Using volume reduction to study QCD-like theories at large N_{c}

Steve Sharpe University of Washington

Based on work with Barak Bringoltz \& Mateusz Koren: arXiv:0805.2146, 0906.3538, and in progress

CERN workshop on Future Directions in LGT, July 272010

Can we use volume reduction to study QCD-like theories at large N_{c} ?

Steve Sharpe
University of Washington

Based on work with Barak Bringoltz \& Mateusz Koren: arXiv:0805.2146, 0906.3538, and in progress

Can we use simulations on 14 lattices to study QCD-like theories at large N_{c} ?

Steve Sharpe
University of Washington

Based on work with Barak Bringoltz \& Mateusz Koren: arXiv:0805.2146, 0906.3538, and in progress

Outline

* Motivation
* A short history of "volume reduction"
* Application to QCD with single Dirac adjoint fermion: mapping the phase diagram of 14 model
* Into the guts of reduction: eigenvalue distributions for the adjoint Dirac operator
* Ongoing work with two adjoint fermions
* Future prospects

Motivation

* Intriguing idea! but does it work?
* May provide an alternative method for studying gauge theories at large N
- replace $V \& N$ extrapolation with single N extrap.
* Theories simplify at large N, yet share key nonperturbative properties with low- N versions
- QCD retains confinement and CSB at large N, but mesons do not interact
* Connect to analytic approaches (e.g. gauge-gravity duality)

Reduction already in use:

* Partial volume independence [Narayan \& Neuberger]
- If $L>L_{c} \approx 1 \mathrm{fm}$ then results independent of L
* Single-site SUSY models (reduced from SUGRA) using non-compact gauge variables [see e.g. Nishimura, LATo9]

History of large-N volume reduction

First example

Reduction of Dynamical Degrees of Freedom in the Large- \boldsymbol{N} Gauge Theory
Tohru Eguchi and Hikaru Kawai
Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan (Received 19 January 1982)

Lattice $S U(N)$ on $L^{d} \stackrel{N \equiv \infty}{\equiv}$ Lattice $S U(N)$ on 1^{d}
Now usually called "large-N volume independence"

Large-N volume independence

Lattice $S U(N)$ on $L^{d} \stackrel{N \equiv \infty}{\equiv}$ Lattice $S U(N)$ on 1^{d}
gauge theory $U_{n, \mu} \in S U(N)$
"reduced" or "matrix" model
$U_{\mu} \in S U(N)$

$$
\begin{aligned}
S_{E K} & =N b \sum_{\mu<\nu} 2 \operatorname{Re} \operatorname{Tr}\left(U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger}\right) \\
b & =\left(g^{2} N\right)^{-1}
\end{aligned}
$$

$W_{C}^{\text {reduced }}=\frac{1}{N} \operatorname{tr} U_{\mu} U_{\nu} \cdots U_{\rho} U_{\nu}$.
$U_{\mu} \rightarrow \Omega U_{\mu} \Omega^{\dagger} \quad ; \quad \Omega \in S U(N)$
$U_{\mu} \rightarrow U_{\mu} z_{\mu} \quad ; \quad z_{\mu} \in Z_{N}$
$\left\langle W_{C}\right\rangle_{\text {gauge theory }}=\left\langle W_{9}^{\text {reduced }}\right\rangle_{\text {reduced }}+O\left(1 / N^{2}\right)$.

EK's demonstration of vol. indep.

