(A proposal for) B-physics on current lattices

G.C. Rossi

University of Roma Tor Vergata and INFN
Future directions in lattice gauge theories - LGT10
CERN - July $26^{\text {th }}, 2010$

Outline of the talk

- Main results
- Generalities
- Flavour physics and the SM
- Where we are in parameter $\left(a, \mu_{q}, V\right)$ space
- Mtm-LQCD
- The ratio method for heavy-light ($h \ell$) meson physics
- B-physics
- m_{b}
- f_{B}
- $f_{B S}$
- D-physics
- m_{c}
- f_{D}
- $f_{D_{s}}$
- Conclusions and outlook

References - I

HQET

E. Eichten and B.R. Hill, An effective field theory for the calculation of matrix elements involving heavy quarks, Phys. Lett. B 234 (1990) 511 [SPIRES].
H. Georgi, An effective field theory for heavy quarks at low-energies, Phys. Lett. B 240 (1990) 447 [SPIRES].
N. Isgur and M.B. Wise, Weak decays of heavy mesons in the static quark approximation, Phys. Lett. B 232 (1989) 113 [SPIRES].
N. Isgur and M.B. Wise, Weak transition form-factors between heavy mesons, Phys. Lett. B 237 (1990) 527 [SPIRES].
G.S. Bali, QCD forces and heavy quark bound states, Phys. Rept. 343 (2001) 1 [hep-ph/0001312] [SPIRES].
M. Neubert, Heavy quark symmetry, Phys. Rept. 245 (1994) 259 [hep-ph/9306320] [SPIRES].

References - II

ALPHA Collaboration

ALPHA collaboration, J. Heitger and R. Sommer, Non-perturbative heavy quark effective theory, JHEP 02 (2004) 022 [hep-lat/0310035] [SPIRES].

ALPHA collaboration, J. Heitger et al., Non-perturbative tests of heavy quark effective theory, JHEP 11 (2004) 048 [hep-ph/0407227] [SPIRES].
R. Sommer, Non-perturbative QCD: renormalization, $O(a)$-improvement and matching to heavy quark effective theory, hep-lat/0611020 [SPIRES].

ALPHA collaboration, M. Della Morte et al., Lattice HQET with exponentially improved statistical precision, Phys. Lett. B 581 (2004) 93 [Erratum ibid. B 612 (2005) 313] [hep-lat/0307021] [SPIRES].
M. Della Morte, N. Garron, M. Papinutto and R. Sommer, Heavy quark effective theory computation of the mass of the bottom quark, JHEP 01 (2007) 007 [hep-ph/0609294] [SPIRES].
M. Della Morte et al., Heavy-strange meson decay constants in the continuum limit of quenched QCD, JHEP 02 (2008) 078 [arXiv:0710.2201] [SPIRES].

References - III

Finite size scaling

M. Guagnelli, F. Palombi, R. Petronzio and N. Tantalo, f_{B} and two scales problems in lattice QCD, Phys. Lett. B 546 (2002) 237 [hep-lat/0206023] [SPIRES].
G.M. de Divitiis, M. Guagnelli, R. Petronzio, N. Tantalo and F. Palombi, Heavy quark masses in the continuum limit of quenched Lattice QCD, Nucl. Phys. B 675 (2003) 309 [hep-lat/0305018] [SPIRES].
G.M. de Divitiis, M. Guagnelli, F. Palombi, R. Petronzio and N. Tantalo, Heavy-light decay constants in the continuum limit of lattice QCD, Nucl. Phys. B 672 (2003) 372 [hep-lat/0307005] [SPIRES].
D. Guazzini, R. Sommer and N. Tantalo, Precision for B-meson matrix elements, JHEP 01 (2008) 076 [arXiv:0710. 2229] [SPIRES].

References - IV

Improved fermion action

A.X. El-Khadra, A.S. Kronfeld and P.B. Mackenzie, Massive fermions in lattice gauge theory, Phys. Rev. D 55 (1997) 3933 [hep-lat/9604004] [SPIRES].
S. Aoki, Y. Kuramashi and S.-i. Tominaga, Relativistic heavy quarks on the lattice, Prog. Theor. Phys. 109 (2003) 383 [hep-lat/0107009] [SPIRES].
N.H. Christ, M. Li and H.-W. Lin, Relativistic heavy quark effective action, Phys. Rev. D 76 (2007) 074505 [hep-lat/0608006] [SPIRES].
M.B. Oktay and A.S. Kronfeld, New lattice action for heavy quarks, Phys. Rev. D 78 (2008) 014504 [arXiv:0803.0523] [SPIRES].
E. Gamiz, Heavy flavour phenomenology from lattice QCD, PoS(LATTICE 2008)014 [arXiv:0811.4146] [SPIRES].

