The FLAG: lattice results for phaenomenologists

FLAG: Flavianet Lattice Averaging Group
A. VLADIKAS - INFN "Tor Vergata"

CERN, 22 July 2010
The CERN Theory Institute:
Future Directions in Lattice Gauge Theory

Motivation

FLAG: Flavianet Lattice Averaging Group

Prolegomena

- Flavour Physics increasingly important as LHC probes new energies
- precision measurements may lead to signatures of new Physics
- major theoretical limitation: low energy QCD effects in SM are not quantified to a satisfactory precision
- Lattice QCD: a sound, field-theoretic approach, aiming at the computation of these hadronic effects with well controlled (and increasingly decreasing) errors
- Lattice simulations performed by different groups involve different choices both at the level of formalism (lattice actions, number of sea flavours etc.) and at the level of resources (lattice volumes, quark masses etc.)
- often this amounts to making different compromises which in turn introduces different systematic effects
- not all lattice results of a given quantity are directly comparable

Prolegomena

- Aim: answer the question "What is currently the best lattice value for a particular quantity?" in a way which is readily accessible to non-experts
- FLAG: founded in November 2007, operates within the European Network on Flavour Physics (Flavianet)
- FLAG: a group of European lattice and XPT practitioners is making an effort to create a compilation of results on a few quantities, which critically summarize the state of the art
- FLAG members: G.Colangelo (Bern), S.Dürr (Jülich), A.Jüttner (Mainz), L.Lellouch (Marseilles), H.Leutwyler (Bern), V.Lubicz (Rome3), S.Necco (CERN), C.Sachrajda (Southampton), S.Simula (Rome3), T.Vladikas (Rome2), U.Wegner (Bern), H.Wittig (Mainz)
- extrapolation of precise lattice results guided by Chiral Perturbation Theory $(X P T) \Rightarrow$ close collaboration between lattice and $X P T$ experts

Prolegomena

- First FLAG report limited to important quantities in pion and Kaon Physics
- Light and strange quark masses
- decay constants f_{K} / f_{π}
- Kaon decay form factor $f_{+}(0)$
- Neutral Kaon oscillation bag parameter B_{K}
- $S U(2)$ and $S U(3)$ low energy constants $\Sigma, F, I_{3}, I_{4}, I_{6}, L_{4}, L_{5}, L_{6}, L_{8}, L_{9}, L_{10}$

Prolegomena

- First FLAG report limited to important quantities in pion and Kaon Physics
- Light and strange quark masses
- decay constants f_{K} / f_{π}
- Kaon decay form factor $f+(0)$
- Neutral Kaon oscillation bag parameter B_{K}

- $S U(2)$ and $S U(3)$ low energy constants $\Sigma, F, I_{3}, I_{4}, I_{6}, L_{4}, L_{5}, L_{6}, L_{8}, L_{9}, L_{10}$
- BUT: for lack of time (and expertise) only a few will be presented here

Prolegomena

- First FLAG report limited to important quantities in pion and Kaon Physics
- Light and strange quark masses
- decay constants f_{K} / f_{π}
- Kaon decay form factor $f_{+}(0)$
- Neutral Kaon oscillation bag parameter B_{K}

- $S U(2)$ and $S U(3)$ low energy constants $\Sigma, F, I_{3}, I_{4}, I_{6}, L_{4}, L_{5}, L_{6}, L_{8}, L_{9}, L_{10}$
- BUT: for lack of time (and expertise) only a few will be presented here
- Quenched results $\left(N_{f}=0\right)$ will not be discussed; $N_{f}=2+I$ and $N_{f}=2$ are current state of the art

Prolegomena

- First FLAG report limited to important quantities in pion and Kaon Physics
- Light and strange quark masses
- decay constants f_{K} / f_{π}
- Kaon decay form factor $f+(0)$
- Neutral Kaon oscillation bag parameter B_{K}

- $S U(2)$ and $S U(3)$ low energy constants $\Sigma, F, I_{3}, I_{4}, I_{6}, L_{4}, L_{5}, L_{6}, L_{8}, L_{9}, L_{10}$
- BUT: for lack of time (and expertise) only a few will be presented here
- Quenched results $\left(N_{f}=0\right)$ will not be discussed; $N_{f}=2+I$ and $N_{f}=2$ are current state of the art
- Results presented in this talk are almost definitive; some minor adjustments are to be expected in the final preprint (to appear soon)

Quality Criteria

FLAG: Flavianet Lattice Averaging Group

$F_{\text {nei }}$ aviA

Quality Criteria

- a number of criteria have been fixed; these are somewhat subjective and time dependent
- help assess the reliability of a particular simulation without reading the papers!
- this may be oversimplifying, but it is true that phenomenologists tend to take lattice results at face value
- we aim at providing compact information on the quality of a computation
- criteria:
* systematic error estimated in a satisfactory manner and under control
- a reasonable attempt at estimating systematic error; can be improved
\square no attempt or unsatisfactory attempt at controlling a systematic error
C. Pena, PoS LAT2006:019,2006 Tucson, Arizona, 23-28 Jul 2006
http://www.physics.utah.edu/lat06/abstracts/sessions/plenary.html