- Show equivalence of Dyson-Schwinger eqs for Wilson loops

$$
\begin{array}{cc}
& \text { gauge } \\
U_{n, \mu} \rightarrow U_{n \mu}\left(1+i \epsilon t^{a}\right) & \text { reduced } \\
U_{\mu} \rightarrow U_{\mu}\left(1+i \epsilon t^{a}\right)
\end{array}
$$

- Crucial difference

gauge

reduced
$\operatorname{tr}\left(\cdots \underline{\left.\underline{U_{n, \mu}} U_{n+\mu, \nu} \cdots \underline{U_{m, \mu}^{\dagger}} U_{m-\mu, \rho} \cdots\right) \quad \operatorname{tr}\left(\cdots \underline{U_{\mu} U_{\nu}} \cdots \underline{U_{\mu}^{\dagger}} U_{\rho} \cdots\right)}\right.$

- Get extra terms on the reduced side: must vanish for reduction to hold
- Extra terms correspond to "open loops" in gauge theory

$$
\text { e.g. } \quad\left\langle\operatorname{tr}\left(U_{\mu} U_{\nu}^{\dagger}\right) \operatorname{tr}\left(U_{\mu}^{\dagger} U_{\nu}\right)\right\rangle_{\text {reduced }}=0
$$

EK's demonstration (continued)

Reduction holds if
 $$
\left.\left\langle\operatorname{tr}\left(\hbar_{\tau}\right) \operatorname{tr}(\wedge)\right\rangle\right\rangle_{\text {reduced }}=0
$$

- Valid if have large-N factorization

$$
\left\langle W_{C_{1}} W_{C_{2}}\right\rangle_{\text {reduced }}=\left\langle W_{C_{1}}\right\rangle_{\text {reduced }}\left\langle W_{C_{2}}\right\rangle_{\text {reduced }}+O\left(1 / N^{2}\right),
$$

- ... and if center symmetry is unbroken $\left(Z_{N}^{4}: U_{\mu} \rightarrow U_{\mu} z_{\mu}\right)$

$$
\left\langle W_{\text {open }}\right\rangle_{\text {reduced }}=0
$$

CONCLUSION: $\operatorname{tr} U_{\mu}, \operatorname{tr} U_{\mu} U_{\nu}$, etc.
must all vanish in the reduced model for reduction to hold

Reduction fails! [Bhanot, Heller \& Neuberger '82]

- Qualitatively: Small $\mathrm{L} \Leftrightarrow$ High $\mathrm{T} \Rightarrow$ deconfinement $\Rightarrow \operatorname{tr}\left(U_{\mu}\right) \neq 0$
- Can understand in weak coupling limit as due to clustering of eigenvalues of $U_{\mu} \quad$ [BHN '82, Kazakov \& Migdal '82]

$$
\begin{gathered}
Z_{E K}=\int D U \exp \left[N b \sum_{\mu<\nu} 2 \operatorname{Retr}\left(U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger}\right)\right] \\
U_{\mu}=V_{\mu}^{\dagger} \Lambda_{\mu} V_{\mu} \quad \Lambda_{\mu}=\operatorname{diag}\left[e^{i \theta_{\mu}^{1}}, \ldots, e^{i \theta_{\mu}^{N}}\right] \\
Z_{E K}=\int \prod_{\mu, a} \frac{d \theta_{\mu}^{a}}{2 \pi} \Delta^{2}(\theta) \int D V \exp S_{E K} \equiv \int \prod_{\mu, a} \exp -F_{E K}(\theta) \\
F_{E K} \xrightarrow{b \rightarrow \infty} \sum_{a<b} \log \left[\sum_{\mu} \sin ^{2}\left(\frac{\theta_{\mu}^{a}-\theta_{\mu}^{b}}{2}\right)\right]
\end{gathered}
$$

\Rightarrow Eigenvalues attract for $\mathrm{d}>2 \Rightarrow \theta_{\mu^{\mathrm{a}}}=\theta_{\mu} \mathrm{b}$ and so: $\operatorname{tr} \mathrm{U}_{\mu} \neq 0$

- Note that θ_{μ} appear as momenta in gluon propagator

Alternative view of reduction

- Volume independence is an example of a large- N orbifold equivalence [Kovtun, Unsal \& Yaffe]

Restrict to zero-momentum fields

Orbifold w.r.t. combined gauge and center transfomation

- Orbifold equivalence holds if "orbifolding symmetries" (translation invariance and center symmetry) are unbroken

Can reduction be rescued?