Based on ...

JEHP 04(2010)049 (arXiv:0909.3187)
B. Blossier, P. Dimopoulos, R. Frezzotti, G. Herdoiza, K. Jansen,
V. Lubicz, G. Martinelli, C. Michael, G.C. Rossi, A. Shindler,
S. Simula, C. Tarantino, C. Urbach

Main results

From ETMC maximally twisted fermion data (arXiv:0909.3187)

- B-physics
- b-mass

$$
\hat{\mu}_{\mathrm{b}}^{\overline{M S}, N_{f}=2}(2 \mathrm{GeV})=5.35(32) \mathrm{GeV}
$$

- decay constants

$$
f_{B}=194(16) \mathrm{MeV} \quad f_{B_{s}}=235(11) \mathrm{MeV}
$$

- D-physics
- c-mass

$$
\hat{\mu}_{c}^{\overline{M S}, N_{f}=2}(2 \mathrm{GeV})=1.23(06) \mathrm{GeV}
$$

- decay constants

$$
f_{D}=211(9) \mathrm{MeV} \quad f_{D_{s}}=252(7) \mathrm{MeV}
$$

Flavour physics \& SM

$$
B_{d}-\bar{B}_{d}
$$

oscillations

$$
K_{0}-\bar{K}_{0}
$$

$B_{s}-\bar{B}_{s}$	
$f_{B} f_{B_{s}}$	f_{K}

parameters
$B_{B} B_{B_{s}}$
B_{K}

- $\Delta M_{B_{d}}=\frac{G_{F}^{2}}{6 \pi^{2}} M_{W}^{2} \eta_{b} S\left(x_{t}\right) M_{B_{d}} f_{B_{d}}^{2} B_{B_{d}}\left|V_{t b}\right|^{2}\left|V_{t d}\right|^{2}$
- $\frac{\Delta M_{B_{d}}}{\Delta M_{B_{s}}}=\frac{M_{B_{d}}}{M_{B_{s}}} \frac{f_{B_{d}}^{2}}{f_{B_{s}}^{2}} \frac{B_{B_{d}}}{B_{B_{s}}} \frac{\left|V_{\text {td }}\right|^{2}}{\left|V_{t s}\right|^{2}}$
- $\left.B R(B \rightarrow \tau \nu)\right|_{S M}=(0.79 \pm 0.07) \times 10^{-4}$ with $V_{u b}$ and f_{B} as inputs
- $\left.B R(B \rightarrow \tau \nu)\right|_{\text {exp }}=(1.74 \pm 0.34) \times 10^{-4}$

B_{K} compilation

Intr Form B-phys Obs \& com Conc \& Out Outline Ref ETMC Results Flavphys \& SM SL SL.

Simulation landscape - I

dynamical simulations : parameters landscape

- number of flavours: N_{f}
- lattice spacing : a
- lattice size : L
- pion masses : m_{PS}

oblique dotted line: $m_{\pi} L=3.5$

Caveat in plots : no information on systematic effects (scale setting, cut-off effects, ...), m_{s}, m_{C}, \ldots

Intr Form B-phys Obs \& com Conc \& Out Outline Ref ETMC Results Flav phys \& SM SL SL

Simulation Iandscape - II

dynamical simulations : parameters landscape

- number of flavours: $N_{\mathrm{f}}=2+1+1$
- lattice spacing : a
- lattice size : L
- pion masses : mPS

oblique dotted line: $m_{\pi} L=3.5$

Caveat in plots: no information on systematic effects (scale setting, cut-off effects, ...), m_{s}, m_{C}, \ldots

Twisted-mass formulation

- The Mtm lattice regularization of $\left(N_{f}=2\right)$ QCD action reads $(r=1)$

$$
S_{N_{f}=2}^{\mathrm{ph}}=S_{L}^{\mathrm{YM}}+a^{4} \sum_{x} \bar{\psi}(x)\left[\gamma \cdot \tilde{\nabla}-i_{\gamma_{5}} \tau^{3}\left(-\frac{a}{2} r \nabla^{*} \nabla+M_{\mathrm{cr}}(r)\right)+\mu_{a}\right] \psi(x)
$$