Quality Criteria

- chiral extrapolation:
$\star M_{\pi, \text { min }}<250 \mathrm{MeV}$
- $250 \mathrm{MeV} \leq M_{\pi, \text { min }} \leq 400 \mathrm{MeV}$
- $400 \mathrm{MeV} \leq M_{\pi \text {,min }}$

NB: at least 3 points requested (otherwise there is a "special mention")

- continuum extrapolation:
* at least 3 lattice spacings, at least two below 0.1 fm
- 2 or more lattice spacings, at least one below 0.1 fm
- otherwise

NB: theory should be O(a)-improved; for non-improved theories an extra point is needed for each criterion

Quality Criteria

- finite volume effects:
$\star\left[M_{\pi} L\right]_{\text {min }}>4$ or at least 3 volumes
- $\left[M_{\pi} L\right]_{\text {min }}>3$ and at least 2 volumes
\square otherwise, and in any case if $L<2 \mathrm{fm}$
NB: p-regime
- renormalization (where applicable):
* non perturbative
- 2-loop perturbation theory
- otherwise
- renormalization group running (where applicable):
* non perturbative
- otherwise

Quality Criteria

- Averages: there are several independent results for some physical quantities; averaging them gives the lattice estimate for this quantity
- which results are dropped from averaging? unless we have a reason for making an exception, we drop data with \square
- Publication status: only peer-reviewed, published papers are included in the averages
- exception: obvious updates of published results in conference proceedings

A: published, or plain update of published paper
P: preprint
C: conference contribution

- Flavours: only deal with physical quantities characterized by light and strange quarks; disregard quenched simulations
- average $N_{f}=2$ and $N_{f}=3$ results separately

Form factor, decay constants and unitarity

Form factor, decay constants and unitarity

- unitarity:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1
$$

- experiment:

$$
\left|V_{u b}\right|=3.93(36) \cdot 10^{-3}
$$

- Kaon decays:

$$
\left|V_{u s}\right| f_{+}(0)=0.21661(47)
$$

$$
\begin{aligned}
& \text { form factor @ zero momentum } \\
& \text { transfer } \mathrm{K}^{0} \xrightarrow{\rightarrow} \pi^{-} \mathrm{v}^{+}
\end{aligned}
$$

$$
\left|\frac{V_{u s} f_{K}}{V_{u d} f_{\pi}}\right|=0.27599
$$

Form factor, decay constants and unitarity

- unitarity:
- experiment:

$$
\left|V_{u b}\right|=3.93(36) \cdot 10^{-3}
$$

- Kaon decays:

$$
\left|V_{u s}\right| f_{+}(0)=0.21661(47)
$$

$$
\left|\frac{V_{u s} f_{K}}{V_{u d} f_{\pi}}\right|=0.27599 \text { (59) }
$$

- 3 expressions, 4 unknowns; need one more input

Form factor, decay constants and unitarity

- unitarity:
- experiment:
- Kaon decays:
- 3 expressions, 4 unknowns; need one more input

Form factor, decay constants and unitarity

- unitarity:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1
$$

- experiment:

$$
\left|V_{u b}\right|=3.93(36) \cdot 10^{-3}
$$

- Kaon decays:

$$
\left|V_{u s}\right| f_{+}(0)=0.21661
$$

$$
\left|\frac{V_{u s} f_{K}}{V_{u d} f_{\pi}}\right|=0.27599(59)
$$

- 3 expressions, 4 unknowns; need one more input
- e.g. $V_{\text {ud }}$ from nuclear β decays or $V_{\text {us }}$ from T decays

Form factor, decay constants and unitarity

- unitarity:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1
$$

- experiment:

$$
\left|V_{u b}\right|=3.93(36) \cdot 10^{-3}
$$

- Kaon decays: $\quad\left|V_{u s}\right| f_{+}(0)=0.21661(47)$

$$
\left|\frac{V_{u s} f_{K}}{V_{u d} f_{\pi}}\right|=0.27599(59)
$$

- 3 expressions, 4 unknowns; need one more input
- lattice provides independent determinations of f_{K} / f_{π} and $f_{+}(0)$

Form factor, decay constants and unitarity

Table 1: Colour code for the data on $f_{+}(0)$.

Form factor, decay constants and unitarity

Table 1: Colour code for the data on f_{K} / f_{π}.