$\mathrm{N}=\infty$ Y-M
SINGLE SITE
Eguchi-Kawai

Can reduction be rescued?

Can reduction be rescued?
't Hooft

Can reduction be rescued?
‘t Hooft

Can reduction be rescued?

Can reduction be rescued?
‘t Hooft

An alternative approach

QCD $(\mathrm{N}=3)$
$2 \mathrm{~N}_{f}$ Dirac fermions
in AS irrep $\left(q^{a b}\right)$
infinite volume

An alternative approach

[Corrigan-Ramond
Armoni-Shifman-Veneziano]

QCD $(N=3)$
$2 N_{f}$ Dirac fermions
in AS irrep $\left(q^{a b}\right)$
infinite volume

	[Corrigan-Ramond Armoni-Shifman-Veneziano]
	QCD ($N=$ infinity) $2 \mathrm{~N}_{\mathrm{f}}$ Dirac fermions in AS irrep ($q^{\text {ab }}$) infinite volume
$N \longrightarrow \infty$	

An alternative approach

[Corrigan-Ramond
Armoni-Shifman-Veneziano]

> QCD ($\mathrm{N}=3$)
> 2Nf Dirac fermions in AS irrep ($q^{a b}$) infinite volume

An alternative approach

[Corrigan-Ramond

An alternative approach

[Corrigan-Ramond

Why do adjoint fermions help?

- Adjoint fermions survive in large N limit (unlike fundamentals)
- With PBC, lead to repulsion between link eigenvalues $\left(\theta_{\mu}{ }^{\text {ab }}=\theta_{\mu}{ }^{a}-\theta_{\mu}{ }^{\text {b }}\right)$
$F_{E K}(b \rightarrow \infty)=2 \sum_{a<b} \log \left[\frac{4}{a^{2}} \sum_{\mu=1}^{4} \sin ^{2}\left(\frac{\theta_{\mu}^{a b}}{2}\right)\right]-4 N_{f}^{D} \sum_{a<b} \log \left(\frac{1}{a^{2}} \sum_{\mu=1}^{4} \sin ^{2} \theta_{\mu}^{a b}+\left(m_{0}+\frac{2}{a} \sum_{\mu=1}^{4} \sin ^{2}\left(\frac{\theta_{\mu}^{a b}}{2}\right)\right)^{2}\right)$
- Repulsion wins for $\mathrm{N}_{\mathrm{f}}>1$ massless fermions
- PT suggests need $m_{\text {phys }}<1 /(\mathrm{aN})$ to avoid center symmetry breaking [Ogilvie \& Myers, Hollowood \& Myers, Bringoltz]
- However, one-loop unreliable for $\theta_{\mu}^{a b} \rightarrow 0$
- Furthermore, couplings of interest are in non-perturbative domain
- Need to study non-perturbatively!

Overall aims of our calculations

* Use single-site QCD(Adj) for N large to learn about 3 theories of great interest
- $\quad N_{f}=1$: learn about QCD with 2 flavors in Corrigan-Ramond large- N limit
- $\quad N_{f}=2$: alternative window on "minimal" walking technicolor theory
- [$N_{f}=1 / 2$: equivalent to $S Y M$, for which exact results are known]
* Even though "matrix model" lives on a single site, one can calculate many physical quantities (string tension, pion mass, ...)