- ψ is a flavour doublet, $M_{\text {cr }}(r)$ is the critical mass and τ^{3} acts on flavour indices
- From the "physical" basis (where the quark mass is real), the non-anomalous

$$
\psi=\exp \left(i \pi \gamma_{5} \tau^{3} / 4\right) \chi, \quad \bar{\psi}=\bar{\chi} \exp \left(i \pi \gamma_{5} \tau^{3} / 4\right)
$$

transformation brings the lattice action in the so-called "twisted" basis

$$
S_{N_{f}=2}^{\mathrm{tw}}=S_{L}^{\mathrm{YM}}+a^{4} \sum_{x} \bar{\chi}(x)\left[\gamma \cdot \widetilde{\nabla}-\frac{a}{2} r \nabla^{*} \nabla+M_{\mathrm{cr}}(r)+i \mu_{\mathrm{a}} \gamma_{5} \tau^{3}\right] \chi(x)
$$

- Unlike the standard Wilson regularization, here the subtracted Wilson operator $-\frac{a}{2} r \nabla^{*} \nabla+M_{\text {cr }}(r)$ is "chirally rotated" w.r.t. the quark mass.

Virtues and drawbacks

- Virtues
- Automatic $O(a)$ improvement
- Positivity of the Dirac-Wilson matrix determinant, with (lowest eigenvalue) ${ }^{2}$ bound from below by μ_{a}^{2}
- Simplified operator renormalization (e.g. quark mass, f_{π}, \ldots)
- Mass non-degenerate quark pairs can be introduced, loosing none of the above properties (from $N_{f}=2$ to $N_{f}=2+1+1$)
- Drawbacks
- $O\left(a^{2}\right)$ breaking of parity and isospin (e.g. $m_{\pi^{ \pm}} v s . m_{\pi^{3}}$)
- $O\left(a^{2}\right)$ contaminations from mixing of different parity/isospin states
- Further "useful" features
- Valence quarks (à la OS) can be introduced on any N_{f} sea
- Isospin restoration...
- No wrong chirality mixing in CP-conserving $\mathcal{H}_{\text {eff }}^{w} \ldots$
- ... up to only $O\left(a^{2}\right)$ unitarity violations

Proof of aułomatic $O(a)$ improvement

- Mtm action invariant under $[$ sym $] \equiv \mathcal{P} \times \mathcal{D}_{d} \times\left(\mu_{q} \rightarrow-\mu_{q}\right)$ [S.E.] = Symanzik Expansion
(no reference to r)

$$
\mathcal{P}:\left\{\begin{array}{l}
\psi(x) \rightarrow \gamma_{0} \psi\left(x_{P}\right), \quad \bar{\psi}(x) \rightarrow \bar{\psi}\left(x_{P}\right) \gamma_{0} \\
U_{0}(x) \rightarrow U_{0}\left(x_{P}\right), \\
U_{k}(x) \rightarrow U_{k}^{\dagger}\left(x_{P}-a \hat{k}\right), \quad k=1,2,3
\end{array} \quad \mathcal{D}_{d}:\left\{\begin{array}{l}
\left.U_{\mu}(x) \quad \rightarrow U_{\mu}^{\dagger}(-x-a \hat{\mu})\right) \\
(\psi(x), \bar{\psi}(x)) \rightarrow e^{3 i \pi / 2}(\psi(-x), \bar{\psi}(-x))
\end{array}\right.\right.
$$

$\left.\bullet\langle O(x)\rangle\right|_{\left(r, \mu_{q}\right)} \stackrel{[\text { S.E. }}{=}\left[\zeta_{O}^{O}(r)\langle O(x)\rangle+a \sum_{\ell} \eta_{O_{\ell}}^{O}(r)\left\langle O_{\ell}(x)\right\rangle\right]_{\left(\mu_{q}\right)}^{\text {cont }}+\mathrm{O}\left(a^{2}\right)=$ $\left.\stackrel{[\mathrm{Sym}]^{L}}{=}(-1)^{P[O]+d}\left\langle O\left(-x_{P}\right)\right\rangle\right|_{\left(r,-\mu_{q}\right)} \stackrel{[\text { S.E. }]}{=}$

$$
=(-1)^{P[O]+d}\left[\zeta_{O}^{O}(r)\left\langle O\left(-x_{P}\right)\right\rangle+a \sum_{\ell} \eta_{O_{\ell}}^{O}(r)\left\langle O_{\ell}\left(-x_{P}\right)\right\rangle\right]_{\left(-\mu_{q}\right)}^{\text {cont }}+\mathrm{O}\left(a^{2}\right)=
$$