Form factor，decay constants and unitarity

$$
\begin{array}{lll}
f_{+}(0) & =0.964(3)(4) & \\
f_{+}(0) & =0.956(6)(6) & \left(N_{f}=2+1\right) \\
\left.f_{f}=2\right)
\end{array}
$$

most systematics	RBC／UKQCD 07	$2+1$	A	－	\star	\square	$0.9644(33)(34)(14)$
	ETM 09A	2	A	－	\bullet	\bullet	0．9560（57）（62）
	QCDSF 07	2	C	\square	\star	\square	$0.9647(15)_{\text {stat }}$
	RBC 06	2	A	\square	\star	\square	0．968（9）（6）
	JLQCD 05	2	C	\square	\star	\square	0．967（6）

Table 1：Colour code for the data on $f_{+}(0)$ ．

Collaboration	N_{f}	き	涊		准汱	f_{K} / f_{π}
MILC 09A	$2+1$	C	\star	\star	\star	$1.198(2)\left({ }_{-8}^{+6}\right)$
MILC 09	$2+1$	P	\star	\star	\star	$1.197(3)\left({ }_{-13}^{+6}\right)$
ALVdW 08	$2+1$	C	\star	－	－	1．191（16）（17）
PACS－CS 08，08B	$2+1$	A	＊	■	\square	1．189（20）
BMW 08	$2+1$	C	\star	\star	\star	1．18（1）（1）
HPQCD／UKQCD 08	$2+1$	A	\star	－	\star	1．189（2）（7）
RBC／UKQCD 08	$2+1$	A	－	\star	■	$1.205(18)(62)$
NPLQCD 06	$2+1$	A	\bigcirc	\square	－	1．218（2）$\left({ }_{-24}^{+11}\right)$
ETM 09	2	A	\bullet	\bullet	\star	1．210（6）（15）（9）
QCDSF／UKQCD 07	2	C	\bullet	\star	－	1．21（3）

Table 1：Colour code for the data on f_{K} / f_{π} ．

Form factor, decay constants and unitarity

$$
\begin{array}{ll}
f_{+}(0)=0.964(3)(4) & \left(N_{f}=2+1\right) \\
f_{+}(0)=0.956(6)(6) & \left(N_{f}=2\right)
\end{array}
$$

Table 1: Colour code for the data on $f_{+}(0)$.

Table 1: Colour code for the data on f_{K} / f_{π}.

Form factor, decay constants and unitarity

Table 1: Colour code for the data on f_{K} / f_{π}.

Form factor, decay constants and unitarity

- lattice agrees with nuclear β decay
- disagrees with semi-inclusive T decay
- "our estimate" explained later
- from XPT:

$$
\Delta f \equiv f_{+}(0)-1-f_{2}=f_{+}(0)-0.977
$$

- lattice suggests $\Delta f<0$
- results from various model estimates vary; Δf sign unclear

Form factor, decay constants and unitarity

- use: $\left|V_{u s}\right| f_{+}(0)=0.21661(47)$
- $N_{f}=3$ result of $f_{+}(0)$ gives:

Form factor, decay constants and unitarity

- use: $\left|V_{u s}\right| f_{+}(0)=0.21661(47)$
- $N_{f}=3$ result of $f_{+}(0)$ gives:
- use: $\left|\frac{V_{u s} f_{K}}{V_{u d} f_{\pi}}\right|=0.27599(59)$
- $N_{f}=3$ result of f_{K} / f_{π} gives:

Form factor, decay constants and unitarity

- use: $\left|V_{u s}\right| f_{+}(0)=0.21661(47)$
- $N_{f}=3$ result of $f_{+}(0)$ gives:
- use: $\left|\frac{V_{u s} f_{K}}{V_{u d} f_{\pi}}\right|=0.27599(59)$
- $N_{f}=3$ result of f_{K} / f_{π} gives: treating these two results as independent measurements gives the 68% likelihood contour:

Form factor, decay constants and unitarity

- use: $\left|V_{u s}\right| f_{+}(0)=0.21661(47)$
- $N_{f}=3$ result of $f_{+}(0)$ gives:
- use: $\left|\frac{V_{u s} f_{K}}{V_{u d} f_{\pi}}\right|=0.27599(59)$
- $N_{f}=3$ result of f_{K} / f_{π} gives:

treating these two results as independent

 measurements gives the 68\% likelihood contour:

- $N_{f}=3$ lattice data consistent with nuclear beta decay prediction of $V_{u d}$:

Form factor, decay constants and unitarity

- use: $\left|V_{u s}\right| f_{+}(0)=0.21661(47)$
- $N_{f}=3$ result of $f_{+}(0)$ gives:
- use: $\left|\frac{V_{u s} f_{K}}{V_{u d} f_{\pi}}\right|=0.27599(59)$
- $N_{f}=3$ result of f_{K} / f_{π} gives: treating these two results as independent measurements gives the 68\% likelihood contour:

- $N_{f}=3$ lattice data consistent with nuclear beta decay prediction bf $V_{u d}$:
- $N_{f}=2$ lattice data consistent with $N_{f}=3$ data within errors (just!!):

Form factor, decay constants and unitarity

- unitarity:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1
$$

- ... \& experiment:

$$
\left|V_{u b}\right|=3.93(36) \cdot 10^{-3}
$$

- ... imply this constraint: \qquad
\qquad

- ... which agrees very well with "our best estimate" lattice result (obtained as will be explained shortly)

Form factor, decay constants and unitarity

- Test of Standard Model: relax unitarity constraint and test it!