Conditions for equivalences to hold

1. Large-N factorization holds
2. Orientifold: C not broken in QCD (AS,Adj)
3. Orbifold: Translation invariance unbroken in QCD (Adj.) in infinite volume
4. Orbifold: $\left(Z_{N}\right)^{4}$ center symmetry unbroken in QCD (Adj.) on a single site

Conditions for equivalences to hold

1. Large-N factorization holds
2. Orientifold: C not broken in QCD (AS,Adj)
3. Orbifold: Translation invariance unbroken in QCD (Adj.) in infinite volume
4. Orbifold: $\left(Z_{N}\right)^{4}$ center symmetry unbroken in QCD (Adj.) on a single site

IN THIS TALK:

We assume the first three hold and study the last

Application to $\mathrm{N}_{f}=1$ adjoint QCD

Main aims of initial study

Bringoltz \& SS, arXiv:0906.3528 (PRD)

* Determine region in phase diagram of single-site model for which center symmetry is unbroken
* Study some basic observables
* Understand how Leff scales with N
* To get started, need conjecture for phase diagrams
* Keep in mind that for $N=3, \beta_{S U(3)}=6 / g^{2}=18 \mathrm{~b}$

The (possibly) equivalent theories (I)

(1) Infinite volume QCD (adj), $\mathrm{N}_{\mathrm{f}}=1$ Dirac

$$
\begin{gathered}
S_{\text {gauge }}=2 N b \sum_{\mathrm{P}} \operatorname{ReTr} U_{P}, \quad b=1 /\left(g^{2} N\right) \\
S_{F}=\bar{\psi} D_{W} \psi \\
\left(D_{W}\right)_{x y}=\delta_{x y}-\kappa \sum_{\mu=1}^{4}\left[\left(1-\gamma_{\mu}\right) U_{x, \mu}^{\text {adi }} \delta_{y, x+\mu}+\left(1+\gamma_{\mu}\right) U_{x, \mu}^{\mathrm{tadj}} j_{y, x-\mu}\right]
\end{gathered}
$$

- Use Wilson fermions for computational simplicity
- $\quad \mathrm{PBC}$ in all directions
- Symmetries: gauge, center $\left(\mathrm{Z}_{\mathrm{N}}\right)^{4}$ and flavor $\mathrm{U}(1)(\mathrm{SO}(2)$ if write as two Majorana fields)
- This theory not simulated previously--though lots of work for $\mathrm{N}_{\mathrm{f}}=1 / 2$ (SUSY) and $\mathrm{N}_{\mathrm{f}}=2$ (nearly conformal)

The (possibly) equivalent theories (II)

(2) Single-site theory, PBC in all directions:

$$
\begin{aligned}
S_{\text {gauge }} & =2 N b \sum_{\mu<\nu} \operatorname{Re} \operatorname{Tr} U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger}, \quad b=1 /\left(g^{2} N\right) \\
S_{F} & =\bar{\psi} D_{W} \psi \\
\left(D_{W}\right) & =1-\kappa \sum_{\mu=1}^{4}\left[\left(1-\gamma_{\mu}\right) U_{\mu}^{\text {adj }}+\left(1+\gamma_{\mu}\right) U_{\mu}^{\text {adj } \dagger}\right]
\end{aligned}
$$

Symmetries:
gauge: $\quad U_{\mu} \longrightarrow \Omega U_{\mu} \Omega^{\dagger} \quad($ all $\mu) \quad \Omega \in S U(N)$
center $\left(Z_{N}\right)^{4}: \quad U_{\mu} \longrightarrow U_{\mu} e^{2 \pi i n_{\mu} / N} \quad n_{\mu} \in Z_{N}$

* Equivalence relates theories having same b, kappa
* Requires $\left(Z_{N}\right)^{4}$ to be unbroken

Expected phase diagrams (I)

 1. Infinite volume $Q C D(a d j)$ (large $N, N_{f}=1$)

Expected phase diagram (2): single-site theory - Based on knowledge of EK model and PT (2009)

Identical to infinite volume theory (at large N) within
"funnel"

Expected phase diagram (2): single-site theory - Based on knowledge of EK model and PT (early '10)

Identical to infinite volume theory (at large N) within "peak"