$\stackrel{[\text { sym] }}{=}{ }^{\text {cont }}\left[\zeta_{O}^{O}(r)\langle O(x)\rangle-a \sum_{\ell} \eta_{O_{\ell}}^{O}(r)(-1)^{P\left[O_{\ell}\right]+P[O]}\left\langle O_{\ell}(x)\right\rangle\right]_{\left(\mu_{q}\right)}^{\text {cont }}+\mathrm{O}\left(a^{2}\right)$
$\bullet-(-1)^{P\left[O_{\ell}\right]+P[O]}=1 \Longrightarrow\left(P[O]=0 \rightarrow O_{\ell}\right.$ parity-odd) thus $\left.\left\langle O_{\ell}(x)\right\rangle\right|_{\left(\mu_{q}\right)} ^{\text {cont }}=0$

- true for all odd powers of a

B-physics on current lattices

Aim extract $\mu_{\mathrm{b}}, f_{\mathrm{B}}, f_{B_{s}}, \ldots$ from available data where $\mu_{\mathrm{b}} \gg a^{-1}$

$$
\mathrm{HQET} \rightarrow \int d^{3} x\left\langle A_{h \ell}(\vec{x}, t) A_{h \ell}(0)\right\rangle=\frac{e^{-M_{h \ell} t}}{2 M_{h \ell}} f_{h \ell}^{2} M_{h \ell}^{2} \xrightarrow{\mu_{h} \rightarrow \infty} O\left(\Lambda_{Q C D}^{3}\right) e^{-\mu_{h} t}
$$

- Computational strategy for μ_{b} (ignoring for a while renormalization)
- Consider the $h \ell$-meson mass ratios, $M_{h \ell}^{L}\left(\mu_{\ell}, \mu_{h}\right) / M_{h \ell}^{L}\left(\mu_{\ell}, \mu_{h}^{\prime}\right)$
\star at pairs of nearby h-quark masses $\sim \mu_{c}<\mu_{h}<\mu_{h}^{\prime}<\sim 2 \mu_{c}$
\star scaled in units of some fixed number, $\lambda=\mu_{h} / \mu_{h}^{\prime}$
- Ratios expected to have smooth χ-al/continuum extrapolation
* have an exact infinite h-quark mass limit, namely 1
* fit them with a $2^{\text {nd }}$ order polynomial in $1 / \mu_{h}$, passing through 1
- Intersecting the fitted curve at the B-meson mass yields μ_{b}
- Computational strategy for $f_{B}, f_{B_{s}}$ (ignoring for a while renormalization)
- Same, for $\frac{f_{h \ell}=\langle\Omega| A_{0}^{h \ell}\left|M_{h \ell}\left(\mu_{\ell}, \mu_{h}\right)\right\rangle}{h_{h \ell}^{\prime}=\langle\Omega| A_{0}^{h \ell}\left|M_{h \ell}\left(\mu_{\ell}, \mu_{h}^{\prime}\right)\right\rangle}\left(\frac{\mu_{h}^{\prime}}{\mu_{h}}\right)^{1 / 2}$ ratios
- Hit the value of $f_{B}\left(\mu_{\ell}=\mu_{\mathrm{U}} / d\right)$ (or $f_{B}\left(\mu_{\ell}=\mu_{S}\right)$) at $\mu_{h}=\mu_{\mathrm{b}}$

General strategy - I

- Consider the lattice y-ratios

$$
\begin{gathered}
y^{L}\left(x^{(n)}, \lambda ; \hat{\mu}_{\ell}, a\right)=\frac{M_{h \ell}^{L}\left(\hat{\mu}_{h}^{(n)} ; \hat{\mu}_{\ell}, a\right)}{M_{h \ell}^{L}\left(\hat{\mu}_{h}^{(n-1)} ; \hat{\mu}_{\ell}, a\right)} \cdot \frac{\rho\left(\log \hat{\mu}_{h}^{(n-1)}\right) \hat{\mu}_{h}^{(n-1)}}{\rho\left(\log \hat{\mu}_{h}^{(n)}\right) \hat{\mu}_{h}^{(n)}}, \quad n=2, \cdots, N \\
{\left[\text { where } \rho\left(\log \hat{\mu}_{h}\right) \hat{\mu}_{h}=\mu_{h}^{\text {pole }} \text { and } \hat{\mu}=Z_{p}^{-1} \mu\right]}
\end{gathered}
$$

- inspired by the large h-quark mass limit

$$
\lim _{\mu_{h}^{\text {pole }} \rightarrow \infty} \frac{M_{h \ell}\left(\mu_{h}^{\text {pole }}\right)}{\mu_{h}^{\text {pole }}}=1
$$

- Keeping fix

$$
\lambda=\frac{\hat{\mu}_{h}^{(n)}}{\hat{\mu}_{h}^{(n-1)}}=\frac{\mu_{h}^{(n)}}{\mu_{h}^{(n-1)}}=\frac{x^{(n-1)}}{x^{(n)}}, \quad x^{(n)}=\frac{1}{\hat{\mu}_{h}^{(n)}}
$$

