906.0302

$$
\begin{aligned}
& A_{2}=A_{2}^{\mathrm{LO}}\left(1-\frac{15}{4} \frac{m_{\pi}^{2}}{16 \pi^{2} f^{2}} \log \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\right)+\lambda_{2} m_{\pi}^{2} \\
& A_{0}=A_{0}^{\mathrm{LO}}\left(1-\frac{3}{4} \frac{m_{\pi}^{2}}{16 \pi^{2} f^{2}} \log \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\right)+\lambda_{0} m_{\pi}^{2}
\end{aligned}
$$

(and to $B \rightarrow \pi$ and $D \rightarrow \pi$ semileptonic decays. J.Bijnens and I Jemos, arXiV:1006.1197) It would be useful to know the results at NNLO.

- It would be reassuring to confirm that it is possible to develop an effective theory in which hard and soft pions are separated.

RBC-UKQCD, M.Lightman and E.Goode, Lattice 2010

- The RBC/UKQCD strategy at this stage is to perform the simulations on a large lattice, $L \simeq 4.5 \mathrm{fm}$, with light pions ($32^{3} \times 64 \times 32$)

$$
m_{\pi} \simeq 145 \mathrm{MeV} \quad \text { Unitary } m_{\pi} \simeq 180 \mathrm{MeV}
$$

- The price is that the lattice is coarse, $a^{-1} \simeq 1.4 \mathrm{GeV}$.
- With DWF, $m_{\text {res }}$ increases as the coupling becomes stronger \Rightarrow change the gauge action (from Iwasaki) by multiplying by the Auxilliary Determinant.
D.Renfrew, T.Blum, N.Christ, R.Mawhinney and P.Vranas, arXiv:0902.2587
R. Mawhinney, Lattice 2010
- This is tuned to suppress $m_{\text {res }}$ but to maintain topology changing.

Preliminary $\Delta I=3 / 2$ Matrix Elements－Cont．

－The masses and momenta are as follows：

Quantity	This Calculation	Physical
m_{π}	$145.6(5) \mathrm{MeV}$	139.6 MeV
m_{K}	$519(2) \mathrm{MeV}$	493.7 MeV
$E_{\pi \pi}\left(p_{\pi} \simeq 0\right)$	$294(1) \mathrm{MeV}$	
$E_{\pi \pi}\left(p_{\pi} \simeq \sqrt{2} \pi / L\right)$	$516(9) \mathrm{MeV}$	
$E_{\pi \pi}\left(p_{\pi} \simeq \sqrt{2} \pi / L\right)-m_{K}$	$-2.7(8.3) \mathrm{MeV}$	

－The results presented here were obtained with 47 configurations（plan to continue to 100）．

Effective Masses

Southanampton
School of Physics and Astronomy

Effective Masses - Cont.

$O_{7}^{\prime 3 / 2}=(\bar{s} d)_{L}(\bar{u} d)_{R}$

$$
O_{8}^{\prime 3 / 2}=\left(\bar{s}^{i} d^{j}\right)_{L}\left(\bar{u}^{j} d^{i}\right)_{R}
$$

Sample plateaus for the matrix elements at matched kinematics $\left(p_{\pi}=\sqrt{2} p_{\text {min }}\right)$.
－We have preliminary results for the $\Delta I=3 / 2 K \rightarrow \pi \pi$ decay amplitude on 32^{3} lattices with 2＋1 flavours of DWF and the Iwasaki－DSDR gauge action．
－$m_{\pi}=145.6(5) \mathrm{MeV}, m_{K}=519(2) \mathrm{MeV}, E_{\pi \pi}=516(9) \mathrm{MeV}$ ．
－ $\operatorname{Re} A_{2}=1.56(7)(25) \times 10^{-8} \mathrm{GeV}$ ． Error is dominated by lattice artefacts，a^{-3} on a coarse lattice．
－ $\operatorname{Im} A_{2}=-9.6(4)(24) \times 10^{-13} \mathrm{GeV}$ ． In addition to lattice artefacts，we are in the process of performing the NPR for the EWP operators $O_{7,8}$ The result above is obtained by taking $Z_{i j}=0.9(0.18) \delta i j$ ．
－ $\operatorname{Im} A_{2} / \operatorname{Re} A_{2}=-6.2(0.3)(1.3) 10^{-5}$ ．
－We are confirming that these calculations are possible．
－Calculations of the $\Delta I=1 / 2$ amplitudes are much more challenging－Qi Liu next talk．

