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What is the sign problem?  

 Sign Problem

Grand canonical: exponentially 
difficult in volume V

XXX

XXX

 Signal/Noise Problem

Canonical: exponentially 
bad S/N in Euclidian time t
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X

X

S/N ~ sign problem:
In background gauge field, quarks don’t know about each other.

Is the quark in a pion?  

⇒ big correlation after long time

Is the quark in a baryon?

⇒ exponentially smaller correlation

(quarks “weigh more” in a baryon)

What is a quark to do??
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S/N ~ sign problem:
In background gauge field, quarks don’t know about each other.

Is the quark in a pion?  

⇒ big correlation after long time

Is the quark in a baryon?

⇒ exponentially smaller correlation

(quarks “weigh more” in a baryon)

What is a quark to do??

How lattice QCD solves this problem:

• Every quark has long correlation in a background gauge field

“Mq” ~ Mπ/2

• If the quark is in a baryon, EXPONENTIAL CANCELLATIONS when averaging 
gauge fields (since MB > 3 Mπ/2)
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Lepage argument for the signal/noise problem
e.g: measuring the nucleon mass in LQCD:

T

Dispersion in measurement:

σ = 〈C†C〉 =
1
N

∑

{A}

C†(A)C(A) ∝ e−3mπT + . . .
3 quarks

3 anti-quarks

3π: lightest 3q+ 3q* state

C†(A)C(A)

C(A)
〈C〉 =

1
N

∑

{A}

C(A) ∝ e−MT + . . .

nucleon: 
lightest 3q state

signal
noise

∝ 1√
N

e−(M− 3
2 mπ)T Basically same picture, with caveats: 

“N”?  Gaussian distribution?
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Important to investigate

• systems with many fermions

‣are usual correlator measurements feasible?

‣choice of sources?

• systems with signal to noise problems

‣multi-fermion 

‣disconnected diagrams

QCD too hard for playing around: find a simpler nontrivial 
system to investigate  
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A physically interesting multi-fermion system that is more 
tractable:   “Unitary Fermions”

Nonrelativistic scattering from a short range interaction:

A =
4π

M

1
p cot δ − ip

p cot δ = −1
a

+
1
2
r0p

2 + O(p4)

p =
√ ME
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A physically interesting multi-fermion system that is more 
tractable:   “Unitary Fermions”

Nonrelativistic scattering from a short range interaction:

A =
4π

M

1
p cot δ − ip

p cot δ = −1
a

+
1
2
r0p

2 + O(p4)

scattering
length

effective
range

phase
shift p =

√ ME

“unitary” fermions: p cot δ = 0

δ = 90◦

a =∞
r0 = 0 . . .

A strongly-coupled conformal system

Zero-range potential 
Zero-energy bound state 

What is unitary fermion?

Unitary fermions : Spin 1/2 fermions with attractive interactions

! Universal
! Strongly interacting

! Non-relativistic conformal

No intrinsic scale except density (n)

Universal constant ξ (Bertsch
parameter)

E(n) = ξEfree(n)

Pairing gap : energy cost to break a pair

∆(n)

µfree(n)
= constant

⇐⇒ p cot δ0 = 0 (or δ0 = π/2)

rΨ!r"

r

a"#$

zero energy bound state

r0"0

Jong-Wan Lee (UW Physics) Lattice calculation for unitary fermions June 18, 2010 4 / 16
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Effective theory: D.K., M. Savage, M.Wise (1998)

Fermion scattering at very low energy; leading interaction:

LEFT =
C0

4
N†NN†N + . . . = iC0
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Effective theory: D.K., M. Savage, M.Wise (1998)

Fermion scattering at very low energy; leading interaction:

LEFT =
C0

4
N†NN†N + . . . = iC0

Renormalization group: C0 scales with UV cutoff μ:

β̂ = µ
∂Ĉ0

∂µ
= −Ĉ0

(
Ĉ0 − 1

)
Ĉ0 ≡ −

Mµ

4π
C0 =

µ

µ + 1
a

Scattering length
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Ĉ01

2
1

Β̂

Effective theory: D.K., M. Savage, M.Wise (1998)

Fermion scattering at very low energy; leading interaction:

LEFT =
C0

4
N†NN†N + . . . = iC0

Renormalization group: C0 scales with UV cutoff μ:

β̂ = µ
∂Ĉ0
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Effective theory: D.K., M. Savage, M.Wise (1998)

Fermion scattering at very low energy; leading interaction:

LEFT =
C0

4
N†NN†N + . . . = iC0

Renormalization group: C0 scales with UV cutoff μ:

β̂ = µ
∂Ĉ0

∂µ
= −Ĉ0

(
Ĉ0 − 1

)
Ĉ0 ≡ −

Mµ

4π
C0 =

µ

µ + 1
a

Scattering length

Trivial IR fixed point
free fermions

Nontrivial UV fixed point
Conformal, infinite a
Unitary fermions
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Feshbach resonance with trapped atoms: tune to unitarity

Can study universal properties of unitary fermions 
experimentally with trapped atoms (JILA, MIT, Innsbruck)

From: Ketterle Lab web page
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Fig. 14. – Phase diagram of interacting Fermi mixtures in a harmonic trap, as a function of
temperature and interaction strength 1/kF a. Shown is the critical temperature TC for the for-
mation of a superfluid as a function of 1/kF a (full line) as well as the characteristic temperature
T ∗ at which fermion pairs start to form (dashed line), after [168]. The shading indicates that
pair formation is a smooth process, not a phase transition.

1/kF a → +∞, the ground state of the system is then a Bose-Einstein condensate of
weakly-interacting molecules of mass M = 2m, in which two fermions of opposite spin
are tightly bound.

Fig. 14 summarizes the different regimes within this BEC-BCS crossover. We see
that the character of the Fermi mixture drastically changes as a function of temperature
and interaction strength. For temperatures T # T ∗ fermions are unpaired, and a free
Fermi mixture exists on the BEC- and the BCS-side of the phase diagram. On resonance,
the mixture might still be strongly interacting even at high temperatures, thus possibly
requiring an effective mass description of the interacting gas. The density distribution
will have the same shape as a free Fermi gas at all interaction strengths. Below T ∗,
fermion pairs start to form. On the BEC-side, where fermions are tightly bound, the
thermal distribution should now be that of a gas of bosons with mass M = 2m. As
a consequence, the cloud will shrink. Below TC , we will finally observe a superfluid,
condensed core, surrounded by a thermal cloud of molecules in the BEC-limit, or of
unpaired fermions in the BCS-limit.

In general, the calculation of density distributions in the strongly interacting regime is
a difficult affair. Simple expressions for the densities can be derived for superfluid gases
at zero temperature, for molecular gases on the “BEC”-side at large and positive 1/kF a,
for weakly interacting Fermi gases on the “BCS”-side for large and negative 1/kF a, and
in the classical limit at high temperatures.

55

Many-body physics:

Fig. 1. – The BEC-BCS crossover. By tuning the interaction strength between the two fermionic
spin states, one can smoothly cross over from a regime of tightly bound molecules to a regime of
long-range Cooper pairs, whose characteristic size is much larger than the interparticle spacing.
In between these two extremes, one encounters an intermediate regime where the pair size is
comparable to the interparticle spacing.

interaction V , explaining why earlier attempts using perturbation theory had to fail.
Also, this exponential factor can now account for the small critical temperatures TC !
5 K: Indeed, it is a result of BCS theory that kBTC is simply proportional to ∆0, the pair
binding energy at zero temperature: kBTC ≈ 0.57 ∆0. Hence, the critical temperature
TC ∼ TD e−1/ρF |V | is proportional to the Debye temperature TD, in accord with the
isotope effect, but the exponential factor suppresses TC by a factor that can easily be
100.

1
.3.2. The BEC-BCS crossover. Early work on BCS theory emphasized the different

nature of BEC and BCS type superfluidity. Already in 1950 Fritz London had suspected
that fermionic superfluidity can be understood as a pair condensate in momentum space,
in contrast to a BEC of tightly bound pairs in real space [35]. The former will occur
for the slightest attraction between fermions, while the latter appears to require a true
two-body bound state to be available to a fermion pair. Schrieffer points out that BCS
superfluidity is not Bose-Einstein condensation of fermion pairs, as these pairs do not
obey Bose-Einstein statistics [36]. However, it has become clear that BEC and BCS
superfluidity are intimately connected. A BEC is a special limit of the BCS state.