Form factor, decay constants and unitarity

- Test of Standard Model: relax unitarity constraint and test it!
- from Kaon decays we have:

$$
\left|V_{u s}\right| f_{+}(0)=0.21661 \text { (47) }
$$

$$
\left|\frac{V_{u s} f_{K}}{V_{u d} f_{\pi}}\right|=0.27599 \text { (59) }
$$

- which combine with $N_{f}=3$ lattice results of $f_{+}(0)$ and f_{K} / f_{π} to give $\left|V_{u s}\right|$ and $\left|V_{u d}\right|$

Form factor, decay constants and unitarity

- Test of Standard Model: relax unitarity constraint and test it!
- from Kaon decays we have:

$$
\left|V_{u s}\right| f_{+}(0)=0.21661
$$

$$
\left|\frac{V_{u s} f_{K}}{V_{u d} f_{\pi}}\right|=0.27599 \text { (59) }
$$

- which combine with $N_{f}=3$ lattice results of $f_{+}(0)$ and f_{K} / f_{π} to give $\left|V_{u s}\right|$ and $\left|V_{u d}\right|$
- take $\left|\mathrm{V}_{\mathrm{ub}}\right|$ from experiment; the unitarity constraint is well satisfied:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.989(20) \quad N_{f}=2+1
$$

Form factor, decay constants and unitarity

- Test of Standard Model: relax unitarity constraint and test it!
- from Kaon decays we have:

$$
\left|V_{u s}\right| f_{+}(0)=0.21661
$$

$$
\left|\frac{V_{u s} f_{K}}{V_{u d} f_{\pi}}\right|=0.27599 \text { (59) }
$$

- which combine with $N_{f}=3$ lattice results of $f_{+}(0)$ and f_{K} / f_{π} to give $\left|\mathrm{V}_{\mathrm{us}}\right|$ and $\left|\mathrm{V}_{\mathrm{ud}}\right|$
- take $\left|\mathrm{V}_{\mathrm{ub}}\right|$ from experiment; the unitarity constraint is well satisfied:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.989(20) \quad N_{f}=2+1
$$

- now use $V_{u d}$ from β decays and $f_{+}(0)$ from $N_{f}=3$ lattice:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.9997(7)
$$

Form factor, decay constants and unitarity

- Test of Standard Model: relax unitarity constraint and test it!
- from Kaon decays we have:

$$
\left|V_{u s}\right| f_{+}(0)=0.21661
$$

$$
\left|\frac{V_{u s} f_{K}}{V_{u d} f_{\pi}}\right|=0.27599 \text { (59) }
$$

- which combine with $N_{f}=3$ lattice results of $f_{+}(0)$ and f_{K} / f_{π} to give $\left|\mathrm{V}_{\mathrm{us}}\right|$ and $\left|\mathrm{V}_{\mathrm{ud}}\right|$
- take $\left|\mathrm{V}_{\mathrm{ub}}\right|$ from experiment; the unitarity constraint is well satisfied:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.989(20) \quad N_{f}=2+1
$$

- now use $V_{u d}$ from β decays and $f_{+}(0)$ from $N_{f}=3$ lattice:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.9997(7)
$$

- now use $V_{\text {ud }}$ from β decays and f_{K} / f_{π} from $N_{f}=3$ lattice:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1.0002(10)
$$

Form factor, decay constants and unitarity

- Test of Standard Model: relax unitarity constraint and test it!
- from Kaon decays we have:

$$
\left|V_{u s}\right| f_{+}(0)=0.21661
$$

$$
\left|\frac{V_{u s} f_{K}}{V_{u d} f_{\pi}}\right|=0.27599(59)
$$

- which combine with $N_{f}=3$ lattice results of $f_{+}(0)$ and f_{K} / f_{π} to give $\left|V_{u s}\right|$ and $\left|V_{u d}\right|$
- take $\left|\mathrm{V}_{\mathrm{ub}}\right|$ from experiment; the unitarity constraint is well satisfied:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.989(20) \quad N_{f}=2+1
$$

$$
N_{f}=21.038(35)-\text { OKish }
$$

- now use $V_{u d}$ from β decays and $f_{+}(0)$ from $N_{f}=3$ lattice:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.9997(7)
$$

- now use $V_{\text {ud }}$ from β decays and f_{K} / f_{π} from $N_{f}=3$ lattice:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1.0002(10)
$$

