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Outline
Motivation

A short history of “volume reduction”

Application to QCD with single Dirac adjoint 
fermion: mapping the phase diagram of 14 model

Into the guts of reduction: eigenvalue distributions 
for the adjoint Dirac operator

Ongoing work with two adjoint fermions

Future prospects
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Motivation
Intriguing idea! ..... but does it work?

May provide an alternative method for studying 
gauge theories at large N

• replace V & N extrapolation with single N extrap.

Theories simplify at large N, yet share key non-
perturbative properties with low-N versions 

• QCD retains confinement and CSB at large N, but 
mesons do not interact

Connect to analytic approaches (e.g. gauge-gravity 
duality)
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Reduction already in use:
Partial volume independence [Narayan & Neuberger]

• If L>Lc≈1 fm then results independent of L

Single-site SUSY models (reduced from SUGRA) using 
non-compact gauge variables [see e.g. Nishimura, 
LAT09]



History of large-N 
volume reduction
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First example

Lattice SU(N) on Ld N=∞≡ Lattice SU(N) on 1d

Now usually called “large-N volume independence”
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Sgauge = Nb
�

n
µ<ν

2Re Tr
�
Un,µUn+µ,νU†

n+ν,µU†
n,ν

�

b = (g2N)−1 b = (g2N)−1

Uµ → Uµzµ ; zµ ∈ ZN

Uµ → Ω Uµ Ω† ; Ω ∈ SU(N)Unµ → Ωn Unµ Ω†
n+µ ; Ωn ∈ SU(N)

U[(�n,τ),µ] → U[(�n,τ),µ] zµ ; zµ ∈ ZN

Large-N volume independence Eguchi
 Kawai `82

Lattice SU(N) on Ld N=∞≡ Lattice SU(N) on 1d

Uµ ∈ SU(N)
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Un,µ ∈ SU(N)

gauge theory “reduced” or “matrix” model



reduced

= 0tr( ) tr( )

• Show equivalence of Dyson-Schwinger eqs for Wilson loops

Un,µ → Unµ (1 + i�ta) Uµ → Uµ (1 + i�ta)

• Crucial difference 
gauge reduced

• Get extra terms on the reduced side: must vanish for reduction to hold

�
tr

�
UµU†

ν

�
tr

�
U†

µUν

��
reduced

= 0

e.g.

EK’s demonstration of vol. indep.

reducedgauge
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• Extra terms correspond to “open loops” in gauge theory

e.g.

tr
�
· · ·Un,µUn+µ,ν · · ·U†

m,µUm−µ,ρ · · ·
�

tr
�
· · ·UµUν · · ·U†

µUρ · · ·
�



Reduction holds if
reduced

= 0tr( ) tr( )

EK’s demonstration (continued)

• Valid if have large-N factorization

• ... and if center symmetry is unbroken 

CONCLUSION:

must all vanish in the reduced model for reduction to hold

etc.trUµUν ,trUµ,

11

(Z4
N : Uµ → Uµzµ)



Reduction fails![Bhanot, Heller & Neuberger ‘82]
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• Qualitatively: Small L ⇔ High T ⇒ deconfinement ⇒ tr(Uµ) �= 0

• Can understand in weak coupling limit as due to clustering of 
eigenvalues of Uµ [BHN ’82, Kazakov & Migdal ’82]

Uµ = V †
µΛµVµ Λµ = diag

�
eiθ

1
µ , . . . , eiθ

N
µ

�

ZEK =
�
DU exp

�
Nb

�
µ<ν 2Re tr(UµUνU †

µU
†
ν )
�

FEK
b→∞−→

�

a<b

log

�
�

µ

sin2
�
θaµ − θbµ

2

��

➡ Eigenvalues attract for d>2  ⇒ θμa=θμb  and so: tr Uµ �= 0

ZEK =
� �

µ,a
dθa

µ

2π ∆2(θ)
�
DV expSEK ≡

� �
µ,a exp−FEK(θ)

