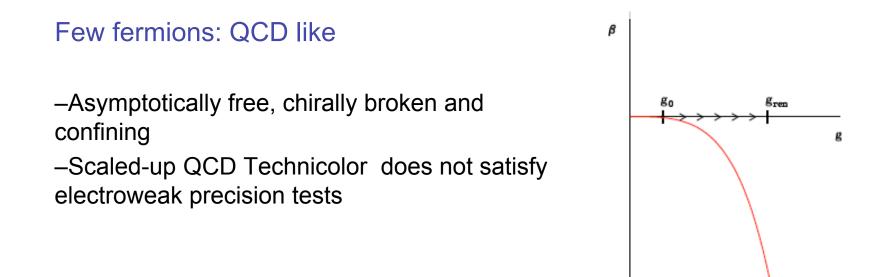
Conformal or Walking? Monte Carlo Renormalization Group studies in technicolor-inspired models

LGT10 - CERN, July 2010

Anna Hasenfratz University of Colorado

The nature of electroweak symmetry breaking is one of the fundamental issues LHC could reveal. Some of the theoretical models require only a gauge theory with fermions:

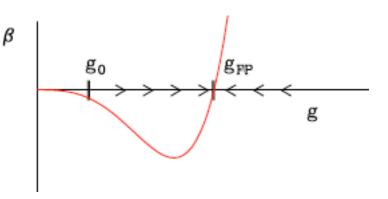


The nature of electroweak symmetry breaking is one of the fundamental issues LHC could reveal. Some of the theoretical models require only a gauge theory with fermions:

More fermions: conformal systems

Asymptotically free
The gauge coupling develops an infrared fixed point and becomes an irrelevant operator.

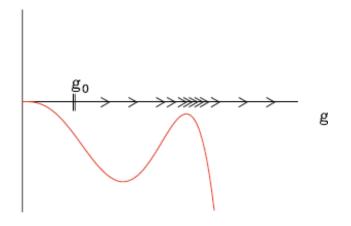
–Unparticles or ?



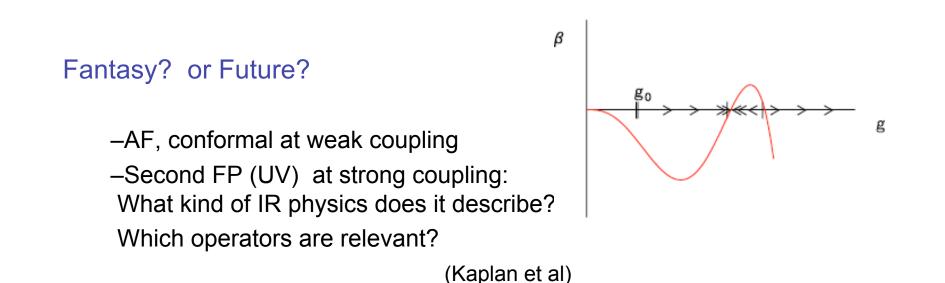
The nature of electroweak symmetry breaking is one of the fundamental issues LHC could reveal. Some of the theoretical models require only a gauge theory with fermions:

Just below the conformal window: walking

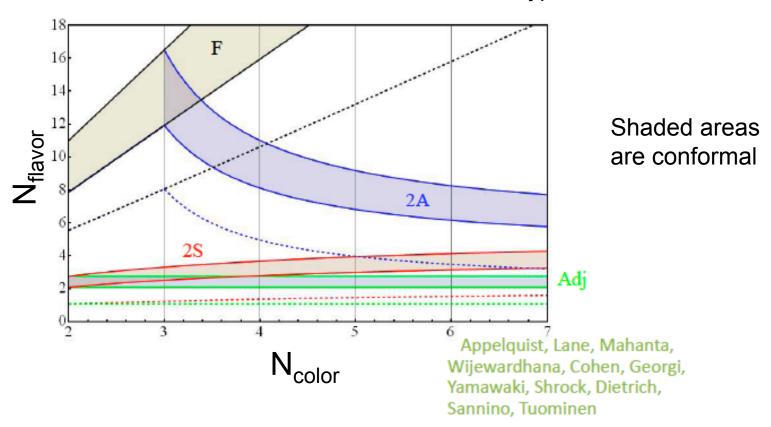
–AF, confining, chirally broken
–The gauge coupling is walking
–Best option for technicolor if it has a large anomalous mass dimension across a large energy scale



