Using volume reduction to study QCD-like theories at large N_c

Steve Sharpe University of Washington

Based on work with Barak Bringoltz & Mateusz Koren: arXiv:0805.2146, 0906.3538, and in progress

CERN workshop on Future Directions in LGT, July 27 2010

Can we use volume reduction to study QCD-like theories at large Nc ?

Steve Sharpe University of Washington

Based on work with Barak Bringoltz & Mateusz Koren: arXiv:0805.2146, 0906.3538, and in progress

CERN workshop on Future Directions in LGT

Can we use simulations on 1^4 lattices to study QCD-like theories at large N_c ?

Steve Sharpe University of Washington

Based on work with Barak Bringoltz & Mateusz Koren: arXiv:0805.2146, 0906.3538, and in progress

CERN workshop on Future Directions in LGT

Outline

Motivation

- A short history of "volume reduction"
- Application to QCD with single Dirac adjoint fermion: mapping the phase diagram of 14 model
- Into the guts of reduction: eigenvalue distributions for the adjoint Dirac operator
- Ongoing work with two adjoint fermions
- Future prospects

Motivation

- Intriguing idea! but does it work?
- May provide an alternative method for studying gauge theories at large N
 - replace V & N extrapolation with single N extrap.
- Theories simplify at large N, yet share key nonperturbative properties with low-N versions
 - QCD retains confinement and CSB at large N, but mesons do not interact
- Connect to analytic approaches (e.g. gauge-gravity duality)

Reduction already in use:

- Partial volume independence [Narayan & Neuberger]
 - If $L>L_c\approx 1$ fm then results independent of L
- Single-site SUSY models (reduced from SUGRA) using non-compact gauge variables [see e.g. Nishimura, LAT09]

History of large-N volume reduction

7

First example

VOLUME 48, NUMBER 16

PHYSICAL REVIEW LETTERS

19 April 1982

Reduction of Dynamical Degrees of Freedom in the Large-N Gauge Theory

Tohru Eguchi and Hikaru Kawai

Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan (Received 19 January 1982)

Lattice SU(N) on $L^d \stackrel{N=\infty}{\equiv}$ Lattice SU(N) on 1^d

Now usually called "large-N volume independence"

Large-N volume independence Eguchi Kawai `82 Lattice SU(N) on $L^d \stackrel{N=\infty}{\equiv} Lattice SU(N)$ on 1^d "reduced" or "matrix" model gauge theory $U_{n,\mu} \in SU(N)$ $U_{\mu} \in SU(N)$ $S_{\text{gauge}} = Nb \sum 2\text{Re} \operatorname{Tr} \left(U_{n,\mu} U_{n+\mu,\nu} U_{n+\nu,\mu}^{\dagger} U_{n,\nu}^{\dagger} \right) \Big|$ $S_{EK} = Nb \sum_{\mu} 2\text{Re}\,\text{Tr}\,(U_{\mu}U_{\nu}U_{\mu}^{\dagger}U_{\nu}^{\dagger})$ $\mu < \nu$ $b = (g^2 N)^{-1}$ $b = (g^2 N)^{-1}$ $W_C = \frac{1}{N} \operatorname{tr} U_{x,\hat{\mu}} U_{x+\hat{\mu},\hat{\nu}} \cdots U_{x-\hat{\nu}-\hat{\rho},\hat{\rho}} U_{x-\hat{\nu},\hat{\nu}},$ $W_C^{\text{reduced}} = \frac{1}{N} \operatorname{tr} U_{\mu} U_{\nu} \cdots U_{\rho} U_{\nu}.$ $U_{\mu} \to \Omega U_{\mu} \Omega^{\dagger} \quad ; \quad \Omega \in SU(N)$ $U_{n\mu} \to \Omega_n U_{n\mu} \Omega_{n+\mu}^{\dagger} \quad ; \quad \Omega_n \in SU(N)$ $U_{[(\vec{n},\tau),\mu]} \to U_{[(\vec{n},\tau),\mu]} z_{\mu} \quad ; \quad z_{\mu} \in Z_N$ $U_{\mu} \to U_{\mu} z_{\mu} \quad ; \quad z_{\mu} \in Z_N$

 $\langle W_C \rangle_{\text{gauge theory}} = \langle W_C^{\text{reduced}} \rangle_{\text{reduced}} + O(1/N^2).$

EK's demonstration of vol. indep.