• Note that θμ appear as momenta in gluon propagator



Alternative view of reduction
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• Volume independence is an example of a large-N orbifold equivalence 
[Kovtun, Unsal & Yaffe]

SU(N) gauge 
theory

SU(N) on 
single site

Restrict to zero-momentum fields

Orbifold w.r.t. combined gauge and 
center transfomation

• Orbifold equivalence holds if “orbifolding symmetries” (translation 
invariance and center symmetry) are unbroken
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Can reduction be rescued?
QCD (fund) N=3

Nf Dirac
N=     Yang-Mills  

quarks “quenched”N −→∞
∞

“Orbifold” 
N=     Y-M

SINGLE SITE
Eguchi-Kawai

∞

‘t Hoo*
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Can reduction be rescued?
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N=     Y-M
aL>1fm
∞

Narayanan &
 Neuberger
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An alternative approach

QCD (N=3)
2Nf Dirac fermions

in AS irrep (qab)
infinite volume
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An alternative approach
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QCD (N=infinity)
Nf Dirac fermions
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Agree within
 1/N!



Why do adjoint fermions help?
• Adjoint fermions survive in large N limit (unlike fundamentals)

• With PBC, lead to repulsion between link eigenvalues (θµab=θµa - θµb)

FEK(b → ∞)

• Repulsion wins for Nf > 1 massless fermions

• PT suggests need mphys < 1/(aN) to avoid center symmetry breaking 
[Ogilvie & Myers, Hollowood & Myers, Bringoltz]

• However, one-loop unreliable for                 

• Furthermore, couplings of interest are in non-perturbative domain

• Need to study non-perturbatively!

θabµ → 0

16
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Overall aims of our calculations

QCD (AS) QCD (AS) N=        
N −→∞

“Orientifold” 

“Orbifold” 

∞

QCD (Adj) N=       
Nf Dirac

∞
QCD (Adj) N=       

Nf Dirac 
SINGLE SITE

∞

Use single-site QCD(Adj) for N large to learn about 3 theories of great interest

• Nf=1: learn about QCD with 2 flavors in Corrigan-Ramond large-N limit

• Nf=2: alternative window on “minimal” walking technicolor theory

• [Nf=1/2: equivalent to SYM, for which exact results are known]

Even though “matrix model” lives on a single site, one can calculate many 
physical quantities (string tension, pion mass, ...)
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Conditions for equivalences to hold

1. Large-N factorization holds

2. Orientifold: C not broken in QCD(AS,Adj)

3. Orbifold: Translation invariance unbroken in QCD
(Adj.) in infinite volume

4. Orbifold: (ZN)4 center symmetry unbroken in QCD
(Adj.) on a single site
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Conditions for equivalences to hold

1. Large-N factorization holds

2. Orientifold: C not broken in QCD(AS,Adj)

3. Orbifold: Translation invariance unbroken in QCD
(Adj.) in infinite volume

4. Orbifold: (ZN)4 center symmetry unbroken in QCD
(Adj.) on a single site

IN THIS TALK:
We assume the first three hold and study the last 



Application to Nf=1 
adjoint QCD

19
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Main aims of initial study

Determine region in phase diagram of single-site 
model for which center symmetry is unbroken

Study some basic observables

Understand how Leff scales with N

To get started, need conjecture for phase diagrams

Keep in mind that for N=3, βSU(3)=6/g2=18 b

Bringoltz & SS, arXiv:0906.3528 (PRD)
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The (possibly) equivalent theories (I)

(1) Infinite volume QCD(adj), Nf=1 Dirac

Sgauge = 2Nb
�

P

ReTrUP , b = 1/(g2N)