It was Popov [37], Keldysh and collaborators [38] and Eagles [39] who realized in
different contexts that the BCS formalism and its ansatz for the ground state wave
function provides not only a good description for a condensate of Cooper pairs, but also
for a Bose-Einstein condensate of a dilute gas of tightly bound pairs. For superconductors,
Eagles [39] showed in 1969 that, in the limit of very high density, the BCS state evolves
into a condensate of pairs that can become even smaller than the interparticle distance
and should be described by Bose-Einstein statistics. In the language of Fermi gases, the
scattering length was held fixed, at positive and negative values, and the interparticle
spacing was varied. He also noted that pairing without superconductivity can occur
above the superfluid transition temperature. Using a generic two-body potential, Leggett

9

a>0 a=0 a<0
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Compare with pion Compton wavelength: 

3S1
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pcm !MeV"
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a3S1
=

1
45 MeV
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a1S0 = − 1
8 MeV

Nucleons are pretty close to being unitary fermions

λ =
1

mπ
=

1
140 MeV
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What is interesting to 
measure on the lattice?

1.Bertsch parameter:  as N → 
∞,  Eunitary/Efree = ξ

2. Pairing gap Δ

3. Energies of (N↑, N↓) 
fermions in a harmonic trap 
yield operator anomalous 
dimensions (!)

4.  Phases at N↑ ≠ N↓

5.More than two species of 
fermions (Efimov states)
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Phase diagram of a cold polarized Fermi gas

D. T. Son1 and M. A. Stephanov2

1Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1550, USA
2Department of Physics, University of Illinois, Chicago, Illinois 60607-7059,USA

(Dated: July 2005)

We propose a phase diagram for a cold polarized atomic Fermi gas with zero-range interaction.
We identify four main phases in the plane of density and polarization: the superfluid phase, the
normal phase, the gapless superfluid phase, and the modulated phase. We argue that there exists
a Lifshitz point at the junction of the normal, the gapless superfluid, and the modulated phases,
and a splitting point where the superfluid, the gapless superfluid, and the modulated phases meet.
We show that the physics near the splitting point is universal and derive an effective field theory
describing it. We also show that subregions with one and two Fermi surfaces exist within the normal
and the gapless superfluid phases.

PACS numbers: 03.75.Ss

I. INTRODUCTION

The Fermi gas in the regime of large scattering length
a [1–3] has attracted much interest due to its universal
behavior. The regime can be achieved in atom traps by
using the technique of Feshbach resonance [4–8]. Most
attention is focused on systems consisting of two compo-
nents of fermions (e.g., two spin components of a spin-1

2

fermion) with equal number density. When the effective
range r0 is small compared to the interparticle distance
n−1/3, where n is the total number density, many prop-
erties of the system depend on n and a only through the
dimensionless diluteness parameter

κ = −
1

na3
. (1)

When one varies κ the system interpolates between
the Bose-Einstein condensation (BEC) regime and the
Bardeen-Cooper-Schrieffer (BCS) regime. For all values
of κ the ground state is believed to be a superfluid.

In contrast, the case of unequal number density (or un-
equal chemical potentials) of the two components is much
less understood [9–11]. In the case of spin-1

2
fermions

one refers to a polarized gas. We follow this terminology,
understanding “polarized” in the sense of asymmetry be-
tween the two components.

In this paper we propose a phase diagram for a po-
larized Fermi gas in the whole range from the BEC to
the BCS regime. Our proposal is summarized in Fig. 1.
There are two special points on the phase diagram. Point
S (the splitting point) is a point where phases I, III and
IV meet. Point L is a Lifshitz point where II, III and
IV meet. The focus of this paper is on the point S. The
physics in the vicinity of this point is of a long-distance,
i.e., universal, nature and can be reliably studied within
an effective field theory.

Our proposal for the global structure of the phase di-
agram is an educated guess anchored on the following
reliable facts: the known phase structure in the BEC
and BCS limits; the existence of the point S, which is at
least a local minumum of the free energy; and the struc-

I

II

II

III

IV

L

S

!