• Show equivalence of Dyson-Schwinger eqs for Wilson loops gauge reduced

 $U_{n,\mu} \to U_{n\mu} \left(1 + i\epsilon t^a \right)$ $U_{\mu} \to U_{\mu} \left(1 + i\epsilon t^a \right)$

Crucial difference

gauge reduced $\operatorname{tr}\left(\cdots U_{n,\mu}U_{n+\mu,\nu}\cdots U_{m,\mu}^{\dagger}U_{m-\mu,\rho}\cdots\right) \qquad \operatorname{tr}\left(\cdots U_{\mu}U_{\nu}\cdots U_{\mu}^{\dagger}U_{\rho}\cdots\right)$

• Get extra terms on the reduced side: must vanish for reduction to hold

• Extra terms correspond to "open loops" in gauge theory

e.g.
$$\left\langle \operatorname{tr} \left(U_{\mu} U_{\nu}^{\dagger} \right) \operatorname{tr} \left(U_{\mu}^{\dagger} U_{\nu} \right) \right\rangle_{\operatorname{reduced}} = 0$$

EK's demonstration (continued)

Reduction holds if
$$\left\langle tr() tr() tr() \right\rangle_{reduced} = 0$$

• Valid if have large-N factorization

 $\langle W_{C_1} W_{C_2} \rangle_{\text{reduced}} = \langle W_{C_1} \rangle_{\text{reduced}} \langle W_{C_2} \rangle_{\text{reduced}} + O(1/N^2),$

• ... and if center symmetry is unbroken $(Z_N^4: U_\mu o U_\mu z_\mu)$

$$\langle W_{\text{open}} \rangle_{\text{reduced}} = 0.$$

CONCLUSION: $tr U_{\mu}$, $tr U_{\mu}U_{\nu}$, etc. must all vanish in the reduced model for reduction to hold Reduction fails! [Bhanot, Heller & Neuberger `82]

- Qualitatively: Small L \Leftrightarrow High T \Rightarrow deconfinement \Rightarrow tr $(U_{\mu}) \neq 0$
- Can understand in weak coupling limit as due to clustering of eigenvalues of U_{μ} [BHN '82, Kazakov & Migdal '82]

$$Z_{EK} = \int DU \exp\left[Nb \sum_{\mu < \nu} 2\operatorname{Re}\operatorname{tr}(U_{\mu}U_{\nu}U_{\mu}^{\dagger}U_{\nu}^{\dagger})\right]$$

$$U_{\mu} = V_{\mu}^{\dagger} \Lambda_{\mu} V_{\mu} \qquad \qquad \Lambda_{\mu} = \text{diag}\left[e^{i\theta_{\mu}^{\dagger}}, \dots, e^{i\theta_{\mu}^{\prime\prime}}\right]$$

$$Z_{EK} = \int \prod_{\mu,a} \frac{d\theta_{\mu}^{a}}{2\pi} \Delta^{2}(\theta) \int DV \exp S_{EK} \equiv \int \prod_{\mu,a} \exp -F_{EK}(\theta)$$

$$F_{EK} \xrightarrow{b \to \infty} \sum_{a < b} \log \left[\sum_{\mu} \sin^2 \left(\frac{\theta^a_{\mu} - \theta^b_{\mu}}{2} \right) \right]$$

 \Rightarrow Eigenvalues attract for d>2 $\Rightarrow \theta_{\mu}^{a} = \theta_{\mu}^{b}$ and so: ($\operatorname{tr} U_{\mu} \neq 0$