Studying phase diagram of single-site theory

- Do scans along lines in phase plane

Numerical lattice study

Details of initial simulation

* Use Metropolis algorithm with weight

$$
P(U)=e^{S_{\mathrm{EK}}(U)} \operatorname{det} D_{W}^{\mathrm{red}}(U)
$$

* Determinant is real \& positive (for integer N_{f})
* Update $\mathrm{N}(\mathrm{N}-1) / 2 \mathrm{SU}(2)$ subgroups in turn on each link, then move to next link (4 in all!)
* Evaluate determinant explicitly: 50-60\% accept.
* Scaling is $\left(\mathrm{N}^{2}\right)^{3} \times \mathrm{N}^{2}---$ can reach $\mathrm{N}=15$ on PCs
* Measure every 5 sweeps after ~50 sweeps therm.
* 100-3700 measurements

Scans 2: decreasing m_{q} at fixed b

Z_{N} symmetry restored for $\kappa \gtrsim 0.6$ at $\mathrm{b}=0.5$
,SU(ıo)

> Scatter plots of Polyakov loops

Scans 2: decreasing m_{q} at fixed b

Z_{N} symmetry restored for $\kappa \gtrsim 0.6 \mathrm{at} \mathrm{b}=0.5$

> Scatter plots of Polyakov loops

Scans 2: decreasing m_{q} at fixed b

Z_{N} symmetry restored for $\kappa \gtrsim 0.6$ at $\mathrm{b}=0.5$
$\left(1 / g^{2} N=\right) \mathrm{b}$

Scans 2: decreasing m_{q} at fixed b

Z_{N} symmetry restored for $\kappa \gtrsim 0.6 \mathrm{at} \mathrm{b}=0.5$

$$
\kappa=0.12
$$

Scans 2: decreasing m_{q} at fixed b

Z_{N} symmetry restored for $\kappa \gtrsim 0.6$ at $\mathrm{b}=\mathrm{o} .5$

$\kappa=0.1475$

$$
\kappa=0.12
$$

Scans 2: decreasing m_{q} at fixed b

Z_{N} symmetry restored for $\kappa \gtrsim 0.6 \mathrm{at} \mathrm{b}=0.5$

$\kappa=0.1475$
$\kappa=0.16$

Scans 2: decreasing m_{q} at fixed b

 Z_{N} symmetry restored for $\kappa \gtrsim 0.6 \mathrm{at} \mathrm{b}=0.5$

Scatter plots of Polyakov loops

Scans 2: looking for critical line

<Plaquette>

*

$b=0.35$:
1st order transition at kappa~0.15 with Z_{N} unbroken on both sides

Scans 2: looking for critical line

Scans 2: looking for critical line

Scans 2: N dependence?

"Transition" present for all N studied e.g. $b=0.5, N=8,10,11,13,15$:

Only true transition when N infinite

Scans 2: larger kappa

$\mathrm{b}=0.5, \mathrm{SU}$ (ıo)

$$
\kappa=0.275
$$

$\kappa=0.29$

$\kappa=0.495$

Polyakov loops indicate Z_{N} breaking
for
$\kappa \gtrsim 0.28$

Scans 2: larger kappa

New observables: $M_{\mu, \pm \nu}=\frac{1}{N} \operatorname{tr} U_{\mu} U_{ \pm \nu}$
$\left(1 / g^{2} N=\mathrm{b}\right.$
links
Monitor Z_{N} breaking involving correlations between links

Indicate Z_{N} breaking for

$$
\kappa \gtrsim 0.24
$$

Tentative conclusions

* For $b<1\left(\beta_{s u(3)}<18\right)$ there is a range of $\mathrm{K}^{\prime} \mathrm{s}$ on both sides of the putative κ_{c} for which reduction holds
* Surprise: range goes up to |mphys| ~ 1/a
* Possible caveat (from our experience with QEK model): center-symmetry breaking may show up only in more complicated expectation values

