Testing universality and automatic $\mathbf{O}(a)$ improvement in massless lattice QCD with Wilson quarks

Stefan Sint, in collaboration with Björn Leder

* $\mathrm{O}(a)$ effects in the Schrödinger functional
* The chirally rotated Schödinger functional
* Lattice implementation
* Relations from universality
* Lattice set-up and simulation results

CERN Theory Institute "Future directions in lattice gauge theory", 21 July 2010

Motivation: a typical renormalisation problem

A typical calculation of a hadronic matrix element such as B_{K} can be split in 4 independent parts:

$$
\begin{aligned}
& \left\langle h_{f}\right| O^{\overline{\mathrm{MS}}}\left(\mu=1 / L_{\min }\right)\left|h_{i}\right\rangle= \\
& \underbrace{Z_{\overline{\mathrm{MS}, \mathrm{SF}}}\left(\bar{g}^{2}\left(L_{\min }\right)\right)}_{\text {1-loop PT }} \times \underbrace{U\left(L_{\min }, L_{\max }\right)}_{\text {scale evolution in } \mathrm{CL}} \times \lim _{a \rightarrow 0}\{Z\left(g_{0}^{2}, a / L_{\max }\right) \underbrace{\left\langle h_{f}\right| O(a)\left|h_{i}\right\rangle}_{\text {bare matrix element }}\}
\end{aligned}
$$

The factor

$$
U\left(L_{\min }, L_{\max }\right)=\lim _{a \rightarrow 0} \frac{Z\left(g_{0}^{2}, a / L_{\min }\right)}{Z\left(g_{0}^{2}, a / L_{\max }\right)}
$$

is constructed in the continuum limit from the step-scaling functions;

- may use different regularisation from calculation of bare matrix element;
- use Wilson quarks or staggered quarks (computationally cheap).

$\mathbf{O}(a)$ effects in SF schemes

- The time boundaries induce $\mathrm{O}(a)$ effects; can be cancelled by 2 boundary counterterms:

$$
a \int_{x_{0}=0, T} \mathrm{~d}^{3} \mathbf{x} \operatorname{tr}\left\{F_{0 k} F_{0 k}\right\}, \quad a \int_{x_{0}=0, T} \mathrm{~d}^{3} \mathbf{x} \bar{\psi} \gamma_{0} D_{0} \psi .
$$

- Wilson fermions: addditional $\mathrm{O}(a)$ effects are cancelled by bulk $\mathrm{O}(a)$ counterterms $\propto c_{\mathrm{sw}}, c_{\mathrm{A}}, \ldots$.
\Rightarrow these are needed despite automatic $\mathrm{O}(a)$ improvement of massless Wilson quarks (Frezzotti \& Rossi '03)!
- The boundary $\mathrm{O}(a)$ terms can be monitored/controlled; it would be nice if the mechanism of automatic $\mathrm{O}(a)$ improvement in the bulk could be made compatible with the SF!

Mechanism of automatic $\mathbf{O}(a)$ improvement (Frezzotti \& Rossi '03)

In the absence of boundaries, automatic $\mathrm{O}(a)$ improvement follows from chiral symmetry of the massless continuum action:

$$
\psi \rightarrow \gamma_{5} \psi \quad \bar{\psi} \rightarrow-\bar{\psi} \gamma_{5}
$$

Observables can be decomposed

$$
O=O_{+}+O_{-}, \quad O_{ \pm}[\psi, \bar{\psi}] \rightarrow O_{ \pm}\left[\gamma_{5} \psi,-\bar{\psi} \gamma_{5}\right]= \pm O_{ \pm}[\psi, \bar{\psi}]
$$

One then shows that

$$
\left\langle O_{+}\right\rangle=\left\langle O_{+}\right\rangle^{\mathrm{cont}}+\mathrm{O}\left(a^{2}\right), \quad\left\langle O_{-}\right\rangle=\mathrm{O}(a)
$$

Thus $\mathrm{O}(a)$ effect are localised in γ_{5}-odd observables/correlation functions \& can be avoided!

- With SF boundary conditions: standard argument of automatic $\mathrm{O}(a)$ improvement fails:

$$
\gamma_{5} P_{ \pm}=P_{\mp} \gamma_{5}, \quad P_{ \pm}=\frac{1}{2}\left(1 \pm \gamma_{0}\right)
$$

\Rightarrow no way to define γ_{5}-even or γ_{5}-odd correlation functions!