- Note that θ_{μ} appear as momenta in gluon propagator

Alternative view of reduction

• Volume independence is an example of a large-N orbifold equivalence [Kovtun, Unsal & Yaffe]

• Orbifold equivalence holds if "orbifolding symmetries" (translation invariance and center symmetry) are unbroken

QCD (N=3) 2N_f Dirac fermions in AS irrep (q^{ab}) infinite volume

[Corrigan-Ramond Armoni-Shifman-Veneziano]

QCD (N=3) 2N_f Dirac fermions in AS irrep (q^{ab}) infinite volume

QCD (N=infinity) 2Nf Dirac fermions in AS irrep (q^{ab}) infinite volume

[Corrigan-Ramond Armoni-Shifman-Veneziano]

QCD (N=3) 2N_f Dirac fermions in AS irrep (q^{ab}) infinite volume

QCD (N=infinity) 2Nf Dirac fermions in AS irrep (q^{ab}) infinite volume

"Orientifold" equivalence (in even C sectors) [ASV]

> QCD (N=infinity) N_f Dirac fermions in Adjoint irrep infinite volume

 $N \longrightarrow \infty$

[Corrigan-Ramond Armoni-Shifman-Veneziano]

QCD (N=3) 2N_f Dirac fermions in AS irrep (q^{ab}) infinite volume

QCD (N=infinity) 2Nf Dirac fermions in AS irrep (q^{ab}) infinite volume

"Orientifold" equivalence (in even C sectors) [ASV]

QCD (N=infinity) N_f Dirac fermions in Adjoint irrep SINGLE SITE

"Orbifold" equivalence [Kovtun,Unsal,Yaffe] QCD (N=infinity) N_f Dirac fermions in Adjoint irrep infinite volume

 $N \longrightarrow \infty$

[Corrigan-Ramond Armoni-Shifman-Veneziano]

QCD (N=infinity)

QCD (N=3) 2N_f Dirac fermions in AS irrep (q^{ab}) infinite volume

Agree within 1/N!

QCD (N=infinity) N_f Dirac fermions in Adjoint irrep SINGLE SITE

"Orbifold" equivalence [Kovtun,Unsal,Yaffe] 2Nf Dirac fermions in AS irrep (q^{ab}) infinite volume

"Orientifold" equivalence (in even C sectors) [ASV]

> QCD (N=infinity) N_f Dirac fermions in Adjoint irrep infinite volume

Why do adjoint fermions help?

- Adjoint fermions survive in large N limit (unlike fundamentals)
- With PBC, lead to repulsion between link eigenvalues ($\theta_{\mu}^{ab} = \theta_{\mu}^{a} \theta_{\mu}^{b}$)

$$F_{EK}(b \to \infty) = 2\sum_{a < b} \log\left[\frac{4}{a^2} \sum_{\mu=1}^{4} \sin^2\left(\frac{\theta_{\mu}^{ab}}{2}\right)\right] - 4N_f^D \sum_{a < b} \log\left(\frac{1}{a^2} \sum_{\mu=1}^{4} \sin^2\theta_{\mu}^{ab} + \left(m_0 + \frac{2}{a} \sum_{\mu=1}^{4} \sin^2\left(\frac{\theta_{\mu}^{ab}}{2}\right)\right)^2\right)$$

- Repulsion wins for $N_f > 1$ massless fermions
- PT suggests need m_{phys} < 1/(aN) to avoid center symmetry breaking [Ogilvie & Myers, Hollowood & Myers, Bringoltz]
- However, one-loop unreliable for $\theta^{ab}_{\mu} \to 0$
- Furthermore, couplings of interest are in non-perturbative domain
- Need to study non-perturbatively!