The nature of electroweak symmetry breaking is one of the fundamental issues LHC could reveal. Some of the theoretical models require only a gauge theory with fermions:

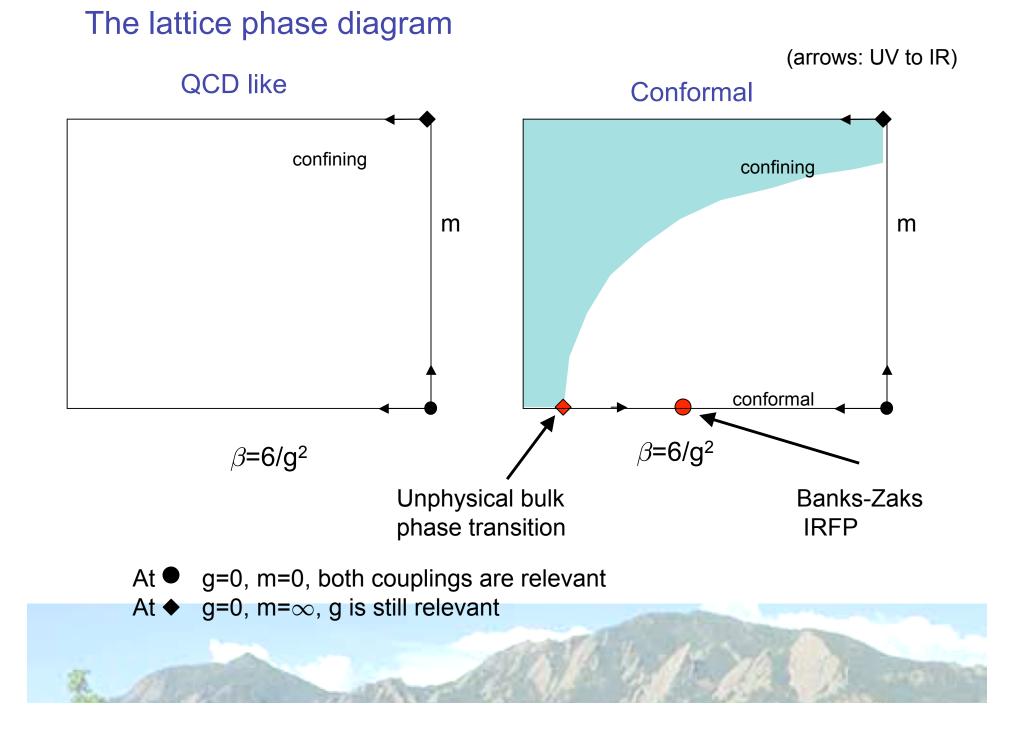


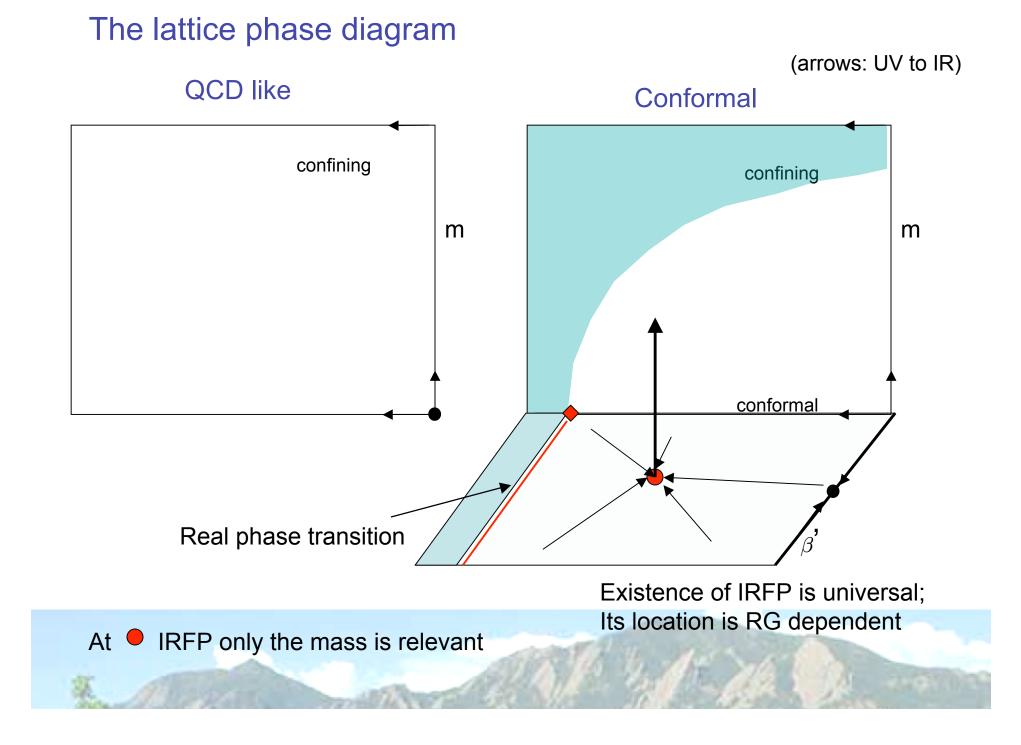
Roadmap for the conformal window

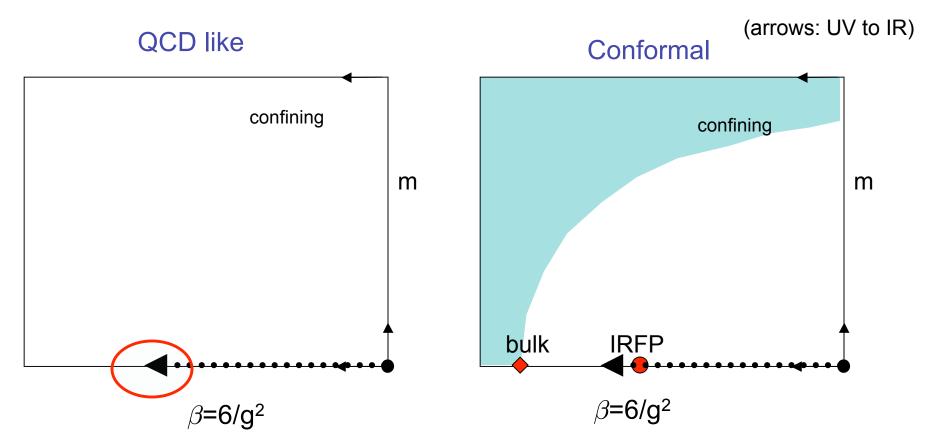


S-D type calculations

Needs non-perturbative verification!







How can we distinguish QCD-like and conformal systems?

Lattice simulations can connect the perturbative FP and strong coupling

- Found IRFP? Done 🖌
- No IRFP? Show that it is confining before a bulk transition is reached

Connecting weak and strong coupling: the bare differential step scaling function

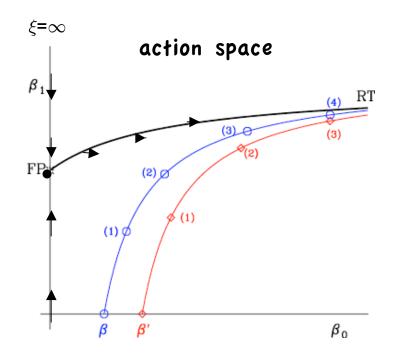
 $s_b(\beta) = \beta - \beta'$ where $\xi(\beta) = \xi(\beta')/2$ $(\beta = 2N_c/g_0^2)$

 ξ is the correlation length defined by some physical mass.