- Possible solution: Give a flavour structure to the γ_{5}-transformation, for $N_{\mathrm{f}}=2$:

$$
\psi \rightarrow \gamma_{5} \tau^{1} \psi, \quad \bar{\psi} \rightarrow-\bar{\psi} \gamma_{5} \tau^{1}
$$

and change quark boundary projectors, such that they commute with $\gamma_{5} \tau^{1}$, e.g.

$$
\begin{gathered}
\mathcal{P}_{ \pm}=\frac{1}{2}\left(1 \pm \gamma_{0} \tau^{3}\right), \quad \tilde{Q}_{ \pm}=\frac{1}{2}\left(1 \pm i \gamma_{0} \gamma_{5} \tau^{3}\right) \\
\Rightarrow\left[\mathcal{P}_{ \pm}, \gamma_{5} \tau^{1}\right]=0=\left[\tilde{Q}_{ \pm}, \gamma_{5} \tau^{1}\right]
\end{gathered}
$$

- Here: focus on projectors $\tilde{Q}_{ \pm}$; these arise naturally when chirally rotating the standard SF b.c.'s!

The Schrödinger functional and chiral rotations

In correlation functions derived from the Schrödinger functional,

$$
\langle O[\psi, \bar{\psi}]\rangle_{\left(P_{+}\right)}=\mathcal{Z}^{-1} \int D[\psi, \bar{\psi}, A] O[\psi, \bar{\psi}] \mathrm{e}^{-S}
$$

the fermion fields ψ and $\bar{\psi}$ satisfy homogeneous Dirichlet boundary conditions with projectors $P_{ \pm}=\frac{1}{2}\left(1 \pm \gamma_{0}\right)$,

$$
\begin{array}{ll}
\left.P_{+} \psi(x)\right|_{x_{0}=0}=0, & \left.P_{-} \psi(x)\right|_{x_{0}=T}=0, \\
\left.\bar{\psi}(x) P_{-}\right|_{x_{0}=0}=0, & \left.\bar{\psi}(x) P_{+}\right|_{x_{0}=T}=0 .
\end{array}
$$

Perform a chiral field rotation,

$$
\psi \rightarrow \exp \left(i \alpha \gamma_{5} \tau^{3} / 2\right) \psi, \quad \bar{\psi} \rightarrow \bar{\psi} \exp \left(i \alpha \gamma_{5} \tau^{3} / 2\right)
$$

the rotated fields satisfy chirally rotated boundary conditions

$$
\begin{aligned}
\left.P_{+}(\alpha) \psi(x)\right|_{x_{0}=0} & =0, & \left.P_{-}(\alpha) \psi(x)\right|_{x_{0}=T} & =0, \\
\left.\bar{\psi}(x) \gamma_{0} P_{-}(\alpha)\right|_{x_{0}=0} & =0, & \left.\bar{\psi}(x) \gamma_{0} P_{+}(\alpha)\right|_{x_{0}=T} & =0,
\end{aligned}
$$

with the projectors

$$
P_{ \pm}(\alpha)=\frac{1}{2}\left[1 \pm \gamma_{0} \exp \left(i \alpha \gamma_{5} \tau^{3}\right)\right]
$$

Setting $\alpha=\pi / 2$:

$$
P_{ \pm}(\pi / 2) \equiv \tilde{Q}_{ \pm}=\frac{1}{2}\left(1 \pm i \gamma_{0} \gamma_{5} \tau^{3}\right)=\operatorname{diag}\left(Q_{+}, Q_{-}\right), \quad Q_{ \pm}=\frac{1}{2}\left(1 \pm i \gamma_{0} \gamma_{5}\right)
$$

A change of variables in the functional integral leads to:

$$
\langle O[\psi, \bar{\psi}]\rangle_{\left(P_{ \pm}\right)}=\langle\tilde{O}[\psi, \bar{\psi}]\rangle_{\left(P_{ \pm}(\alpha)\right)}
$$

with

$$
\tilde{O}[\psi, \bar{\psi}]=O\left[\exp \left(i \alpha \gamma_{5} \tau^{3} / 2\right) \psi, \bar{\psi} \exp \left(i \alpha \gamma_{5} \tau^{3} / 2\right]\right.
$$