- construct the chiral and continuum limit of the lattice y-ratios

$$
y\left(x^{(n)}, \lambda ; \hat{\mu}_{u / d}\right) \equiv \lim _{\hat{\mu}_{\ell} \rightarrow \hat{\mu}_{u / d}} \lim _{a \rightarrow 0} y^{L}\left(x^{(n)}, \lambda ; \hat{\mu}_{\ell}, a\right)=\lambda^{-1} \frac{M_{n u / d}\left(1 / x^{(n)}\right)}{M_{n u / d}\left(1 / \lambda x^{(n)}\right)} \frac{\rho\left(\log \lambda x^{(n)}\right)}{\rho\left(\log x^{(n)}\right)}
$$

[with the short-hand definition $\quad M_{h u / d}(1 / x) \equiv M_{h u / d}\left(1 / x, \hat{\mu}_{u / d}\right)$]

- then

$$
\lim _{x \rightarrow 0^{+}} y\left(x, \lambda ; \hat{\mu}_{u / d}\right)=1
$$

General strategy - II

- Notice that, by truncating ρ in PT at N^{ρ} LL order, one gets

$$
\left.y\left(x, \lambda ; \hat{\mu}_{u / d}\right)\right|_{p}-1 \stackrel{x \sim 0^{+}}{=} \mathrm{O}\left(\frac{1}{(\log x)^{p+1}}\right)
$$

- Taking $\lambda=1.278$ (see below), we successively consider the $N=4 h$-quark masses

$$
\begin{array}{ll}
\hat{\mu}_{h}^{(1)}=1.230 \mathrm{GeV} & \hat{\mu}_{h}^{(2)}=\lambda \hat{\mu}_{h}^{(1)}=1.572 \mathrm{GeV} \\
\hat{\mu}_{h}^{(3)}=\lambda^{2} \hat{\mu}_{h}^{(1)}=2.009 \mathrm{GeV} & \hat{\mu}_{h}^{(4)}=\lambda^{3} \hat{\mu}_{h}^{(1)}=2.568 \mathrm{GeV}
\end{array}
$$

and compute the numbers

$$
y_{p}^{(n)}=\left.y\left(x^{(n)}, 1.278 ; \hat{\mu}_{u / d}\right)\right|_{p}, \quad n=2,3,4 \quad p=0,1,2
$$

- Using the simple ansatz

$$
\left.y\left(x, \lambda ; \hat{\mu}_{u / d}\right)\right|_{p}=1+\eta_{p}^{(1)}\left(\log x, \lambda ; \hat{\mu}_{u / d}\right) x+\eta_{p}^{(2)}\left(\log x, \lambda ; \hat{\mu}_{u / d}\right) x^{2}
$$

one gets the fitting curves $\left(x=1 / \mu_{h}\right)$ flatter and flatter as p increases
$p=0 \mathrm{TL} \rightarrow$ blue dots
$p=1 \mathrm{LL} \rightarrow$ red squares
$\mathrm{p}=2 \mathrm{NLL} \rightarrow$ green triangles

How do we fix λ ?

Intr Form B-phys Obs \& com Conc \& Out

General strategy - III

- Interpolation to $\mu_{h}=\mu_{\mathrm{b}}$ is done through the formula $\left(\hat{\mu}_{h}^{(K+1)}=\lambda^{K} \hat{\mu}_{h}^{(1)}\right)$

$$
\left[y^{(2)} y^{(3)} \cdots y^{(K+1)}\right]_{p}=\lambda^{-K} \frac{M_{h u / d}\left(\hat{\mu}_{h}^{(K+1)}\right)}{M_{h u / d}\left(\hat{\mu}_{h}^{(1)}\right)} \cdot\left[\frac{\rho\left(\log \hat{\mu}_{h}^{(1)}\right)}{\rho\left(\log \hat{\mu}_{h}^{(K+1)}\right)}\right]_{p}
$$

- $M_{h u / d}\left(\hat{\mu}_{h}^{(1)}\right)$ is an input $h \ell$-mass around charm
- $M_{h u / d}\left(\hat{\mu}_{h}^{(K+1)}\right)$ is set equal to M_{B}
- Solving for the integer K gives (λ is slightly p dependent)

$$
\begin{aligned}
& \hat{\mu}_{b}=\lambda^{K_{b}} \hat{\mu}_{h}^{(1)}, \quad K_{b}=6 \\
& \hat{\mu}_{b}^{N_{t}=2}\left(\hat{\mu}_{b}^{N_{t}=2}\right)=4.63(27) \mathrm{GeV}
\end{aligned}
$$