"

BEC BCS

1

"
0

FIG. 1: The proposed phase diagram in the plane of the di-
luteness parameter κ = −1/(na3) and the (scaled) polariza-
tion chemical potential η = H/∆H=0. I is the unpolarized
BEC/BCS phase, II is the normal phase, III is the gapless
superfluid phase, and IV is a region of Fulde-Ferrell-Larkin-
Ovchinikov phases. The dashed line divides phases II and
III into regions with one (on the left) and two (on the right)
Fermi surfaces. Region IV must be divided into phases with
different patterns of breaking of the rotational symmetry (not
shown).

ture of the phase diagram around S, studied in detail in
this paper.

We devote the Appendix to the question of the global
stability of the splitting point. We show that quantum
Monte Carlo simulations [11] indicate that the superfluid
state at point S is globally stable. We also argue that
mean-field calculations of the phase diagram will likely
miss the point S by significantly overestimating the size
of the region occupied by phase II.

II. QUALITATIVE DESCRIPTION OF THE
PHASE DIAGRAM

A. Axes of the phase diagram

A particular system is characterized by three parame-
ters: the scattering length a and the chemical potentials
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using the technique of Feshbach resonance [4–8]. Most
attention is focused on systems consisting of two compo-
nents of fermions (e.g., two spin components of a spin-1
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the Bose-Einstein condensation (BEC) regime and the
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of κ the ground state is believed to be a superfluid.
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equal chemical potentials) of the two components is much
less understood [9–11]. In the case of spin-1
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one refers to a polarized gas. We follow this terminology,
understanding “polarized” in the sense of asymmetry be-
tween the two components.

In this paper we propose a phase diagram for a po-
larized Fermi gas in the whole range from the BEC to
the BCS regime. Our proposal is summarized in Fig. 1.
There are two special points on the phase diagram. Point
S (the splitting point) is a point where phases I, III and
IV meet. Point L is a Lifshitz point where II, III and
IV meet. The focus of this paper is on the point S. The
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i.e., universal, nature and can be reliably studied within
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III into regions with one (on the left) and two (on the right)
Fermi surfaces. Region IV must be divided into phases with
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shown).

ture of the phase diagram around S, studied in detail in
this paper.

We devote the Appendix to the question of the global
stability of the splitting point. We show that quantum
Monte Carlo simulations [11] indicate that the superfluid
state at point S is globally stable. We also argue that
mean-field calculations of the phase diagram will likely
miss the point S by significantly overestimating the size
of the region occupied by phase II.

II. QUALITATIVE DESCRIPTION OF THE
PHASE DIAGRAM

A. Axes of the phase diagram

A particular system is characterized by three parame-
ters: the scattering length a and the chemical potentials
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Attractive pairing: multi-fermion system more like pions than baryons in 
QCD - no obvious sign or signal/noise problem

To achieve high precision:

• Formulate theory so that quenched theory is exact

‣ no closed fermion loops containing interactions

‣ rules out grand canonical; work at fixed fermion #

• No bosonic action (compute fermion propagators in random 
background scalar field)

• Use highly improved fermion propagators

• Unusual statistical analysis for creating mass plots?

• Nontrivial construction of sources

Work in progress: expect 1-2% accuracy for g.s. energy for up to ~100 
fermions on 163 x 64 lattice

Goal:  high accuracy calculations at large fermion number
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Basic formulation (Chen & Kaplan, 2003):

Lattice construction & simulation method

Action

Starting point:

non-relativistic action for spin 1/2 fermions

zero-range 2-body (3-body) interactions

no chemical potential; finite density from many fermion correlators

L = ψ̄

(

∂τ −
∇2

2M

)

ψ + C0(ψ̄ψ)2

Parameter tuning à la Kaplan & Chen (2003):

coupling C0 related to two particle s-wave scattering length by
evaluating 2-fermion scattering amplitude at zero momentum

Michael G. Endres (Columbia University) New approach for studying large numbers of fermions in the unitary regimeJune 18, 2010 5 / 18

C0 tuned to give infinite scattering length (defines continuum limit)

Interaction included by random Z2 auxiliary field

Lattice construction & simulation method

Interactions

p’ q’

qp

Z2=⇒

q

p’ q’

p

k’

p

p’

k
q

q’

Z3=⇒

q kp

p’ k’q’

p-body interactions introduced via Zp

(p = 2, 3 . . .) auxiliary fields (φ)

reduce action to fermion bilinears
(necessary for Monte Carlo studies)

p-body interactions requires at least p
fermion species

L → ψ̄

(

∂τ −
∇2

2M
+

√

C0φ

)