NB: All mass terms are set to zero, otherwise one also needs to rotate masses covariantly $(\rightarrow$ twisted mass QCD)

A note on symmetries

- In QCD the flavour vector transformation are identified as those leaving the quark mass term invariant. In massless QCD we are free to pick a convention.
- Convention used here: standard SF boundary conditions are parity \& isospin invariant, this defines our "physical basis"
\Rightarrow Symmetries take a non-standard form in the chirally rotated SF ($\chi \mathrm{SF}$) , as illustrated by the Ward identities:

$$
\begin{aligned}
\left\langle\delta_{\mathrm{A}}^{a} O\right\rangle_{\left(P_{ \pm}\right)} & =\frac{1}{2} \int \mathrm{~d}^{3} z\left\langle\left[\bar{\zeta}(\mathbf{z}) \gamma_{5} \tau^{a} \zeta(\mathbf{z})+\bar{\zeta}^{\prime}(\mathbf{z}) \gamma_{5} \tau^{a} \zeta^{\prime}(\mathbf{z})\right] O\right\rangle_{\left(P_{ \pm}\right)} \\
\left\langle\delta_{\mathrm{V}}^{a} O\right\rangle_{\left(P_{ \pm}\right)} & =0 \\
\left\langle\delta_{\mathrm{A}}^{a} O\right\rangle_{\left(\tilde{Q}_{ \pm}\right)} & =\frac{i}{2} \delta^{3 a} \int \mathrm{~d}^{3} z\left\langle\left[\bar{\zeta}(\mathbf{z}) \zeta(\mathbf{z})+\bar{\zeta}^{\prime}(\mathbf{z}) \zeta^{\prime}(\mathbf{z})\right] O\right\rangle_{\left(\tilde{Q}_{ \pm}\right)} \\
\left\langle\delta_{\mathrm{V}}^{a} O\right\rangle_{\left(\tilde{Q}_{ \pm}\right)} & =\frac{i}{2} \varepsilon^{3 a b} \int \mathrm{~d}^{3} z\left\langle\left[\bar{\zeta}(\mathbf{z}) \gamma_{5} \tau^{b} \zeta(\mathbf{z})-\bar{\zeta}^{\prime}(\mathbf{z}) \gamma_{5} \tau^{b} \zeta^{\prime}(\mathbf{z})\right] O\right\rangle_{\left(\tilde{Q}_{ \pm}\right)}
\end{aligned}
$$

Lattice implementation of rotated SF boundary conditions

An orbifold procedure yields the structure of the lattice Dirac operator in the free theory:

$$
\begin{aligned}
S_{f}[U, \psi, \bar{\psi}]= & a^{4} \sum_{x} \bar{\psi}(x)\left(\mathcal{D}_{W}+m_{0}\right) \psi(x) \\
a \mathcal{D}_{W} \psi(x)= & -U(x, 0) P_{-} \psi(x+a \hat{\mathbf{0}})+K \psi(x)-U(x-a \hat{\mathbf{0}})^{\dagger} P_{+} \psi(x-a \hat{\mathbf{0}}) \\
K \psi(x)= & \left(1+a m_{0}+\frac{1}{2} \sum_{k=1}^{3}\left\{a\left(\nabla_{k}+\nabla_{k}^{*}\right) \gamma_{k}-a^{2} \nabla_{k}^{*} \nabla_{k}\right\}\right) \psi(x) \\
& +\delta_{x_{0}, 0} i \gamma_{5} \tau^{3} P_{-} \psi(x)+\delta_{x_{0}, T} i \gamma_{5} \tau^{3} P_{+} \psi(x)
\end{aligned}
$$

The lattice symmetries imply a list of possible $d=3$ counterterms:

$$
\begin{aligned}
O_{1} & =\bar{\psi} \gamma_{0} Q_{+} \psi-\bar{\psi} \gamma_{0} Q_{-} \psi=\bar{\psi} i \gamma_{5} \tau^{3} \psi \\
O_{2} & =\bar{\psi} \tilde{Q}_{+} \psi \\
O_{3} & =\bar{\psi} \tilde{Q}_{-} \psi
\end{aligned}
$$