- Use single-site QCD(Adj) for N large to learn about 3 theories of great interest
 - N_f=1: learn about QCD with 2 flavors in Corrigan-Ramond large-N limit
 - Nf=2: alternative window on "minimal" walking technicolor theory
 - [N_f=1/2: equivalent to SYM, for which exact results are known]
- Even though "matrix model" lives on a single site, one can calculate many physical quantities (string tension, pion mass, ...)

Conditions for equivalences to hold

- 1. Large-N factorization holds
- 2. Orientifold: C not broken in QCD(AS,Adj)
- 3. Orbifold: Translation invariance unbroken in QCD (Adj.) in infinite volume
- Orbifold: (Z_N)⁴ center symmetry unbroken in QCD (Adj.) on a single site

Conditions for equivalences to hold

- 1. Large-N factorization holds
- 2. Orientifold: C not broken in QCD(AS,Adj)
- 3. Orbifold: Translation invariance unbroken in QCD (Adj.) in infinite volume
- 4. Orbifold: (Z_N)⁴ center symmetry unbroken in QCD (Adj.) on a single site

IN THIS TALK:

We assume the first three hold and study the last

Application to Nf=1 adjoint QCD

Main aims of initial study

Bringoltz & SS, arXiv:0906.3528 (PRD)

- Determine region in phase diagram of single-site model for which center symmetry is unbroken
- Study some basic observables
- Understand how L_{eff} scales with N
- * To get started, need conjecture for phase diagrams
- * Keep in mind that for N=3, $\beta_{SU(3)}=6/g^2=18$ b

The (possibly) equivalent theories (I)

(1) Infinite volume QCD(adj), Nf=1 Dirac

$$S_{\text{gauge}} = 2Nb \sum_{P} \operatorname{ReTr} U_P, \qquad b = 1/(g^2 N)$$

 $S_F = \bar{\psi} D_W \psi$ (D_W)_{xy} = $\delta_{xy} - \kappa \sum^4 \left[(1 - \gamma_\mu) U_{x,\mu}^{\text{adj}} \delta_{y,x+\mu} + (1 + \gamma_\mu) U_{x,\mu}^{\dagger \text{adj}} \delta_{y,x-\mu} \right]$ $\mu = 1$

- Use Wilson fermions for computational simplicity
- PBC in all directions
- Symmetries: gauge, center (Z_N)⁴ and flavor U(1) (SO(2) if write as two Majorana fields)
- This theory not simulated previously--though lots of work for Nf=1/2 (SUSY) and $N_{f=2}$ (nearly conformal)

The (possibly) equivalent theories (II) (2) Single-site theory, PBC in all directions:

$$S_{\text{gauge}} = 2Nb \sum \text{ReTr}U_{\mu}U_{\nu}U_{\mu}^{\dagger}U_{\nu}^{\dagger}, \qquad b = 1/(g^2N)$$

 $S_F = \bar{\psi} D_W \psi$

 $\mu < \nu$

$$(D_W) = \mathbf{1} - \kappa \sum_{\mu=1} \left[(1 - \gamma_{\mu}) U_{\mu}^{\text{adj}} + (1 + \gamma_{\mu}) U_{\mu}^{\text{adj}} \right]$$

Symmetries:

gauge: $U_{\mu} \longrightarrow \Omega U_{\mu} \Omega^{\dagger}$ (all μ) $\Omega \in SU(N)$

center (Z_N)⁴:
$$U_{\mu} \longrightarrow U_{\mu} e^{2\pi i n_{\mu}/N}$$
 $n_{\mu} \in Z_N$

- Equivalence relates theories having same b, kappa
- Requires (Z_N)⁴ to be unbroken

Expected phase diagram (2): single-site theory

• Based on knowledge of EK model and PT (2009)

Expected phase diagram (2): single-site theory

• Based on knowledge of EK model and PT (early '10)

Studying phase diagram of single-site theory

• Do scans along lines in phase plane

Details of initial simulation * Use Metropolis algorithm with weight $P(U) = e^{S_{\text{EK}}(U)} \det D_W^{\text{red}}(U)$