SF = ψ̄DW ψ

(DW )xy = δxy − κ
4�

µ=1

�
(1− γµ)Uadj

x,µδy,x+µ + (1 + γµ)U† adj
x,µ δy,x−µ

�

• Use Wilson fermions for computational simplicity

• PBC in all directions

• Symmetries: gauge, center (ZN)4 and flavor U(1) (SO(2) if write as two 
Majorana fields)

• This theory not simulated previously--though lots of work for Nf=1/2 
(SUSY) and Nf=2 (nearly conformal)
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The (possibly) equivalent theories (II)
(2) Single-site theory, PBC in all directions:

   Symmetries:

       gauge:

       center (ZN)4:

Sgauge = 2Nb
�

µ<ν

ReTrUµUνU†
µU†

ν , b = 1/(g2N)

SF = ψ̄DW ψ

(DW ) = 1− κ
4�

µ=1

�
(1− γµ)Uadj

µ + (1 + γµ)Uadj †
µ

�

Uµ −→ ΩUµΩ† (all µ) Ω ∈ SU(N)

Uµ −→ Uµe2πinµ/N nµ ∈ ZN

Equivalence relates theories having same b, kappa

Requires (ZN)4 to be unbroken



Continuum physics
Critical line (or 

Aoki phase):
quarks are light.

Similar to 
QCD although 

symmetries 
differ

Bulk transistion 
(confining on both 

sides)

(1/g2N =)

Expected phase diagrams (I)
1.  Infinite volume QCD(adj) (large N, Nf=1) 

pure-gauge theory
23

m0 =
1
2κ
− 1

2κc



EK model

~0.04

(1/g2N =)

Expected phase diagram (2): single-site theory
•Based on knowledge of EK model and PT (2009)

Identical to 
infinite 
volume 

theory (at 
large N) 
within 

“funnel”

24



EK model

(1/g2N =)

Expected phase diagram (2): single-site theory
•Based on knowledge of EK model and PT (early ’10)

Identical to 
infinite 
volume 

theory (at 
large N) 

within “peak”

25



1

3

2

EK model

(1/g2N =)

Studying phase diagram of single-site theory

26

•Do scans along lines in phase plane



Numerical lattice 
study

27



Determinant is real & positive (for integer Nf)

Update N(N-1)/2 SU(2) subgroups in turn on each 
link, then move to next link (4 in all!)

Evaluate determinant explicitly: 50-60% accept.

Scaling is (N2)3xN2---can reach N=15 on PCs

Measure every 5 sweeps a;er ~50 sweeps therm.

100-3700 measurements

Details of initial simulation

28

Use Metropolis algorithm with weight

P (U) = eSEK(U) det Dred
W (U)



κ ≈ 0 κ = 0.03 κ = 0.06

κ = 0.12 κ = 0.1475 κ = 0.16

,SU(10)
(1/g2N =)

29

Scans 2: decreasing mq at fixed b
ZN symmetry restored for               at b=0.5κ >∼ 0.6

Scatter plots 
of Polyakov 

loops
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κ ≈ 0 κ = 0.03 κ = 0.06

κ = 0.12 κ = 0.1475 κ = 0.16

,SU(10),SU(15)

κ = 0 κ = 0.06 κ = 0.09
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(1/g2N =)
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Scans 2: decreasing mq at fixed b
ZN symmetry restored for               at b=0.5κ >∼ 0.6

Scatter plots 
of Polyakov 

loops



b=0.35:
1st order transition 

at kappa~0.15
with ZN unbroken on 

both sides

SU(10)

(1/g2N =)

Scans 2: looking for critical line

30

<Plaquette>

κ



SU(10)

(1/g2N =)

Scans 2: looking for critical line
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SU(8)

1st order transition at 
all b moving from 

kappa ~0.25 towards 
~0.125 as b increases

Our interpretation:
critical line in “first-

order scenario”
[SS+Singleton]

0.125

0.25

SU(10)

(1/g2N =)

Scans 2: looking for critical line
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κ = 0.03

κ = 0.12 κ = 0.1475

(1/g2N =)
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Scans 2: N dependence?