Sensible definition when ξ is finite

- \mathbf{s}_{b} is universal only as far as $\boldsymbol{\xi}$ is
 - Can be measured directly or
 - Through some running coupling(the Schrodinger functional formalism) or
 - Use RG flow : $s_b(\beta)$ is the "projection" of the RG flow to a lower dimensional coupling space

Step scaling function around a UVFP



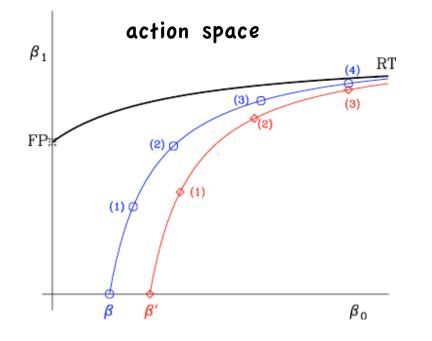
- Do simulations at β and $\beta'(m=0)$
- RG block and compare the blocked actions

- if S($\beta^{(n)}$)= S($\beta^{(n-1)}$)--> a(β)=a($\beta^{(n-1)}$)/2

the step scaling function is

 $\textbf{s}_{b}(\beta \text{)=Iim}_{\textbf{n}_{b} \rightarrow \infty} \ (\beta \text{ - }\beta \text{ '})$

Calculating $s_b(\beta)$ with MCRG



Two actions are identical if all operator expectations values agree

Match operators (local expectation values) after several blocking steps

- The location of the FP on the critical surface depends on the RG transformation
- Tuning free parameters in the RG transformation can pull the FP and its RT close, reducing systematical errors (optimization)

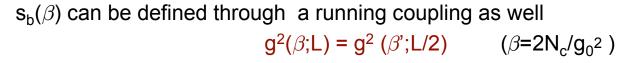
Along a relevant direction $s_b(\beta)$ is universal (up to lattice artifacts)

The step scaling function in a conformal system

```
In the chiral limit \xi = \infty everywhere !
```

 $s_b(\beta)$ can be defined through the RG flow

 $s_b(\beta) = \beta - \beta'$ where $S^{(n)}(\beta) = S^{(n-1)}(\beta')$

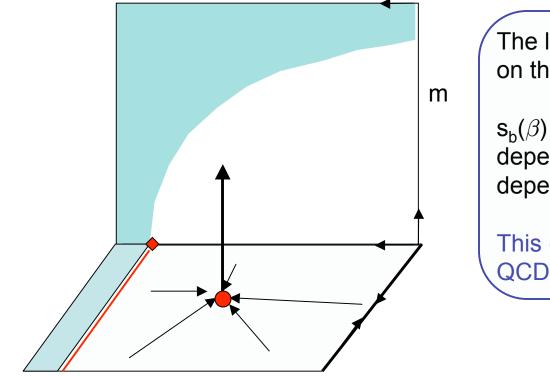


Calculate $g^2(\beta;L)$ using Schrodinger functional or potential or something else

RG flow lines around an IRFP

On the critical surface (m=0) around an IRFP the flows converge to the FP when $n_b^{}\!\!\rightarrow\!\!\infty$

With finite n_b the flow picks up the slowest flowing operator



The location of the IRFP depends on the RG transformation

 $s_b(\beta)$ along an irrelevant direction depends on the blocking (scheme dependence)