Form factor, decay constants and unitarity

- Test of Standard Model: relax unitarity constraint and test it!
- from Kaon decays we have:

$$
\left|V_{u s}\right| f_{+}(0)=0.21661
$$

$$
\left|\frac{V_{u s} f_{K}}{V_{u d} f_{\pi}}\right|=0.27599(59)
$$

- which combine with $N_{f}=3$ lattice results of $f_{+}(0)$ and f_{K} / f_{π} to give $\left|\mathrm{V}_{\mathrm{us}}\right|$ and $\left|\mathrm{V}_{\mathrm{ud}}\right|$
- take $\left|\mathrm{V}_{\mathrm{ub}}\right|$ from experiment; the unitarity constraint is well satisfied:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.989(20) \quad N_{f}=2+1
$$

$$
N_{f}=21.038(35)-\text { OKish }
$$

- now use $V_{u d}$ from β decays and $f_{+}(0)$ from $N_{f}=3$ lattice:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.9997(7)
$$

- now use $V_{\text {ud }}$ from β decays and f_{K} / f_{π} from $N_{f}=3$ lattice:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1.0002(10)
$$

Form factor, decay constants and unitarity

- Test of Standard Model: relax unitarity constraint and test it!
- from Kaon decays we have:

$$
\left|V_{u s}\right| f_{+}(0)=0.21661
$$

$$
\left|\frac{V_{u s} f_{K}}{V_{u d} f_{\pi}}\right|=0.27599(59)
$$

- which combine with $N_{f}=3$ lattice results of $f_{+}(0)$ and f_{K} / f_{π} to give $\left|V_{u s}\right|$ and $\left|V_{u d}\right|$
- take $\left|\mathrm{V}_{\mathrm{ub}}\right|$ from experiment; the unitarity constraint is well satisfied:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.989(20) \quad N_{f}=2+1
$$

$$
N_{f}=21.038(35)-\text { OKish }
$$

- now use $V_{u d}$ from β decays and $f_{+}(0)$ from $N_{f}=3$ lattice:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.9997(7)
$$

- now use $V_{\text {ut }}$ from β decays and f_{K} / f_{π} from $N_{f}=3$ lattice:

$$
N_{f}=20.9986(16)-\mathrm{OK}
$$

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1.0002(10)
$$

Form factor, decay constants and unitarity

- Analysis based on Standard Model:
- unitarity: $\quad\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1$
- experiment:

$$
\left|V_{u b}\right|=3.93(36) \cdot 10^{-3}
$$

- Kaon decays: $\left|V_{u s}\right| f_{+}(0)=0.21661$ (47)

$$
\left|\frac{V_{u s} f_{K}}{V_{u d} f_{\pi}}\right|=0.27599
$$

- 3 expressions, 4 unknowns $f_{+}(0)$, $f_{k}\left|f_{\pi},\left|V_{u s}\right|,\left|V_{u v}\right|\right.$; one input determines three quantities

\square
data from f_{k} / f_{π} data from $f_{+}(0)$ \qquad
$\left|\mathrm{V}_{\mathrm{us}}\right|,\left|\mathrm{V}_{\mathrm{ud}}\right|$ results consistent from f_{K} / f_{T} and from $f_{+}(0)$
"our estimates" obtained by combining the "chosen" lattice results

Form factor, decay constants and unitarity

- Analysis based on Standard Model:

	$\left\|V_{u s}\right\|$	$\left\|V_{u d}\right\|$	$f_{+}(0)$	f_{K} / f_{π}
$N_{f}=2+1$	$0.2251(11)$	$0.97433(24)$	$0.9626(43)$	$1.1944(61)$
$N_{f}=2$	$0.2253(17)$	$0.97428(40)$	$0.9608(73)$	$1.1934(98)$
our estimate	$0.225(2)$	$0.9743(4)$	$0.962(8)$	$1.194(10)$

Table 1: Final results for the analysis of the lattice data within the Standard Model

- combine data from direct f_{K} / f_{π} measurements with f_{K} / f_{π} results obtained from direct $f_{+}(0)$ measurements, to get best $f \mathbf{k} / \boldsymbol{f}_{\boldsymbol{\pi}}$ result at a given N_{f}
- vice versus get best $\boldsymbol{f} / \boldsymbol{f}_{\boldsymbol{\pi}}$ result
- extremely close agreement between $N_{f}=2$ and $N_{f}=2+1$ results; take biggest uncertainty into account to obtain "our estimate"
$\Delta S=2$ transitions: B_{K}