Error budget

- $5 \% \leftarrow$ input $M_{n u / d}\left(\hat{\mu}_{h}^{(1)}\right)$
- $1 \% \leftarrow$ perturbative ρ evaluation
- $1 \% \leftarrow \prod y$ (and K_{b} determination)
- $1 \% \leftarrow$ constancy of η

Intr Form B-phys Obs \& com Conc \& Out

Determining f_{B} and $f_{B_{s}}-I$

- Take

$$
z\left(x, \lambda ; \hat{\mu}_{\ell}\right)=\lambda^{1 / 2} \frac{f_{h \ell}(1 / x)}{f_{h \ell}(1 / x \lambda)} \cdot \frac{C_{A}^{\text {stat }}(\log (x \lambda))}{C_{A}^{\text {stat }}(\log x)} \frac{[\rho(\log x)]^{1 / 2}}{[\rho(\log \lambda x)]^{1 / 2}}
$$

with the short-hand notation

$$
f_{h \ell}(1 / x) \equiv f_{h \ell}\left(1 / x, \hat{\mu}_{\ell}\right)
$$

- inspired by the large h-quark mass limit (in HQET, currents need to be renormalized)

$$
\lim _{x \rightarrow 0^{+}}\left[\frac{\rho(\log x)}{x}\right]^{1 / 2} \frac{f_{n \ell}(1 / x)}{C_{A}^{\operatorname{stat}}(\log x)}=\text { constant } \neq 0
$$

- Then

$$
\lim _{x \rightarrow 0^{+}} z\left(x, \lambda ; \hat{\mu}_{\ell}\right)=1
$$

- At N^{p} LL order

$$
\left.z\left(x, \lambda ; \hat{\mu}_{\ell}\right)\right|_{p}-1 \stackrel{x \sim 0^{+}}{=} \mathrm{O}\left(\frac{1}{(\log x)^{p+1}}\right)
$$

- Similarly as before, try a fit to lattice data of the kind

$$
z\left(x, \lambda, \hat{\mu}_{\ell}\right)=1+\zeta_{1}\left(\log x, \lambda ; \hat{\mu}_{\ell}\right) x+\zeta_{2}\left(\log x, \lambda ; \hat{\mu}_{\ell}\right) x^{2}
$$

Intr Form B-phys Obs \& com Conc \& Out

Determining f_{B} and $f_{B_{s}}-$ II

- We get for

$$
\mu_{\ell}=\mu_{u / d} \quad \text { and } \quad \mu_{\ell}=\mu_{s}
$$

- From the iterative equation ($\mu_{\ell}=\mu_{u / d}$ or $\mu_{\ell}=\mu_{s}$)

$$
\left[z^{(2)} z^{(3)} \cdots z^{(K+1)}\right]_{p}=\lambda^{K / 2} \frac{f_{h \ell}\left(\hat{\mu}_{h}^{(K+1)}\right)}{f_{h \ell}\left(\hat{\mu}_{h}^{(1)}\right)} \cdot\left[\frac{C_{A}^{\text {stat }}\left(\log \hat{\mu}_{h}^{(1)}\right)}{C_{A}^{\text {stat }}\left(\log \hat{\mu}_{h}^{(K+1)}\right)}\left(\frac{\rho\left(\log \hat{\mu}_{h}^{(K+1)}\right)}{\rho\left(\log \hat{\mu}_{h}^{(1)}\right)}\right)^{1 / 2}\right]_{p}
$$

- inserting the measured values of $f_{h \ell}\left(\hat{\mu}_{h}^{(1)}\right)(\ell=u / d$ or $\ell=s)$, one finds at μ_{b}

$$
f_{B}=194(16) \mathrm{MeV} \quad f_{B_{s}}=235(11) \mathrm{MeV}
$$

p-dependence

- Very mild p dependence

Extrapolation - I

- Chiral and continuum extrapolations of $M_{h \ell}\left(\hat{\mu}_{h}^{(1)}\right)$
(SU(2) χ PT @ NLO) \& continuum fit (Roessl '99, RBC ‘08)

$$
M_{h \ell} r_{0}=C_{0}+\left[C_{1}+0 \cdot \log \left(\frac{2 B_{0} \hat{\mu}_{\ell}}{16 \pi^{2} f_{0}^{2}}\right)\right] \hat{\mu}_{\ell} r_{0}+D_{0} \frac{a^{2}}{r_{0}^{2}}
$$