“Transition” present for all N studied
e.g. b=0.5, N=8, 10, 11, 13, 15:

Only true 
transition 
when N 
infinite



(1/g2N =)

33

Scans 2: larger kappa
b=0.5, SU(10)

Polyakov 
loops indicate  
ZN breaking 

for 

κ = 0.03

κ = 0.12

κ = 0.0001 κ = 0.1275 κ = 0.245

κ = 0.275 κ = 0.495κ = 0.29

κ >∼ 0.28



(1/g2N =)
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Scans 2: larger kappa
New observables:
Monitor ZN breaking involving correlations between links 

Indicate  ZN 
breaking for 

κ = 0.03

κ = 0.12

κ = 0.0001 κ = 0.1275 κ = 0.245

κ = 0.275 κ = 0.495κ = 0.29

Mµ,±ν = 1
N trUµU±ν

κ >∼ 0.24



Tentative conclusions

35

For b<1 (βSU(3)<18) there is a range of κ’s on both sides 
of the putative κc for which reduction holds 

Surprise: range goes up to |mphys| ~ 1/a

Possible caveat (from our experience with QEK 
model): center-symmetry breaking may show up only 
in more complicated expectation values



Approaching the 
continuum: high 
statistics at b=1

36
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New observables
To be sensitive to many patterns of sym. breaking we 
calculated 14641 different traces:

5 
For each we calculated the signal-to-noise for the real 
and imag. part and then formed a histogram

Expectations exemplified by:

ZN brokenZN unbroken

N = 10, b = 0.35, κ = 0.1275 N = 10, b = 0.5, κ = 0.495
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Results for Kn at b=1
N = 10, b = 1.0, κ = 0.09 N = 10, b = 1.0, κ = 0.1275

N = 13, b = 1.0, κ = 0.09
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Results for Kn at b=1
N = 10, b = 1.0, κ = 0.09 N = 10, b = 1.0, κ = 0.1275

N = 13, b = 1.0, κ = 0.09

ZN unbroken ZN unbroken

ZN unbroken
ZN unbroken
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Conclusion on Nf=1 phase diagram
Our results are consistent with volume independence 
for interesting range of couplings 

Far from critical line, but inside funnel, long distance 
theory is pure-gauge theory ⇒ realization of EK idea!

Identical to 
infinite 
volume 

theory (at 
large N) 
within 

“funnel”

b=1
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Updates on Nf=1
[Heitanen & Narayan] find center-symmetry 
unbroken with massless overlap fermions at b=5

[Azenayagi, Hanada, Unsal & Yakoby] check the 
existence of the funnel with Wilson fermions for 
mphys~1/a using rHMC algorithm, and extend 
calculation to 1 uncompactified direction (allowing 
study of finite temperature transition)

[AHUY] conjecture that “funnel” closes in continuum 
limit as

➡ can take continuum limit for any fixed mphys within 
funnel

|amphys| <
1

b1/4



Update on Nf=1: 
Spectrum of adjoint 

Dirac operator
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For SU(N) have 4(N-1) zero modes---irrelevant in PT

Remaining 4(N2-N) modes have infinite volume form 
with

If eigenvalues repel and are uncorrelated in different 
directions [(ZN)4 unbroken]

Build up spectrum of Dw on N4 lattice from ~N2 
random samples, and have Leff=N

42

Reduction in Perturbation Theory

Uµ ≈ diag
�
eiθµ,1 , eiθµ,2 , . . . , eiθµ,N )

UAdj
µ = Uµ ⊗ U†

µ ≈ diag
�
. . . , ei(θµ,j−θµ,k), . . .

�

Dadj
W (m0 = 0) ≈ diag

�
. . . ,

�
(4−

�

µ

cos θjk
µ ) + i

�

µ

sin θjk
µ γµ

�
, . . .