$\Delta S=2$ transitions: ε_{k}

indirect CP-violation

$$
\epsilon_{K}=\frac{\mathcal{A}\left[K_{L} \rightarrow(\pi \pi)_{I=0}\right]}{\mathcal{A}\left[K_{S} \rightarrow(\pi \pi)_{I=0}\right]}=\left[2.282(17) \times 10^{-3}\right] \exp (i \pi / 4)
$$

can also be expressed in terms of $\mathrm{K}^{0}-\mathrm{K}^{0}$ mixing dominant EW process is FCNC (2 W exchange)

$$
\left.\left|\epsilon_{K}\right| \approx C_{\epsilon} \hat{B}_{K} \operatorname{Im}\left\{V_{t d}^{*} V_{t s}\right\}\left\{\operatorname{Re}\left\{V_{c d}^{*} V_{c s}\right\}\left[\eta_{1} S_{0}\left(x_{c}\right)-\eta_{3} S_{0}\left(x_{c}, x_{t}\right)\right]-\operatorname{Re}\left\{V_{t d}^{*} V_{t s}\right\} \eta_{2} S_{0}\left(x_{t}\right)\right]\right\}
$$

$$
\hat{B}_{K}=\frac{\left\langle\bar{K}^{0}\right| \hat{O}^{\Delta S=2}\left|K^{0}\right\rangle}{\frac{8}{3} F_{K}^{2} m_{K}^{2}}
$$

$$
\bar{\eta}(1.4-\bar{\rho}) \hat{B}_{K} \approx 0.40
$$

hyperbola

$\Delta S=2$ transitions: B_{K}

$$
\left|\epsilon_{K}\right|=\frac{\mathcal{A}\left(K_{L} \rightarrow(\pi \pi)_{I=0}\right)}{\mathcal{A}\left(K_{S} \rightarrow(\pi \pi)_{I=0}\right)} \stackrel{\exp }{=}\left[2.282(17) \times 10^{-3}\right] e^{i \pi / 4}
$$

$\Delta S=2$ transitions: B_{k}

Figure 8: Global fit of the CKM unitarity triangle [14]. The current fit is consistent with the Standard Model at the 23% level. The constraints from $\varepsilon_{K},\left|V_{u b}\right| /\left|V_{c b}\right|, \Delta M_{s} / \Delta M_{d}$, and ΔM_{d} are all limited by theoretical uncertainties from lattice QCD.

$\Delta S=2$ transitions: B_{k}

Figure 8: Global fit of the CKM unitarity triangle [14]. The current fit is consistent with the Standard Model at the 23% level. The constraints from $\varepsilon_{K},\left|V_{u b}\right| / \mid V_{c b}, \Delta M_{s} / \Delta M_{d}$, and ΔM_{d} are all limited by theoretical uncertainties from lattice QCD.

Van de Water PoS(LAT2009)0I4

Figure 9: Potential impact of future lattice determinations on the global unitarity triangle fit. If the theoret ical errors in all of the lattice QCD inputs are reduced to 1% with the central values fixed, the fit would no longer be consistent with Standard Model expectations. Figure courtesy of E. Lunghi.

$\Delta S=2$ transitions: B_{K}

Dominant error in the ε_{k} band comes from $\left|V_{c b}\right|$ (8\%), while B_{K} has a 4-6\% error

Figure 8: Global fit of the CKM unitarity triangle [14]. The current fit is consistent with the Standard Model at the 23% level. The constraints from $\varepsilon_{K},\left|V_{v b}\right| / \mid V_{c b b}, \Delta M_{s} / \Delta M_{d}$, and ΔM_{d} are all limited by theoretical uncertainties from lattice QCD.

Laiho et al., Phys.Rev. D8I (20I0) 034503

Figure 7: Contributions of $\left|V_{c b}\right|$ (solid red line) and \hat{B}_{K} (dashed green line) to the uncertainty in the ε_{K} band. The errors introduced by the remaining inputs to the ε_{K} band are negligible. Figure from Ref. [14].

Figure 9: Potential impact of future lattice determinations on the global unitarity triangle fit. If the theoretical errors in all of the lattice QCD inputs are reduced to 1% with the central values fixed, the fit would no longer be consistent with Standard Model expectations. Figure courtesy of E. Lunghi.

$\Delta S=2$ transitions: B_{k}

Table 1: Results for the kaon B-parameter together with a summary of systematic errors. The symbol o* means that this result has been obtained with only two "light" sea quark masses. The symbol \square^{\dagger} means that these results have been obtained at $\left(M_{\pi} L\right)_{\min }>4$ in a lattice box with a spatial extension $L<2 \mathrm{fm}$. The symbol \star^{\square} means that, in this mixed action computation, the lightest valence pion weighs $\sim 230 \mathrm{MeV}$, while the lightest sea taste-pseudoscalar, used in the chiral fits, weighs $\sim 370 \mathrm{MeV}$.

RBC/UKQCD (domain wall): $m_{\pi(\text { val })} \sim 240 \mathrm{MeV}$; $m_{\pi(\text { sea })} \sim 290 \mathrm{MeV}$
NB: NP renormalization
BUT: single coarse lattice ($a \sim 0$. I I fm) update reports preliminary result on second a

$\Delta S=2$ transitions: B_{k}

Table 1: Results for the kaon B-parameter together with a summary of systematic errors. The symbol ** means that this result has been obtained with only two "light" sea quark masses. The symbol \square^{\dagger} means that these results have been obtained at $\left(M_{\pi} L\right)_{\min }>4$ in a lattice box with a spatial extension $L<2 \mathrm{fm}$. The symbol \star^{\square} means that, in this mixed action computation, the lightest valence pion weighs $\sim 230 \mathrm{MeV}$, while the lightest sea taste-pseudoscalar, used in the chiral fits, weighs $\sim 370 \mathrm{MeV}$.