Extrapolation - II

- Chiral and continuum extrapolations of $M_{h e}$-ratios
(SU(2) χ PT @ NLO) \& continuum fit (Roessl '99, RBC ‘08)

$$
M_{h \ell} r_{0}=C_{0}+\left[C_{1}+0 \cdot \log \left(\frac{2 B_{0} \hat{\mu}_{\ell}}{16 \pi^{2} f_{0}^{2}}\right)\right] \hat{\mu}_{\ell} r_{0}+D_{0} \frac{a^{2}}{r_{0}^{2}}
$$

Effective-mass plateau for $M_{h e}$

Extrapolation - III

- Chiral and continuum extrapolations of $f_{h \ell}\left(\hat{\mu}_{h}^{(1)}\right)$
(SU(2) $\chi \mathrm{PT}$ @ NLO) \& continuum fit (Roessl '99, RBC ‘08)

$$
f_{h \ell} r_{0}=C_{0}+\left[C_{1}+\gamma_{1} \cdot \log \left(\frac{2 B_{0} \hat{\mu}_{\ell}}{16 \pi^{2} f_{0}^{2}}\right)\right] \hat{\mu}_{\ell} r_{0}+D_{0} \frac{a^{2}}{r_{0}^{2}}
$$

Extrapolation - IV

- Chiral and continuum extrapolations of $f_{h e}$-ratios (SU(2) χ PT @ NLO) \& continuum fit (Roessl '99, RBC ‘08)

$$
f_{h \ell} r_{0}=C_{0}+\left[C_{1}+\gamma_{1} \cdot \log \left(\frac{2 B_{0} \hat{\mu}_{\ell}}{16 \pi^{2} f_{0}^{2}}\right)\right] \hat{\mu}_{\ell} r_{0}+D_{0} \frac{a^{2}}{r_{0}^{2}}
$$

Fitting coefficients

p	$\eta_{1} r_{0}$	$\eta_{2} r_{0}^{2}$	$\zeta_{1} r_{0}$	$\zeta_{2} r_{0}^{2}$
0	$-0.63(4)$	$1.14(19)$	$1.04(26)$	$-1.97(90)$
1	$-0.30(5)$	$0.70(21)$	$0.69(26)$	$-1.50(87)$
2	$-0.24(5)$	$0.75(22)$	$0.64(25)$	$-1.50(87)$

Table: Best-fit $\eta_{1,2}$ and $\zeta_{1,2}$ coefficients (with statistical errors in parenthesis) in r_{0}-units as obtained from the $\left.y\right|_{p}(x)$ and $\left.z\right|_{p}(x)$ ratios defined above

Summary and Comparison

- cheap method
- works with any kind of fermions
- present ETMC results can be easily improved
- more points in the charm region
- better determination of inputs
- more lattice spacings
- more light masses
- better NP-determination of Z_{P} (in Mtm-LQCD $\hat{\mu}=Z_{P}^{-1} \mu$)
- $N_{f}=2 \rightarrow N_{f}=2+1+1$
- can be employed in other interesting cases ($\left.M_{B_{s}}, B_{B}, B_{B_{s}}, \ldots\right)$
- good consistency with other determinations

Comparison

Rolf \& Sint, hep-ph/0209255, Della Morte et al., 0710.2201 \& 0710.1553, Chetyrkin et al., 0907.2110, Blossier et al., 0810.3145, 0909.3187, 0911.3757

- Charm

$$
\begin{aligned}
& \hat{\mu}_{C}^{N_{f}=5}\left(\hat{\mu}_{C}^{N_{f}=5}\right)=1.28(7) \mathrm{GeV} \text { vs. } \hat{\mu}_{C}^{N_{f}=5}\left(\hat{\mu}_{C}^{N_{f}=5}\right)=1.28(1) \mathrm{GeV} \\
& f_{D}=211(9) \mathrm{MeV} \text { vs. } 197(9) \text { vs. } 206.7 \pm 8.5 \pm\left. 2.5\right|_{\text {exp }} \text { [Rosner \& Stone, 1002.1655] } \\
& f_{D_{s}}=252(7) \mathrm{MeV} \text { vs. } 244(8) \text { vs. } 254.6 \pm\left. 5.9\right|_{\text {exp }} \text { [HFAG 2010] }
\end{aligned}
$$

- Bottom

$$
\begin{aligned}
& \hat{\mu}_{b}^{N_{f}=5}\left(\hat{\mu}_{b}^{N_{f}=5}\right)=4.04(25) \mathrm{GeV} \text { vs. } \hat{\mu}_{b}^{N_{f}=5}\left(\hat{\mu}_{b}^{N_{f}=5}\right)=4.16(02) \mathrm{GeV} \\
& f_{B}=194(16) \mathrm{MeV} \text { vs. } f_{B}=191(14) \\
& f_{B_{s}}=235(11) \mathrm{MeV} \text { vs. } f_{B_{s}}=243(14) \text { vs } f_{B_{s}} \sqrt{B_{B_{s}}}=\left.265(4)\right|_{\text {exp }} \text { [www.utfit.org] }
\end{aligned}
$$