List of dimension-4 counterterms:

$$
\begin{aligned}
O_{4} & =\bar{\psi} \tilde{Q}_{+} \gamma_{k} D_{k} \psi-\bar{\psi} \overleftarrow{D}_{k} \gamma_{k} \tilde{Q}_{+} \psi \\
O_{5} & =\bar{\psi} \tilde{Q}_{-} \gamma_{k} D_{k} \psi-\bar{\psi} \overleftarrow{D}_{k} \gamma_{k} \tilde{Q}_{-} \psi \\
O_{6} & =\bar{\psi} \tilde{Q}_{+} \gamma_{0} D_{0} \psi-\bar{\psi} \overleftarrow{D}_{0} \gamma_{0} \tilde{Q}_{+} \psi \\
O_{7} & =\bar{\psi} \tilde{Q}_{-} \gamma_{0} D_{0} \psi-\bar{\psi} \overleftarrow{D}_{0} \gamma_{0} \tilde{Q}_{-} \psi \\
O_{8} & =\bar{\psi} \tilde{Q}_{+} D_{0} \psi+\bar{\psi} \overleftarrow{D}_{0} \tilde{Q}_{+} \psi \\
O_{9} & =\bar{\psi} \tilde{Q}_{-} D_{0} \psi+\bar{\psi} \overleftarrow{D}_{0} \tilde{Q}_{-} \psi \\
O_{10} & =\bar{\psi} \tilde{Q}_{+} \gamma_{0} \gamma_{k} D_{k} \psi+\bar{\psi} \overleftarrow{D}_{k} \gamma_{k} \gamma_{0} \tilde{Q}_{+} \psi \\
O_{11} & =\bar{\psi} \tilde{Q}_{-} \gamma_{0} \gamma_{k} D_{k} \psi+\bar{\psi} \overleftarrow{D}_{k} \gamma_{k} \gamma_{0} \tilde{Q}_{-} \psi
\end{aligned}
$$

Equations of motion:

$$
O_{4}+O_{6}=0, \quad O_{5}+O_{7}=0, \quad O_{8}+O_{10}=0, \quad O_{9}+O_{11}=0
$$

Total derivative:

$$
O_{10}-O_{11}=\partial_{k}\left(\bar{\psi} \gamma_{k} i \gamma_{5} \tau^{3} \psi\right)
$$

So there are 11 operators and 5 relations $\Rightarrow 6$ counterterms!

Implementation of counterterms

- Replace $\mathcal{D}_{W} \rightarrow \mathcal{D}_{W}+\delta \mathcal{D}_{W}$,

$$
\begin{aligned}
\delta \mathcal{D}_{W} \psi(x) & =\left(\delta_{x_{0}, 0}+\delta_{x_{0}, T}\right)\left[\left(z_{f}-1\right)+\left(d_{s}-1\right) a \mathbf{D}_{s}\right] \psi(x) \\
\mathbf{D}_{s} & =\frac{1}{2}\left(\nabla_{k}+\nabla_{k}^{*}\right) \gamma_{k} .
\end{aligned}
$$

- Parameterize the basic fermionic 2-point functions, e.g.

$$
\begin{aligned}
{[\psi(x) \bar{\zeta}(\mathbf{y})]_{F} } & =S(x ; a, \mathbf{y}) U_{0}(0, \mathbf{y})^{\dagger}\left(1-\bar{d}_{s} a \overleftarrow{\mathbf{D}}_{s}\right) \tilde{Q}_{-} \\
{[\zeta(\mathbf{x}) \bar{\zeta}(\mathbf{y})]_{F} } & =\tilde{Q}_{-}\left(1+\bar{d}_{s} a \mathbf{D}_{s}\right)\left[\bar{S}(0, \mathbf{x} ; 0, \mathbf{y})-\left(\tilde{z}_{f}+\tilde{d}_{s} a \mathbf{D}_{s}\right) \delta(\mathbf{x}-\mathbf{y})\right]\left(1-\bar{d}_{s} a \overleftarrow{\mathbf{D}}_{s}\right) \tilde{Q}_{-} \\
{\left[\zeta(\mathbf{x}) \bar{\zeta}^{\prime}(\mathbf{y})\right]_{F} } & =\tilde{Q}_{-}\left(1+\bar{d}_{s} a \mathbf{D}_{s}\right) \bar{S}(0, \mathbf{x} ; T, \mathbf{y})\left(1-\bar{d}_{s} a \overleftarrow{\mathbf{D}}_{s}\right) \tilde{Q}_{+}
\end{aligned}
$$