HPQCD/UKQCD (staggered): $m_{\pi \text { (val) }}$ ~ 360 MeV
BUT: I-loop PT renormalization is main source of systematic error BUT: single coarse lattice ($a \sim 0.1$ I fm)

$\Delta S=2$ transitions: B_{k}

Table 1: Results for the kaon B-parameter together with a summary of systematic errors. The symbol ** means that this result has been obtained with only two "light" sea quark masses. The symbol \square^{\dagger} means that these results have been obtained at $\left(M_{\pi} L\right)_{\min }>4$ in a lattice box with a spatial extension $L<2 \mathrm{fm}$. The symbol \star^{\square} means that, in this mixed action computation, the lightest valence pion weighs $\sim 230 \mathrm{MeV}$, while the lightest sea taste-pseudoscalar, used in the chiral fits, weighs $\sim 370 \mathrm{MeV}$.

BK4YLJS(harpe) (staggered): preliminary
BUT: I-loop PT renormalization is main source of systematic error

$\Delta S=2$ transitions: B_{k}

Table 1: Results for the kaon B-parameter together with a summary of systematic errors. The symbol ** means that this result has been obtained with only two "light" sea quark masses. The symbol \square^{\dagger} means that these results have been obtained at $\left(M_{\pi} L\right)_{\text {min }}>4$ in a lattice box with a spatial extension $L<2 \mathrm{fm}$. The symbol \star^{\square} means that, in this mixed action computation, the lightest valence pion weighs $\sim 230 \mathrm{MeV}$, while the lightest sea taste-pseudoscalar, used in the chiral fits, weighs $\sim 370 \mathrm{MeV}$.

ALVdW(Aubin et al.) (mixed action; staggered sea, domain wall valence) with $m_{\pi(v a l)} \sim 270 \mathrm{MeV} m_{\pi(\text { sea })} \sim 370 \mathrm{MeV}$
two lattices ($a \sim 0.09 \mathrm{fm}, 0.12 \mathrm{fm}$)
NP renormalization
NB: main source of systematic error when renormalizing/matching/running from bare to $\overline{M S}$
This is the "best result to date" quoted by FLAG

$\Delta S=2$ transitions: B_{k}

JLQCD (overlap) with $m_{\pi} \sim 290 \mathrm{MeV}$ and $m_{\pi} \mathrm{L} \sim 2.75$ (too small, as overlap is costly!!!) one coarse lattice ($a \sim 0$. 118 fm)

$\Delta S=2$ transitions: B_{k}

	Collaboration		-			新			$B_{\mathrm{K}}(2)$	\hat{B}_{K}
$\mathbf{N}_{f}=2+1$	BK4YLJS 09	$2+1$	C	\star	-	-	\square	-	0.512(14)(34)	0.701(19)(47)
	ALVdW 09	$2+1$	A	-	\star^{\square}	-	\star	\bullet	$0.527(6)(21)$	0.724(8)(29)
	RBC/UKQCD 09	$2+1$	C	\bullet	\bigcirc	\star	\star	-	0.537(19)	$0.737(26)$
	RBC/UKQCD 07B, 08	$2+1$	A	\square	-	\star	\star	\bigcirc	0.524(10)(28)	0.720(13)(37)
	HPQCD/UKQCD 06	$2+1$	A	\square	*	\star	-	-	0.618(18)(135)	0.83(18)
$\mathbf{N}_{f}=2$	ETM 09DJLQCD 08BRBC 04UKQCD 04	2	C	\star	-	-	\star	\bigcirc	0.52(2)(2)	0.73(3)(3)
		2	A	\square	\bullet	\square	\star	\bullet	$0.537(4)(40)$	0.758(6)(71)
		2	A	\square	-	\square	\star	-	$0.495(18)$	0.699 (25)
		2	A	\square	\square	\square^{\dagger}	\square	-	0.49(13)	0.69(18)

Table 1: Results for the kaon B-parameter together with a summary of systematic errors. The symbol ॰* means that this result has been obtained with only two "light" sea quark masses. The symbol \square^{\dagger} means that these results have been obtained at $\left(M_{\pi} L\right)_{\min }>4$ in a lattice box with a spatial extension $L<2 \mathrm{fm}$. The symbol \star^{\square} means that, in this mixed action computation, the lightest valence pion weighs $\sim 230 \mathrm{MeV}$, while the lightest sea taste-pseudoscalar, used in the chiral fits, weighs $\sim 370 \mathrm{MeV}$.