- Mass ratios

$$
\begin{aligned}
& \text { - } \mu_{c}^{R G I, N_{f}=2} / \mu_{b}^{R G I, N_{f}=2}=0.232(13) \\
& {\left[\mu_{c}^{R G I, N_{f}=0}=1.654(45) \mathrm{GeV}\right] /\left[\mu_{b}^{R G I, N_{f}=0}=6.758(86) \mathrm{GeV}\right]=0.245(7)} \\
& \text { - } \mu_{c}^{\overline{M S}, N_{f}=2}(3 \mathrm{GeV}) / \mu_{\mathrm{b}}^{\overline{M S}, N_{f}=2}(10 \mathrm{GeV})=0.274(15) \\
& \mu_{c}^{\overline{M S}, N_{f}=4}(3 \mathrm{GeV}) / \mu_{\mathrm{b}}^{\overline{M S}, N_{f}=5}(10 \mathrm{GeV})=0.273(3)
\end{aligned}
$$

Acknowledgments

I would like to thank

- All people of the ETM Collaboration for discussions
- in particular P. Dimopoulos, R. Frezzotti,
G. Hedoiza, K. Jansen, V. Lubicz, S. Simula
for their help in preparing this seminar
- ... and ...
- all of you for listening

Comparison with the static point - TL

- Static point of $\sqrt{m_{Q}} f_{H 1}\left(m_{Q}\right)$ from
B. Blossier et al. (ETM Collaboration) PoS LATTICE2009:151, 2009 (arXiv:0911.3757)
- $m_{Q}=\hat{\mu}_{h}^{\bar{M} s}$

Intr Form B-phys Obs \& com Conc \& Out Concl Comp Ack

Comparison with the static point - LL

- $m_{Q}=\hat{\mu}_{h}^{\overline{M s}}$

Intr Form B-phys Obs \& com Conc \& Out Concl Comp Ack

Comparison with the static point - NLL

- $m_{Q}=\hat{\mu}_{h}^{\overline{M s}}$

Intr Form B-phys Obs \& com Conc \& Out Concl Comp Ack

Comparison with the static point - TL

- Static point of $\sqrt{m_{Q}} f_{H 1}\left(m_{Q}\right)$ from
B. Blossier et al. (ETM Collaboration) PoS LATTICE2009:151, 2009 (arXiv:0911.3757)
-

$m_{Q}=\hat{\mu}_{h}^{\text {pole }}$

Comparison with the static point - LL

- $m_{Q}=\hat{\mu}_{h}^{\text {pole }}$

Comparison with the static point - NLL

- $m_{Q}=\hat{\mu}_{h}^{\text {pole }}$

On higher twist operators

$$
\begin{gathered}
\hat{R}\left(Q^{2}\right)_{f i} \sim C_{1}^{\left(k_{1}\right)}\left(\alpha_{s}\left(Q^{2} / \mu^{2}\right)\right)\langle f| O_{1}(\mu)|i\rangle+\frac{C_{2}^{\left(k_{2}\right)}\left(\alpha_{s}\left(Q^{2} / \mu^{2}\right)\right)}{\left(Q^{2}\right)^{\Delta}}\langle f| O_{2}(\mu)|i\rangle \\
2 \Delta=\operatorname{dim} O_{2}-\operatorname{dim} O_{1}
\end{gathered}
$$

The following facts are related (Martinelli \& Sachrajda, Nucl. Phys. B476 (1996) 660, hep-ph 9605336)

- Perturbative series are only asymptotic, and terms $\mathrm{O}\left(\alpha_{S}\left(Q^{2} / \mu^{2}\right)^{k+1} \sim \log \left(Q^{2} / \mu^{2}\right)^{-(k+1)}\right.$ are neglected
- Higher twisted terms are kept which are exponentially small compared to neglected perturbative contributions. Indeed

$$
\mathrm{e}^{-4 \pi \Delta / \beta_{0} \alpha_{s}\left(Q^{2} / \mu^{2}\right)} \sim \mathrm{e}^{-\Delta \log \left(Q^{2} / \mu^{2}\right)} \sim\left(\frac{\mu^{2}}{Q^{2}}\right)^{\Delta}
$$

- Perturbative series (are supposed to) develop renormalon ambiguities
- O_{2} mixes with O_{1} with a power divergent coefficient