- Renormalize the quark boundary fields:

$$
\zeta_{\mathrm{R}}=Z_{\zeta} \zeta, \quad \bar{\zeta}_{\mathrm{R}}=Z_{\zeta} \bar{\zeta}, \quad \zeta_{\mathrm{R}}^{\prime}=Z_{\zeta} \zeta^{\prime}, \quad \bar{\zeta}_{\mathrm{R}}^{\prime}=Z_{\zeta} \bar{\zeta}^{\prime}
$$

Some observations

- The constants z_{f}, \tilde{z}_{f} are finite (scale independent) and must be tuned to restore parity \& flavour symmetry
- The constant \bar{d}_{s} parametrizes the $\gamma_{5} \tau^{1}$-odd counterterm O_{10} and can usually be ignored.
- The constants \tilde{z}_{f} and \tilde{d}_{s} only occur in correlation functions where disconnected diagrams contribute; can be avoided by appropriate flavour assignments.
- Comparison to standard SF: in practice,

$$
\left\{Z_{\zeta}, c_{\mathrm{t}}, \tilde{c}_{\mathrm{t}}, c_{\mathrm{sw}}, c_{\mathrm{A}}, \ldots\right\} \quad \longleftrightarrow \quad\left\{Z_{\zeta}, c_{\mathrm{t}}, d_{s}, z_{f}\right\}
$$

i.e. automatic $\mathrm{O}(a)$ improvement is obtained by tuning z_{f}.

- Tree level values: $Z_{\zeta}=1, z_{f}=1, d_{s}=\frac{1}{2}, \tilde{d}_{s}=1, \bar{d}_{s}=0$,

SF correlation functions

Standard SF correlators: use pseudo-scalar and vector boundary sources

$$
\mathcal{O}_{5}^{f_{1} f_{2}}=a^{6} \sum_{\mathrm{y}, \mathrm{z}} \bar{\zeta}_{f_{1}}(\mathbf{y}) \gamma_{5} P_{-} \zeta_{f_{2}}(\mathbf{z}) \quad \mathcal{O}_{k}^{f_{1} f_{2}}=a^{6} \sum_{\mathrm{y}, \mathrm{z}} \bar{\zeta}_{f_{1}}(\mathbf{y}) \gamma_{k} P_{-} \zeta_{f_{2}}(\mathbf{z})
$$

consider all possible 2-point functions with quark bilinear operators $X^{f_{1} f_{2}}(x)\left(X=A_{0}, P, V_{0}, S\right)$ and $Y_{k}^{f_{1} f_{2}}(x)\left(Y_{k}=V_{k}, T_{0 k}, A_{k}, \tilde{T}_{0 k}\right)$:

$$
f_{\mathrm{X}}\left(x_{0}\right)=-\frac{1}{2}\left\langle X^{f_{1} f_{2}}(x) \mathcal{O}_{5}^{f_{2} f_{1}}\right\rangle_{\left(P_{ \pm}\right)}, \quad k_{\mathrm{Y}}\left(x_{0}\right)=-\frac{1}{6} \sum_{k=1}^{3}\left\langle Y_{k}^{f_{1} f_{2}}(x) \mathcal{O}_{k}^{f_{2} f_{1}}\right\rangle_{\left(P_{ \pm}\right)}
$$

Boundary-to-boundary correlators:

$$
f_{1}=-\frac{1}{2}\left\langle\mathcal{O}_{5}^{f_{1} f_{2}} \mathcal{O}_{5}^{\prime f_{2} f_{1}}\right\rangle_{\left(P_{ \pm}\right)}, \quad k_{1}=-\frac{1}{6} \sum_{k=1}^{3}\left\langle\mathcal{O}_{k}^{f_{1} f_{2}} \mathcal{O}_{k}^{\prime} f_{2} f_{1}\right\rangle_{\left(P_{ \pm}\right)}
$$

χ SF correlation functions

Main difference: two-point functions now depend on the flavour indices:

$$
g_{\mathrm{X}}^{f_{1} f_{2}}\left(x_{0}\right)_{ \pm}=-\frac{1}{2}\left\langle X^{f_{1} f_{2}}(x) \mathcal{Q}_{5, \pm}^{f_{2} f_{1}}\right\rangle_{\left(\tilde{Q}_{ \pm}\right)} \quad l_{\mathrm{Y}}^{f_{1} f_{2}}\left(x_{0}\right)_{ \pm}=-\frac{1}{6} \sum_{k=1}^{3}\left\langle Y_{k}^{f_{1} f_{2}}(x) \mathcal{Q}_{k}^{f_{2} f_{1}}\right\rangle_{\left(\tilde{Q}_{ \pm}\right)}
$$