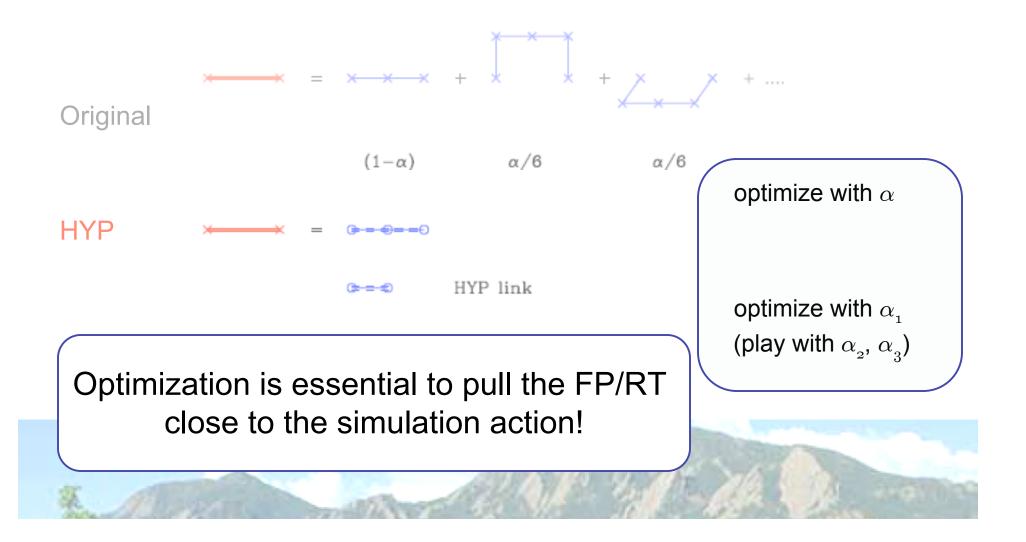
This could be a signal for non-QCD-like behavior

Matching of 2 relevant operators

- Matching around a FP with 2 relevant operators require tuning of 2 parameters (β and m)
- OR
- Set one operator to its critical value (m=0) and tune only in the other one (β) \rightarrow s_b
- Next fix $s_{_{b}}$ and tune m $\,\rightarrow\,\gamma_{m}$

The 3 Renormalization Group transformations

A real space block transformation averages out the UV modes leading to the renormalized trajectory that describes perfect actions



Summary: 2- lattice matching MCRG

- Works with bare couplings sufficient to study the phase diagram
- Can be optimized by tuning the free parameter(s) of the RG transformation
- Finite volume effects are largely controlled
- Requires relatively small statistics
- Has a lot of built-in consistency checks
 - compare several blocking levels
 - compare several operators
 - compare different RG transformations

Some results:

- SU(3) pure gauge (test)
- SU(3) gauge + N_f =8,16 and 12 fundamental flavors

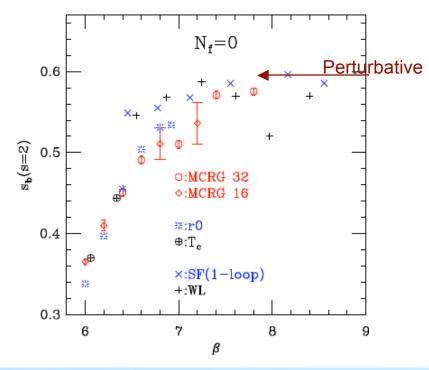
All with nHYP smeared staggered fermions (no rooting!) Wilson plaquette gauge action

Warning: $s_b > 0$ when $\beta(g) < 0$!

SU(3) pure gauge : test case

The bare step scaling function can be calculated in many ways

- physical observables r_0 , T_c
- Schrodinger fn; Wilson loop ratios,
- RG matching: $32^4 \rightarrow 16^4$ and $16^4 \rightarrow 8^4$

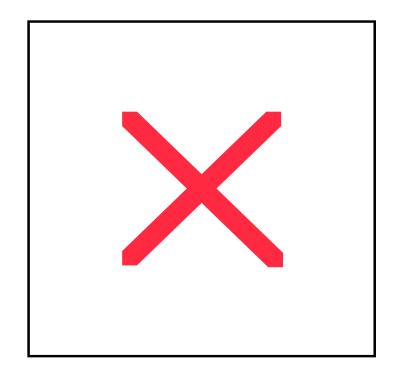


- Good agreement between $r_{0},\,T_{c}$ and MCRG
- $32^4 \rightarrow 16^4$ and $16^4 \rightarrow 8^4$ are consistent with ~0.02 accuracy
- Both SF and MCRG approach the perturbative value
- Since at β =6 we can test confinement, we know there is no physical IRFP

Compare different RG transformations:

When the flow is governed by a UVFP, $s_b(\beta)$ is universal (up to lattice corrections).