- Determinant is real & positive (for integer N_f)
- Update N(N-1)/2 SU(2) subgroups in turn on each link, then move to next link (4 in all!)
- Evaluate determinant explicitly: 50-60% accept.
- Scaling is (N²)³xN²---can reach N=15 on PCs
- Measure every 5 sweeps after ~50 sweeps therm.
- 100-3700 measurements

(Line)

-0.5

Ba(P)

0.5

Scatter plots of Polyakov loops

Scans 2: decreasing m_q at fixed b Z_N symmetry restored for $\kappa \gtrsim 0.6$ at b=0.5 $(1/g^{2N})^{\circ}$ $\kappa \approx 0$ $\kappa \approx 0$ $\kappa = 0.03$ $\kappa = 0.03$

к

0.25

0

29

0.5

-0.5

0 Re(P)

í.

-0.5

Re(P)

0.5

Scans 2: looking for critical line

b=0.35: 1st order transition at kappa~0.15 with Z_N unbroken on both sides

Scans 2: looking for critical line

Scans 2: looking for critical line

Plaquette

1st order transition at all b moving from kappa ~0.25 towards ~0.125 as b increases

Our interpretation: critical line in "firstorder scenario" [SS+Singleton]

Scans 2: N dependence?

0.125

0.25

 $\kappa_{c}(b)$

 $(Z_N)^4$

00

 $(1/g^2 N =)$ b

Scans 2: larger kappa

Scans 2: larger kappa

Tentative conclusions

- * For b < 1 ($\beta_{SU(3)} < 18$) there is a range of κ 's on both sides of the putative κ_c for which reduction holds
- Surprise: range goes up to |m_{phys}| ~ 1/a
- Possible caveat (from our experience with QEK model): center-symmetry breaking may show up only in more complicated expectation values

Approaching the continuum: high statistics at b=1

New observables

To be sensitive to many patterns of sym. breaking we calculated 14641 different traces:

$$K_{\vec{n}} \equiv \frac{1}{N} \text{tr } U_1^{n_1} U_2^{n_2} U_3^{n_3} U_4^{n_4}, \text{ with } n_\mu = 0, \pm 1, \pm 2, \dots, \pm 5$$

- For each we calculated the signal-to-noise for the real and imag. part and then formed a histogram
- Expectations exemplified by:

Results for K_n at b=1

 $N = 13, \ b = 1.0, \ \kappa = 0.09$

Results for K_n at b=1

 $N = 10, \ b = 1.0, \ \kappa = 0.1275$

2

1

-2 -1 0 r imag

38

Conclusion on N_f=1 phase diagram
 Our results are consistent with volume independence for interesting range of couplings

★ Far from critical line, but inside funnel, long distance theory is pure-gauge theory ⇒ realization of EK idea!

Updates on Nf=1

- # [Heitanen & Narayan] find center-symmetry unbroken with massless overlap fermions at b=5
- [Azenayagi, Hanada, Unsal & Yakoby] check the existence of the funnel with Wilson fermions for m_{phys}~1/a using rHMC algorithm, and extend calculation to 1 uncompactified direction (allowing study of finite temperature transition)
- [AHUY] conjecture that "funnel" closes in continuum limit as

 $|am_{\rm phys}| < \frac{1}{b^{1/4}}$

can take continuum limit for any fixed m_{phys} within funnel

Update on Nf=1: Spectrum of adjoint Dirac operator

Reduction in Perturbation Theory

*
$$U_{\mu} \approx \operatorname{diag}\left(e^{i\theta_{\mu,1}}, e^{i\theta_{\mu,2}}, \dots, e^{i\theta_{\mu,N}}\right)$$