Boundary-to-boundary correlators:

$$
g_{1}^{f_{1} f_{2}}=-\frac{1}{2}\left\langle\mathcal{Q}_{5}^{f_{1} f_{2}} \mathcal{Q}_{5}^{\prime f_{2} f_{1}}\right\rangle_{\left(\tilde{Q}_{ \pm}\right)}, \quad l_{1}^{f_{1} f_{2}}=-\frac{1}{6} \sum_{k=1}^{3}\left\langle\mathcal{Q}_{k}^{f_{1} f_{2}} \mathcal{Q}_{k}^{\prime f_{2} f_{1}}\right\rangle_{\left(\tilde{Q}_{ \pm}\right)}
$$

Boundary sources:

$$
\begin{array}{ll}
\mathcal{Q}_{5}^{u u^{\prime}}=a^{6} \sum_{\mathrm{y}, \mathrm{z}} \bar{\zeta}_{u}(\mathbf{y}) \gamma_{0} \gamma_{5} Q_{-} \zeta_{u^{\prime}}(\mathbf{z}), & \mathcal{Q}_{5}^{u d}=a^{6} \sum_{\mathrm{y}, \mathrm{z}} \bar{\zeta}_{u}(\mathbf{y}) \gamma_{5} Q_{+} \zeta_{d}(\mathbf{z}) \\
\mathcal{Q}_{k}^{u u^{\prime}}=a^{6} \sum_{\mathrm{y}, \mathrm{z}} \bar{\zeta}_{u}(\mathbf{y}) \gamma_{k} Q_{-} \zeta_{u^{\prime}}(\mathbf{z}), & \mathcal{Q}_{k}^{u d}=a^{6} \sum_{\mathrm{y}, \mathrm{z}} \bar{\zeta}_{u}(\mathbf{y}) \gamma_{0} \gamma_{k} Q_{+} \zeta_{d}(\mathbf{z})
\end{array}
$$

Notation: $\left.\zeta(\mathbf{x}) \leftrightarrow \psi(x)\right|_{x_{0}=0}$ and $\left.\bar{\zeta}(\mathbf{x}) \leftrightarrow \bar{\psi}(x)\right|_{x_{0}=0}$ (translated to the lattice)

Dictionary: standard \leftrightarrow rotated SF correlation functions

- Perform a chiral rotation by $\alpha=\pi / 2$; 4 possibilities: $f_{1} f_{2}=u u^{\prime}, d d^{\prime}, u d, d u$; assume existence of a second doublet $\left(u^{\prime}, d^{\prime}\right) \Rightarrow$ no disconnected diagrams
- Non-vanishing correlations functions with pseudo-scalar source

$$
f_{\mathrm{A}}=g_{\mathrm{A}}^{u u^{\prime}}=-i g_{\mathrm{V}}^{u d}, \quad f_{\mathrm{P}}=i g_{\mathrm{S}}^{u u^{\prime}}=g_{\mathrm{P}}^{u d}, \quad f_{1}=g_{1}^{u u^{\prime}}=g_{1}^{u d}
$$

- Non-vanishing correlations functions with vector source

$$
k_{\mathrm{V}}=l_{\mathrm{V}}^{u u^{\prime}}=-i l_{\mathrm{A}}^{u d} \quad k_{\mathrm{T}}=i l_{\widetilde{\mathrm{T}}}^{u u^{\prime}}=l_{\mathrm{T}}^{u d} \quad k_{1}=l_{1}^{u u^{\prime}}=l_{1}^{u d}
$$

- All other correlation functions vanish by parity or flavour symmetries!

$$
\begin{array}{r}
f_{\mathrm{S}}=i g_{\mathrm{P}}^{u u^{\prime}}=g_{\mathrm{S}}^{u d}=0=f_{\mathrm{V}}=g_{\mathrm{V}}^{u u^{\prime}}=-i g_{\mathrm{A}}^{u d}, \\
k_{\mathrm{A}}=l_{\mathrm{A}}^{u u^{\prime}}=-i l_{\mathrm{V}}^{u d}=0=k_{\tilde{\mathrm{T}}}=i l_{\mathrm{T}}^{u u^{\prime}}=l_{\widetilde{\mathrm{T}}}^{u d}
\end{array}
$$