Compare 3 different RG transformations:

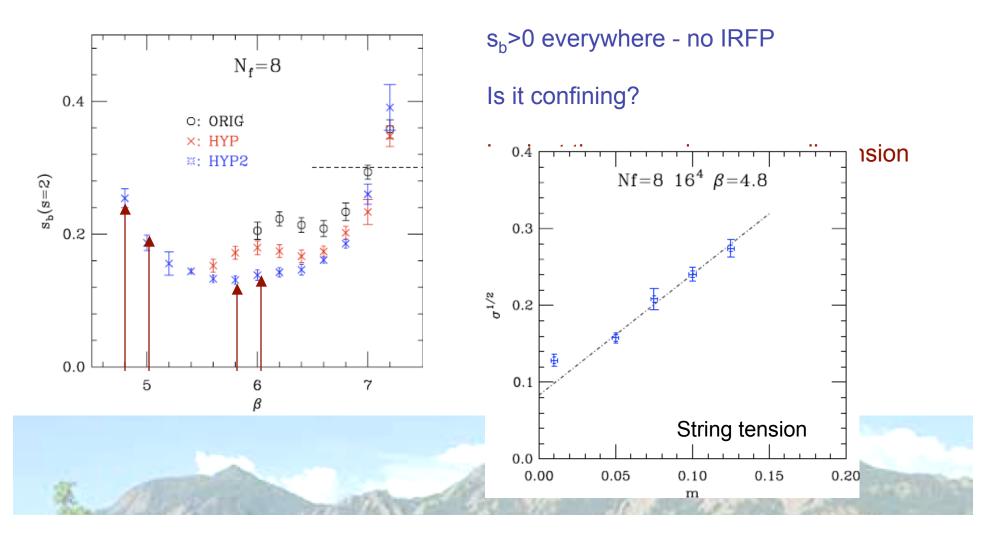


Excellent agreement between the 3 RG blockings → attractive region of a UVFP

$N_f=8$ flavors

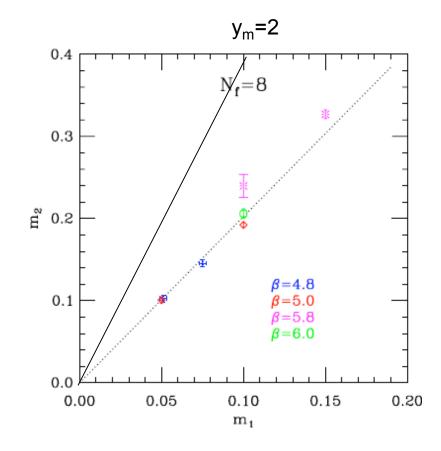
Expected to be QCD-like: analytical & numerical results

Compare the different RG transformations (m≈0)



N_f=8 flavors, anomalous mass

4 different couplings (β =4.8,5.0,5.8,6.0), optimal RG from m=0 data

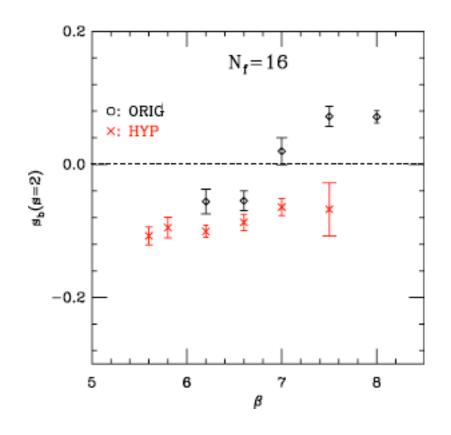


 $m_2 = m_1 2^{-1/y_m}$ $\gamma_m = y_m - 1$

All 4 β values predict similar value γ_m = 0.02(5) close to free field exponent

N_f=16 flavors

$16^4 \rightarrow 8^4 \text{ MCRG}$



ORIG blocking shows $s_b(\beta)=0$ around $\beta=7.0$

HYP blocking has an IRFP around β =10.0

Different block transformations predict different $s_b(\beta)=0$ but they both show a positive RG β function