* $U_{\mu}^{\operatorname{Adj}} = U_{\mu} \otimes U_{\mu}^{\dagger} \approx \operatorname{diag}\left(\dots, e^{i(\theta_{\mu,j} - \theta_{\mu,k})}, \dots\right)$
* $D_{W}^{\operatorname{adj}}(m_{0} = 0) \approx \operatorname{diag}\left(\dots, \left\{\left(4 - \sum_{\mu} \cos \theta_{\mu}^{jk}\right) + i \sum_{\mu} \sin \theta_{\mu}^{jk} \gamma_{\mu}\right\}, \dots\right)$

- For SU(N) have 4(N-1) zero modes---irrelevant in PT
- * Remaining 4(N²-N) modes have infinite volume form with $p_{\mu} \longrightarrow \theta_{\mu}^{jk} = \theta_{\mu,j} - \theta_{\mu,k}$
- * If eigenvalues repel and are uncorrelated in different directions [(Z_N)⁴ unbroken] $\theta_{\mu}^{jk} \approx \frac{2\pi}{N} (\operatorname{perm}_{\mu}^{j} - \operatorname{perm}_{\mu}^{k})$
- Build up spectrum of D_w on N⁴ lattice from ~N²
 random samples, and have L_{eff}=N

Reduction in Perturbation Theory

- Alternatively, eigenvalues lie close to a regular crystal within 4-d Brillouin zone [Bars, Unsal & Yaffe]
- Build up spectrum of D_w on L_{eff} = N^{1/4} with 1 configuration
- For our values of N (N_{max}=15) would have L_{eff} < 2 !</p>
- Numerical data can distinguish these possibilities

N=10, b=1,K=0.1275 (m_0 =-0.08) (just below transition)

What do we learn from spectrum of D_w(adj)?

- * "Zero-modes" can influence dynamics (for finite N)
- * "Non-zero modes" have desired 4-d "fingers" --- which reach close to real axis
- Provides a nontrivial test that eigenvalue distribution does not break center symmetry
- Suggests that induced L_{eff} = N

How important are "zero-modes" for phase structure?

 $K=0.1475 (m_o=-0.6)$ (below transition) $K=0.155 (m_0=-0.77)$ (above transition)

How important are "zero-modes" for phase structure?

 $K=0.1475 (m_o=-0.6)$ (below transition) $K=0.155 (m_0=-0.77)$ (above transition)

Present Project [w/ Bringoltz & Koren]

- Need to work at larger N, both to study 1/N effects and to calculate physical quantities
 - (r)HMC algorithm
 - Scaling is N³ X (N²)^{1/4}? [Catterall, Galvez & Unsal]
- Have working HMC for N_f=2
 - Timings for N_f=1 suggest that we can reach N=30 (running on ~10 processors)
 - rHMC for N_f=1 in progress

Status for N_f=2

- N=2 gauge theory ("minimal walking technicolor") subject of many recent studies
 - Expect mild N dependence
 - Have good idea of phase diagram of gauge theory

Status for N_f=2

- N=2 gauge theory ("minimal walking technicolor")
 subject of many recent studies
 - Expect mild N dependence
 - Have good idea of phase diagram of gauge theory

Status for $N_f=2$

- Scans with N=10 find results similar to Nf=1
 - Large region where center-symmetry unbroken
 - Only 1st order transition, no sign of end-point
- Find exotic (metastable?) phases for b<0.5, large к
 - C spontaneously broken (complex plaquette)
 - $Z_{10} \rightarrow Z_3$ ("skewed" phase) [Myers & Ogilvie]
- * Calculating eigenvalue distributions
- * 2⁴ model recently studied by [Catterall, Galvez & Unsal]

Future Plans & Prospects

- Crucial to check Nf=1,2 results at larger N
- Need to check interpretation by calculating m_π,
 m_{PCAC}, string tension, ε-regime e'values, ...
 - Need larger L_{eff}
 - Key issue is scaling of L_{eff} : N^{1/4}, N^{1/2} or N?
- * Can extend to glueball masses and glueball-qq mixing by having one long direction
- So far, only used few CPUs, so lots of room for growth!