︸ ︷︷ ︸

K(φ)

ψ

Michael G. Endres (Columbia University) New approach for studying large numbers of fermions in the unitary regimeJune 18, 2010 6 / 18
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Lattice construction & simulation method

Interactions

p’ q’

qp

Z2=⇒

q

p’ q’

p

k’

p

p’

k
q

q’

Z3=⇒

q kp

p’ k’q’

p-body interactions introduced via Zp

(p = 2, 3 . . .) auxiliary fields (φ)

reduce action to fermion bilinears
(necessary for Monte Carlo studies)

p-body interactions requires at least p
fermion species

L → ψ̄

(

∂τ −
∇2

2M
+

√

C0φ

)

︸ ︷︷ ︸

K(φ)

ψ

Michael G. Endres (Columbia University) New approach for studying large numbers of fermions in the unitary regimeJune 18, 2010 6 / 18

Lattice construction & simulation method

Fermion operator

K (φ) =












D X (0) 0 0 . . . 0
0 D X (1) 0 . . . 0
0 0 D X (2) . . . 0
0 0 0 D . . . 0
...

...
...

...
. . . X (T − 1)

!
!

!
!!" 0

−X (T ) 0 0 0 . . . D












D = 1 −
∇2

2M
X (τ) = 1 − φ(τ)

Key ingredient to our approach: instead of anti-periodic boundary
conditions in time direction, impose open boundary conditions

Michael G. Endres (Columbia University) New approach for studying large numbers of fermions in the unitary regimeJune 18, 2010 7 / 18

K(φ)ττ ′

★Fermions propagate only forward in time
★Interactions only on time links
★Open B.C. (incompatible w. grand canonical)}

Det[K(φ)] is 
independent of φ
Quenched = exact

Open B.C.

D = 1− ∇2

2M
, X = 1−

√
C0φ(x, t)
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All one does: compute fermion propagators in background φ

t

x
y
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➤

All one does: compute fermion propagators in background φ

⇓

⇑

➤

➤

t

x

⇓⇑

➤

➤

➤

➤

y
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➤

All one does: compute fermion propagators in background φ

⇓

⇑

➤

➤

t

x

⇓⇑

➤

➤

➤

➤

• Free propagation on 
spatial slices
•Only forward 
propagation in time
•Local particle 
interactions only on 
time-like links
•No closed fermion 
loops with interactions 
= no nontrivial 
determinant

y
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Lattice construction & simulation method

Fermion operator

K (φ) =












D X (0) 0 0 . . . 0
0 D X (1) 0 . . . 0
0 0 D X (2) . . . 0
0 0 0 D . . . 0
...

...
...

...
. . . X (T − 1)

!
!

!
!!" 0

−X (T ) 0 0 0 . . . D












D = 1 −
∇2

2M
X (τ) = 1 − φ(τ)

Key ingredient to our approach: instead of anti-periodic boundary
conditions in time direction, impose open boundary conditions

Michael G. Endres (Columbia University) New approach for studying large numbers of fermions in the unitary regimeJune 18, 2010 7 / 18

K(φ)ττ ′

Single-particle correlator: 

N-particle transfer matrix: TN = (⊗T1)N

C1(τ, 0) = K−1(τ, 0) = D−1X(τ − 1)D−1X(τ − 2) · · · X(0)D−1

= D−1/2 [T1(τ − 1)T1(τ − 2) · · · T1(0)]D−1/2

T1 = D−1/2XD−1/2 1-particle transfer matrix 
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Toward a more perfect fermion action (fermion propagator):

I. 1-particle physics: Improve kinetic energy ∇2

Free particle: T1 = D−1 =
(
1−∇2/(2M)

)−1

Define ∇ to attain perfect action for p<Λ:

In practice, take Λ=π in lattice units

D−1 =

{
e−p2/2M p < Λ
0 p ≥ Λ
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more perfect fermion action continued:

II. 2-particle physics: improving interaction

Tuning C0 to infinite scattering length still leaves 
nonzero pcotδ...need to tune away effective range, 
etc.