N_f=12 flavors

Some history:

- The analytic works predicts $N_f=12$ is just above the conformal window
- Yale group found an IRFP at fairly strong coupling, using Schrodinger functional method, unimproved action
- Groningen/INF group identified a bulk phase transition characteristic to a conformal system and claim chiral symmetry at weaker coupling
- Two groups (San Diego and Columbia) have studied the spectrum of the model with improved and unimproved actions. Both see QCD-like behavior, though at stronger gauge couplings.

If N_f=12 is conformal,

Could the spectral measurements be in the strong coupling phase?

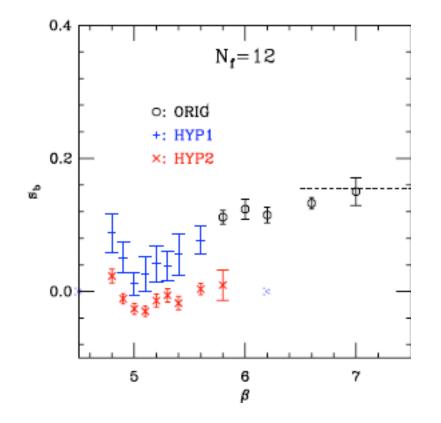
If N_f=12 is QCD-like,

The unimproved actions used with Schrodinger functional could be unreliable

We expect a universal result from all actions. The existence of the conformal phase near g=0 is universal, even if the locations of the phase transitions, fixed points are not.

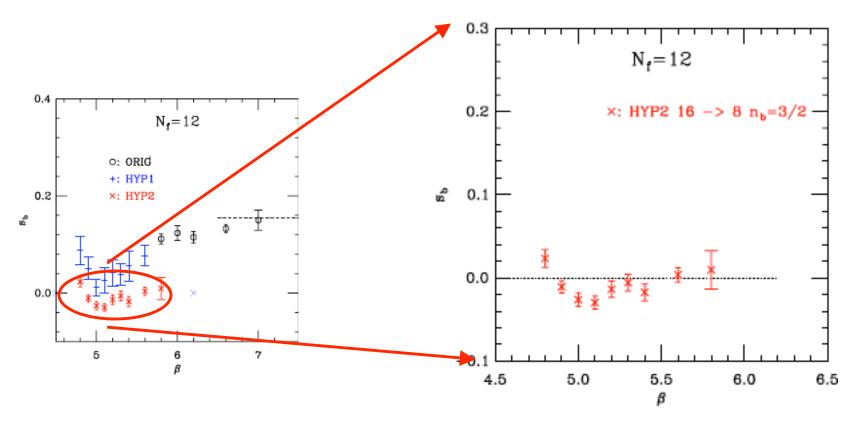
N_f=12 flavors with MCRG

Use the same techniques as before; $16^4 \rightarrow 8^4$, m=0.0025 or 0.01



- Orig/HYP blockings predicts different s_b(β) functions
- HYP2 hovers around 0 -- likely IRFP
- String tension vanishes at β =4.4 on 16⁴ volumes, but lattice artifacts are large and the volume is small

Look at closer



• There is no phase transition at the second zero

- 32⁴ ->16⁴ matching shows large
 - •finite volume
 - •finite n_b effects

Summary: N_f=12 flavors

• It is a difficult system

Conclusion

MCRG is an effective alternative method to study the phase structure and scaling properties of lattice QFT's

- The method is very universal, straightforward to implement for any other system
- Can be used to predict anomalous mass dimensions as well

 N_f =0-8,16 as expected. N_f =12 is difficult

What is next?

- Could the different groups come up with a consistent picture for $N_f=12$?
- SU(2) gauge, other fermion representations can be studied the same way
- Maybe it is time to go beyond fermion-gauge systems