Approaching the continuum: high statistics at b=1

New observables

* To be sensitive to many patterns of sym. breaking we calculated 14641 different traces:

$$
K_{\vec{n}} \equiv \frac{1}{N} \operatorname{tr} U_{1}^{n_{1}} U_{2}^{n_{2}} U_{3}^{n_{3}} U_{4}^{n_{4}}, \quad \text { with } n_{\mu}=0, \pm 1, \pm 2, \ldots, \pm 5
$$

* For each we calculated the signal-to-noise for the real and imag. part and then formed a histogram
* Expectations exemplified by:

Results for K_{n} at $b=1$

$\mathrm{SU}(13), \mathrm{b}=1, \mathrm{k}=0.09$, real part

$N=10, b=1.0, \kappa=0.1275$

$S U(13), b=1, k=0.09$, imaginary part

Results for K_{n} at $b=1$

$S U(13), b=1, k=0.09$, real part

$$
N=10, b=1.0, \kappa=0.1275
$$

$S U(13), b=1, k=0.09$, imaginary part

Conclusion on $\mathrm{N}_{\mathrm{f}}=1$ phase diagram

* Our results are consistent with volume independence for interesting range of couplings

Identical to infinite volume theory (at large N) within
"funnel"

* Far from critical line, but inside funnel, long distance theory is pure-gauge theory \Rightarrow realization of EK idea!

Updates on $\mathrm{N}_{\mathrm{f}}=1$

* [Heitanen \& Narayan] find center-symmetry unbroken with massless overlap fermions at $b=5$
* [Azenayagi, Hanada, Unsal \& Yakoby] check the existence of the funnel with Wilson fermions for $m_{\text {phys }} \sim 1 / a$ using rHMC algorithm, and extend calculation to 1 uncompactified direction (allowing study of finite temperature transition)
* [AHUY] conjecture that "funnel" closes in continuum limit as

$$
\left|a m_{\text {phys }}\right|<\frac{1}{b^{1 / 4}}
$$

\Rightarrow can take continuum limit for any fixed $m_{\text {phys }}$ within funnel

Update on $\mathrm{N}_{\mathrm{f}}=1$: Spectrum of adjoint Dirac operator

Reduction in Perturbation Theory

* $U_{\mu} \approx \operatorname{diag}\left(e^{i \theta_{\mu, 1}}, e^{i \theta_{\mu, 2}}, \ldots, e^{i \theta_{\mu, N}}\right)$
* $U_{\mu}^{\operatorname{Adj}}=U_{\mu} \otimes U_{\mu}^{\dagger} \approx \operatorname{diag}\left(\ldots, e^{i\left(\theta_{\mu, j}-\theta_{\mu, k}\right)}, \ldots\right)$
$* D_{W}^{\mathrm{adj}}\left(m_{0}=0\right) \approx \operatorname{diag}\left(\ldots,\left\{\left(4-\sum_{\mu} \cos \theta_{\mu}^{j k}\right)+i \sum_{\mu} \sin \theta_{\mu}^{j k} \gamma_{\mu}\right\}, \ldots\right)$
* For $S U(N)$ have $4(N-1)$ zero modes---irrelevant in PT
* Remaining $4\left(\mathrm{~N}^{2}-\mathrm{N}\right)$ modes have infinite volume form with $\quad p_{\mu} \longrightarrow \theta_{\mu}^{j k}=\theta_{\mu, j}-\theta_{\mu, k}$
* If eigenvalues repel and are uncorrelated in different directions $\left[\left(\mathrm{Z}_{\mathrm{N}}\right)^{4}\right.$ unbroken] $\theta_{\mu}^{j k} \approx \frac{2 \pi}{N}\left(\operatorname{perm}_{\mu}^{j}-\operatorname{perm}_{\mu}^{k}\right)$
* Build up spectrum of D_{w} on N 4 lattice from $\sim \mathrm{N}^{2}$ random samples, and have Leff $=\mathrm{N}$