Momentum dependent
contact interaction

X = 1−
√

C0φ X = 1−
√

C(p2)φ⇒
Tuning method:

i.  Expand coupling C in set of operators: 

ii. Fit Cn to match first N energy eigenvalues 
  for continuum box L, pcotδ=0 (Lüscher formula)

C(p2) =
N∑

n=1

CnOn(p2)
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Lattice parameter tuning

Parameter tuning: one of several methods

Determine first k solutions p∗
i (i = 1, . . . k) to Luscher’s formula

Solve the linear set of equations:
∑k−1

n=0 C2nI2n(p∗
i ) = 1 for each i

Example: p cot δ = 0 (unitary fermions)
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Lattice parameter tuning

Luscher’s formula

Goal: Relate C-coefficients to s-wave scattering parameters (a, r0, etc.)

p cot δ = −1
a + 1

2 r0p2 + . . .

Method: Use Luscher’s formula to relate the exact zero CM solutions to
two-fermion transfer matrix to continuum Luscher energies
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pcotδ =
1

πL
S(η) η =

(
pL

2π

)2

S(η) = lim
Λ→∞




∑

|n|<Λ

1

n2 − η
− 4πΛ
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(p cot δ) very small after tuning, even for large 
momenta. 
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Lattice construction & simulation method

Simulation method

Procedure: Time evolution of single particle wave functions on random
background configurations

For each configuration:
Initialize N sources at time zero ψsource

i (i = 1, . . . ,N)
For each source:

Compute ψi(0) = D
−1ψsource

i

For each time slice τ thereafter:
Generate random auxiliary fields at time slice
Compute ψi(τ ) = D

−1
X (τ )ψi(τ − 1) using FFTs

Project propagators onto single/multi-particle sinks
Perform contractions (e.g. Slater determinants)

Michael G. Endres (Columbia University) New approach for studying large numbers of fermions in the unitary regimeJune 18, 2010 9 / 18

(Michael Endres)
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How good is our method?  How large are discretization &
finite volume errors?

Benchmark for N≤6 fermions in harmonic trap 
(accurate Schrödinger eq. calculations)

! "#$%&'()* +(,-.)$%(/ 0&123$.4$(/

5 67895:8;:6; 678<8<! =79

6 97=9>:?;:?; 97=8>:8=;" =7@

9 <79?5:5;:8; <769<:?=;# =7>

@ >755>:6;:9; >759<:?=;# =78

!F. Werner and Y. Castin, Phys. Rev. Lett. 97. 150401 (2006)
"D. Blume, J. von Stecher, and C. Greene, Phys. Rev. Lett. 99. 233201 (2007)
#D. Blume, private communication

!
"
#
$
%&

%'
(
"
)
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τ

 D. Blume, private communication
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Finite volume errors
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FN-DMC: D. Blume, J. von Stecher, Chris H. Greene, arXiv:0708.2734

GFMC: S. Y. Chang and G. F. Bertsch, arXiv:physics/0703190

Comparison with earlier Monte Carlo calculations



David Kaplan CERN LGT10 July 22, 2010

!"#$%&'($))*+,-$).

!"#$%&'(%$%&)*+#+$',-'
.*+/"%01#&$*2"%'!34'
.$#$%.

5+2"6(%'1#*&'
2,&&%"#$*,+.

!
"
#$
%&

'
'

(
#)
$*

(

!"#$%&'($))*+,-$).

!"#$%&'(%$%&)*+#+$',-'
.*+/"%01#&$*2"%'!34'
.$#$%.

5+2"6(%'1#*&'
2,&&%"#$*,+.

!
"
#$
%&

'
'

(
#)
$*

(

!"#$%&'($))*+,-$).

!"#$%&'(%$%&)*+#+$',-'
.*+/"%01#&$*2"%'!34'
.$#$%.

5+2"6(%'1#*&'
2,&&%"#$*,+.

!
"
#$
%&

'
'

(
#)
$*

(

Exact ground state wave 
function for 2 unitary 
fermions in SHO

This accuracy is not possible with Slater determinant sources:  
need to build pairing correlations into source
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N unitary fermions in a box:  
compute the Bertsch parameter   ξ = lim (Eunitary/Efree)

N→∞
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compute the Bertsch parameter   ξ = lim (Eunitary/Efree)

N→∞

Get nonsense if one does not build correlations into source!
Results from creating an antisymmetrized product of free fermions:
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N unitary fermions in a box:  
compute the Bertsch parameter   ξ = lim (Eunitary/Efree)

N→∞

Get nonsense if one does not build correlations into source!
Results from creating an antisymmetrized product of free fermions:

ξ should be L-independent
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With pairing correlations built into source, no significant volume 
dependence for ξ

0 5 10 15 20 25 30 35

0.1

0.2

0.3

0.4

0.5

Ξ

Ξ " Eunitary!Efree_con

m"5.0, Periodic BC, Tuned with 6 operators

L " 12

L " 16

L " 8

N



David Kaplan CERN LGT10 July 22, 2010

What about the signal/noise problem?
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What about the signal/noise problem?