�

θjk
µ ≈ 2π

N

�
permj

µ − permk
µ

�

pµ −→ θjk
µ = θµ,j − θµ,k



Alternatively, eigenvalues lie close to a regular crystal 
within 4-d Brillouin zone [Bars, Unsal & Yaffe]

Build up spectrum of Dw on Leff =N1/4 with 1 
configuration

For our values of N (Nmax=15) would have Leff < 2 !

Numerical data can distinguish these possibilities

43

Reduction in Perturbation Theory



Spectrum of DW(adj,m0=0) in PT
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Im(λ)

Zero
modes
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Spectrum of DW(adj,m0=0) in PT

(Im(λ)>0 only)

Re(λ)

Im(λ)

Zero
modes

2 4 6 8

0.5
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1.5
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N=15, many “configurations”



Spectrum of DW(adj,m0=0) in AEK model
Im(λ)

Re(λ)

“Zero”
modes

N=10, b=1,κ=0.1275 (m0=-0.08) 
( just below transition)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6  7  8

"aEK_10_W_0.12750_Nf1_c1.0000F.egscG" u 3:4



What do we learn from spectrum of DW(adj)?

“Zero-modes” can influence dynamics (for finite N)

“Non-zero modes” have desired 4-d “fingers” --- which 
reach close to real axis

Provides a nontrivial test that eigenvalue distribution 
does not break center symmetry

Suggests that induced Leff=N



How important are “zero-modes” for phase 
structure?

-2

-1.5

-1

-0.5

 0

 0.5

 1
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’../run155b/aEK_10_W_0.15500_Nf1_c0.5000F.egscG’ u 3:4b=0.5

N=10

κ=0.155 (m0=-0.77) 
(above transition)

κ=0.1475 (m0=-0.6) 
(below transition)



How important are “zero-modes” for phase 
structure?

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6  7  8

’aEK_10_W_0.14750_Nf1_c0.5000F.egscG’ u 3:4
’../run155b/aEK_10_W_0.15500_Nf1_c0.5000F.egscG’ u 3:4b=0.5

N=10

κ=0.155 (m0=-0.77) 
(above transition)

Need
larger N to 

answer 
this 

question

κ=0.1475 (m0=-0.6) 
(below transition)



Onwards to Nf=2

48
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Present Project [w/ Bringoltz & Koren]

Need to work at larger N, both to study 1/N effects 
and to calculate physical quantities

• (r)HMC algorithm

• Scaling is N3 X (N2)1/4? [Catterall, Galvez & Unsal]

Have working HMC for Nf=2

• Timings for Nf=1 suggest that we can reach N=30       
(running on ~10 processors)

• rHMC for Nf=1 in progress
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Status for Nf=2
N=2 gauge theory (“minimal walking technicolor”) 
subject of many recent studies

• Expect mild N dependence

➡ Have good idea of phase diagram of gauge theory

e.g. [Heitanen et al]

Differs from
Nf=1



50

Status for Nf=2
N=2 gauge theory (“minimal walking technicolor”) 
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κ

β
1st order

2nd order
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Status for Nf=2
Scans with N=10 find results similar to Nf=1

• Large region where center-symmetry unbroken

• Only 1st order transition, no sign of end-point

Find exotic (metastable?) phases for b<0.5, large κ

• C spontaneously broken (complex plaquette)

• Z10→Z3 (“skewed” phase) [Myers & Ogilvie]

Calculating eigenvalue distributions

24 model recently studied by [Catterall, Galvez & Unsal]



Future prospects

52



53

Future Plans & Prospects
Crucial to check Nf=1,2 results at larger N

Need to check interpretation by calculating mπ, 
mPCAC, string tension, ε-regime e’values, ...

• Need larger Leff

• Key issue is scaling of Leff: N1/4, N1/2 or N?

Can extend to glueball masses and glueball-qq 
mixing by having one long direction

So far, only used few CPUs, so lots of room for 
growth! 



Any questions?
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