Reduction in Perturbation Theory

* Alternatively, eigenvalues lie close to a regular crystal within 4-d Brillouin zone [Bars, Unsal \& Yaffe]
* Build up spectrum of D_{w} on Leff $=\mathrm{N}^{1 / 4}$ with 1 configuration
* For our values of $\mathrm{N}\left(\mathrm{N}_{\max }=15\right)$ would have Leff < 2 !
* Numerical data can distinguish these possibilities

Spectrum of $D_{w}\left(a d j, m_{0}=0\right)$ in PT

modes
$N=10$, single "configuration"

Spectrum of $D_{w}\left(a d j, m_{0}=0\right)$ in PT

Spectrum of $D_{w}\left(a d j, m_{0}=0\right)$ in PT

Spectrum of $D_{w}\left(a d j, m_{o}=0\right)$ in AEK model $\operatorname{Im}(\lambda)$

$\operatorname{Re}(\lambda)$

$$
\begin{aligned}
& \mathrm{N}=10, \mathrm{~b}=1, \mathrm{~K}=0.1275\left(\mathrm{~m}_{\circ}=-0.08\right) \\
& \text { (just below transition) }
\end{aligned}
$$

What do we learn from spectrum of $D_{w}(a d j)$?

* "Zero-modes" can influence dynamics (for finite N)
* "Non-zero modes" have desired 4-d "fingers" --- which reach close to real axis
* Provides a nontrivial test that eigenvalue distribution does not break center symmetry
* Suggests that induced Leff $=\mathrm{N}$

How important are "zero-modes" for phase

 structure?

How important are "zero-modes" for phase

 structure?

Onwards to $\mathrm{Nf}_{f}=2$

Present Project [w/ Bringoltz \& Koren]

* Need to work at larger N , both to study $1 / \mathrm{N}$ effects and to calculate physical quantities
- (r)HMC algorithm
- Scaling is N3 $X\left(N^{2}\right)^{1 / 4}$? [Catterall, Galvez \& Unsal]
* Have working HMC for $\mathrm{N}_{\mathrm{f}}=2$
- Timings for $N_{f}=1$ suggest that we can reach $N=30$ (running on ~ 10 processors)
- rHMC for $\mathrm{N}_{\mathrm{f}=1}$ in progress

Status for $\mathrm{N}_{\mathrm{f}}=2$

* N=2 gauge theory ("minimal walking technicolor") subject of many recent studies
- Expect mild N dependence
\Rightarrow Have good idea of phase diagram of gauge theory

Status for $\mathrm{N}_{\mathrm{f}}=2$

* N=2 gauge theory ("minimal walking technicolor") subject of many recent studies
- Expect mild N dependence
\Rightarrow Have good idea of phase diagram of gauge theory
e.g. [Heitanen et al]

Differs from $\mathrm{N}_{\mathrm{f}=\mathrm{I}}$

Status for $\mathrm{N}_{\mathrm{f}}=2$

* Scans with $\mathrm{N}=10$ find results similar to $\mathrm{N}_{\mathrm{f}}=1$
- Large region where center-symmetry unbroken
- Only 1st order transition, no sign of end-point
* Find exotic (metastable?) phases for b<0.5, large k
- C spontaneously broken (complex plaquette)
- $Z_{10} \rightarrow Z_{3}$ ("skewed" phase) [Myers \& Ogilvie]
* Calculating eigenvalue distributions
* 24 model recently studied by [catterall, calvez \& Unsal]

Future prospects

Future Plans \& Prospects

* Crucial to check $\mathrm{N}_{\mathrm{f}}=1,2$ results at larger N
* Need to check interpretation by calculating m_{π}, $m_{\text {PCAC }}$, string tension, ε-regime e'values, ...
- Need larger Leff
- Key issue is scaling of Leff: $N^{1 / 4}, N^{1 / 2}$ or N ?
* Can extend to glueball masses and glueball-q \bar{q} mixing by having one long direction
* So far, only used few CPUs, so lots of room for growth!

Any questions?