RBC (domain wall) with $m_{\pi} \sim 490 \mathrm{MeV}$ much too heavy!!

$\Delta S=2$ transitions: B_{k}

> ETM(Wilson-twisted) with $m_{\pi} \sim 270 \mathrm{MeV}-400 \mathrm{MeV}$ (depending on a) three lattices $(a \sim 0.1 \mathrm{fm}, 0.085 \mathrm{fm}, 0.065 \mathrm{fm})$ best result @ two flavours
> BUT: still unpublished

$\Delta S=2$ transitions: B_{k}

$$
\begin{aligned}
B_{K}^{\overline{\mathrm{MS}}, \mathrm{NDR}}(2 \mathrm{GeV}) & =0.527(23) \\
\hat{B}_{K} & =0.724(30) \quad N_{f}=2+1
\end{aligned}
$$

lots of work still to be done

$$
\begin{aligned}
B_{K}^{\overline{\mathrm{MS}}, \mathrm{NDR}}(2 \mathrm{GeV}) & =0.502(16) \\
\hat{B}_{K} & =0.706(24) \quad N_{f}=2
\end{aligned}
$$

NB: preliminary!! It includes only JLQCD \& RBC; they will be replaced by ETM, once published

$\Delta S=2$ transitions: B_{k}

NB: situation much better in quenched approximation (still...)

Collaboration	$B_{\mathrm{K}}(2)$	\hat{B}_{K}
ALPHA	$0.534(52)$	$0.74(7)$
CP-PACS	$0.565(6)$	$0.782(9)$
ALPHA	$0.532(25)$	$0.73(3)$
JLQCD	$0.628(42)$	$0.86(6)$

Table 1: Quenched $(=0)$ results for the B-parameter B_{K} from various collaborations.
NB: quenched results agree with our best estimate

$$
\begin{aligned}
B_{K}^{\overline{\mathrm{MS}}, \mathrm{NDR}}(2 \mathrm{GeV}) & =0.527(23) \\
\hat{B}_{K} & =0.724(30) \quad N_{f}=2+1
\end{aligned}
$$

Conclusions

- Lattice results are rapidly becoming more accurate and reliable, as control of systematic errors has increased.
- The $N_{f}=2$ era is still an active topic, but $N_{f}>2$ results are occupying centre stage.
- These positive developments are due to increased computer power, better algorithms etc.
- BUT: it is fair to acknowledge that the biggest stride has been the control of chirality on the lattice:

O actions with better chiral properties (Ginsparg-Wilson, tmQCD,...)

- lighter pions
- better (more dedicated) XPT
- A high precision confirmation of unitarity is provided by lattice data

Conclusions

- Future:

- Periodic updates of data (biannual?) and include bottom, QCD coupling...
- Abandon Eurocentrism:

O representatives of more lattice groups from Japan and US, as well as other communities will hopefully join in

- 2-3 alternatives may mushroom out (cf. UTfit - CKMfitter paradigm)

Conclusions

- Future:

- Periodic updates of data (biannual?) and include bottom, QCD coupling...
- Abandon Eurocentrism:

O representatives of more lattice groups from Japan and US, as well as other communities will hopefully join in

- 2-3 alternatives may mushroom out (cf. UTfit - CKMfitter paradigm)
- example: Laiho, van der Water, Lunghi

Conclusions

- Future:

- Periodic updates of data (biannual?) and include bottom, QCD coupling...
- Abandon Eurocentrism:

O representatives of more lattice groups from Japan and US, as well as other communities will hopefully join in

O 2-3 alternatives may mushroom out (cf. UTfit - CKMfitter paradigm)

- example: Laiho, van der Water, Lunghi

O http://krone.physik.unizh.ch/~lunghi/webpage/LatAves/index.html

Conclusions

- Future:

- Periodic updates of data (biannual?) and include bottom, QCD coupling...
- Abandon Eurocentrism:

O representatives of more lattice groups from Japan and US, as well as other communities will hopefully join in

- 2-3 alternatives may mushroom out (cf. UTfit - CKMfitter paradigm)
- example: Laiho, van der Water, Lunghi

O http://krone.physik.unizh.ch/~lunghi/webpage/LatAves/index.html

- " $2+$ I Flavor Lattice QCD Averages" (exclusion of $N_{f}=2$ data untenable @ present)

Conclusions

- Future:

- Periodic updates of data (biannual?) and include bottom, QCD coupling...
- Abandon Eurocentrism:

O representatives of more lattice groups from Japan and US, as well as other communities will hopefully join in

- 2-3 alternatives may mushroom out (cf. UTfit - CKMfitter paradigm)
- example: Laiho, van der Water, Lunghi

O http://krone.physik.unizh.ch/~lunghi/webpage/LatAves/index.html

- " $2+$ I Flavor Lattice QCD Averages" (exclusion of $N_{f}=2$ data untenable @ present)
- not a representative effort of, say, the US lattice community (this effort is still in its infancy...)