The theory at finite μ and N↑ = N↓ has real det:  
no sign problem = no S/N problem?
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What about the signal/noise problem?

The theory at finite μ and N↑ = N↓ has real det:  
no sign problem = no S/N problem?

Lepage argument naively suggests a huge S/N problem! 
Squaring correlator is like doubling # of fermion 
species...that system has no ground state in continuum
(Efimov states, bounded below by the lattice cutoff)



David Kaplan CERN LGT10 July 22, 2010

What about the signal/noise problem?

The theory at finite μ and N↑ = N↓ has real det:  
no sign problem = no S/N problem?

Lepage argument naively suggests a huge S/N problem! 
Squaring correlator is like doubling # of fermion 
species...that system has no ground state in continuum
(Efimov states, bounded below by the lattice cutoff)

What do we see? A significant but not disastrous S/N 
problem due to non-Gaussian distribution of 
correlators
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Plot of the distribution of the 4-particle correlator C4(t) in an 
ensemble of 105  random φ fields for t=1,...,64

Very long tail; gets worse with time.  

Movie doesn’t 
reproduce in 
pdf...see Cdist.mov
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Plot of the distribution of the log of the 4-particle correlator 
C4(t) in an ensemble of random φ fields for t=1,...,64

Red = Gaussian fit... very good!
Conclusion: correlators obey Log-Normal distribution.  Why??

Movie doesn’t 
reproduce in 
pdf...see 
LogCdist.mov
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Plot of the distribution of the log of the 4-particle correlator 
C4(t) in an ensemble of random φ fields for t=1,...,64

Red = Gaussian fit... very good!
Conclusion: correlators obey Log-Normal distribution.  Why??

Caveat: am now discussing 1-week-old ideas!

Movie doesn’t 
reproduce in 
pdf...see 
LogCdist.mov
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Log-normal distribution naturally arise in products of positive 
random numbers: 

x =
∏

i

ci ≡
∏

i

eξi = e
P

i ξi ≡ ey
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Log-normal distribution naturally arise in products of positive 
random numbers: 

Gaussian
 

distri
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P(y = lnx) = N e−(y−µ)2/2σ2
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Log-normal distribution naturally arise in products of positive 
random numbers: 

Gaussian
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Log-normal distribution naturally arise in products of positive 
random numbers: 

Gaussian
 

distri
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Log-normal distribution naturally arise in products of positive 
random numbers: 

Gaussian
 

distri
buted

P(y = lnx) = N e−(y−µ)2/2σ2

〈x〉 = eµ2+σ2/2

Construct

Tail of Woe〈y〉 = µ

〈y2〉 = µ2 + σ2
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Sampling a variable with 
a log-normal distribution

In our case:  x = correlator =
∏

i

T (φi)

Need to compute: E = −1
t

ln〈x〉

Avoid distribution tail by computing
then constructing E.  

〈lnx〉 , 〈ln2 x〉
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Effective mass plot, N=14 fermions, 83x64 
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Conclusions:

• We are on track to achieve 1% measurements for an 
physically interesting system with up to ~100 fermions 

• Interested in extending to non-unitary fermions: lattice 
EFT for nuclei?

• Learned some lessons:

‣With large number of particles, very difficult to find a 
ground state you don’t already understand!

‣ In noisy systems, it pays to examine the raw 
probability distribution!✭  
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Wild speculation of the week 

Other noisy systems:  Perhaps a single hadron 
correlator C, sampling many “uncorrelated-
enough” gauge links, is driven to a fixed-point,  
non-Gaussian probability distribution P*(C) 
with long tail, such as Log-Normal distribution 
we are finding

Perhaps can determine the few parameters 
describing P*(C) and hence <C> without 
having to sample tail??

Baryons? Glueballs? Disconnected diagrams?