Rôle of z_{f} and boundary conditions

- Counterterm $\propto z_{f}$: renormalisation of α in the boundary projectors $P_{ \pm}(\alpha)$ away from $P_{ \pm}(\pi / 2) \equiv \tilde{Q}_{ \pm}$.
- Tuning of z_{f} restores the $\gamma_{5} \tau^{1}$-symmetry which is necessary for automatic $\mathrm{O}(a)$ improvement. This symmetry is a flavour symmetry in our conventions.
\Rightarrow Tuning conditions for z_{f} : require any $\gamma_{5} \tau^{1}$-odd quantity (e.g. $g_{\mathrm{A}}^{u d}, l_{\mathrm{T}}^{u u^{\prime}}, \ldots$) to vanish exactly; different tuning conditions: expect $\mathrm{O}(a)$ differences in tuned values z_{f}^{*}
- Boundary quark fields are defined as in the standard SF:

$$
\zeta(\mathbf{x}) \leftrightarrow U(0, \mathbf{x} ; 0) \tilde{Q}_{-} \psi(a, \mathbf{x}), \quad \bar{\zeta}(\mathbf{x}) \leftrightarrow \bar{\psi}(a, \mathbf{x}) \tilde{Q}_{-} U(x, 0)^{\dagger}
$$

To test the Dirichlet boundary conditions we reverse the projectors $\tilde{Q}_{-} \rightarrow \tilde{Q}_{+}$. For comparison we do the same in the standard SF.

Non-perturbative quenched study

- Quenched simulations with Wilson quarks with and without $\mathrm{O}(a)$ improvement à la Sheikholeslami-Wohlert
- DDHMC code + SF boundary conditions, both standard and rotated
- Lattice sizes $(L / a)^{3} \times(T / a)$ with $T=L$ and

$$
L / a=8,12,16,24,32
$$

keeping L / r_{0} constant $\Rightarrow a=0.025-0.1 \mathrm{fm}$

- $m_{\text {critical }}$ is taken from the PCAC relation in the standard SF

A laundry list

- How difficult is the tuning of z_{f} ?
- check that the Dirichlet boundary conditions are indeed obtained as expected.
- check universality between rotated and standard SF correlation functions
- check that automatic $\mathrm{O}(a)$ improvement works out as expected: $\gamma_{5} \tau^{1}$-odd correlators should be of $\mathrm{O}(a)$.
- Use universality to determine finite ratios of renormalization constants

Tuning of z_{f} (see also ETMC (J. Gonzalez-Lopez et al), 09)

Check of Dirichlet boundary conditions

Universality checks

Check of automatic $\mathrm{O}(a)$ improvement

Determination of $Z_{\mathrm{A}, \mathrm{V}}$

$\underline{m_{0^{-}}}$and z_{f}-dependence of Z_{A}

$\mathrm{O}\left(a^{2}\right)$ uncertainty in Z_{A}

Conclusions and Outlook

- Successful implementation of chirally rotated SF b.c.'s for Wilson quarks
- Tuning of the dimension-3 counterterm coefficient z_{f} straightforward and almost orthogonal to the tuning of m_{0}.
- Achievement: bulk $\mathrm{O}(\mathrm{a})$ improvement of massless standard or partially improved Wilson quarks
$\Rightarrow Z$-factors in SF schemes are $\mathrm{O}(\mathrm{a})$ improved by tuning the boundary $\mathrm{O}(\mathrm{a})$ counterterms (c_{t} and $d_{s} \Leftrightarrow \tilde{c}_{\mathrm{t}}$;
interesting for 4-quark operators, higher twist operators,. . .
- Applications to Technicolor-inspired models, avoids determination of c_{sw}.
- New methods to determine finite renormalisation constants $Z_{\mathrm{A}}, Z_{\mathrm{V}}, Z_{\mathrm{P}} / Z_{\mathrm{S}}, \ldots$ and improvement coefficients $\left.c_{\mathrm{A}}, c_{\mathrm{V}}, c_{\mathrm{sw}}, \ldots\right)$.

