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Introduction

Gauge-Higgs unification

Mz=FE X Sl
—

AM { A,u ) A5 }
~ ~ 'y
5d gauge field W: 4d gauge field H: 4d Higgs

[1 Higgs potential is generated by quantum corrections and can trigger spontaneous
symmetry breaking (Hosotani mechanism)

5d gauge symmetry keeps the potential finite
Triviality requires a cut-off — lattice

Does a continuum limit exist non-perturbatively? —— meanfield, Monte Carlo

O O

Dimensional reduction?
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Meanfield results for torus geometry

Meanfield expansion [Drouffe and Zuber, 1983]
SU(N) gauge links U are replaced by N X N complex matrices V' and Lagrange
multipliers H

(O[U]) = %/DV/DH O[V]e ZeftV-H]
Sur = Sa[V] + w(H) + (1/N)Re tr{HV}, e 0D = / DU M/NRetr{UH)
Saddle point solution (background)
H— H1, V — V1, S|V, H] =minimal
Corrections calculated from Gaussian fluctuations
H=H+h and V=V 4w

Covariant gauge fixing is imposed on v [Riihl, 1982]
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Meanfield results for torus geometry

Our setup: periodic boundary conditions
Ly x L? x Ls lattice, SU (2) gauge theory with anisotropic plaquette action

Sw = g[l Z tr(l — Up> —|—75d2ptr(1 — Up)] , Y= & (tree level)

R 4d—p as

The background is vy along directions . = 0, 1, 2, 3 and w5 along the extra dimension
Observables

[1 Static potential Vy along the 4d hyperplanes and V5 along the extra dimension
[0 Higgs (1st order) my and gauge boson (2nd order) myy masses
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Meanfield results for torus geometry

Phase diagram
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[Irges and Knechtli, 2009]

The deconfined phase (v # 0,
U5 # 0) has a rich structure:

0 at v >> 1 (compact
phase) V4 at short distances
is 4d Coulomb

[0 at v < 1 there is a line of
2nd order phase transitions;
close to the layered phase V4
is 4d Coulomb again, we call
it the “d-compact” phase
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Meanfield results for torus geometry

Spectrum
asmp (B, ) does not depend at 1st order on the geometry

a 4mW(L)
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The gauge boson mass at 2nd order depends
significantly only on L

asmwy =cp/L, cp=12.5

Extrapolation . — oo is consistent with zero
(we cannot exclude a exponentially small mass)
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Meanfield results for torus geometry

The second order phase transition separating the d-compact phase from the layered phase:

asmp ~ (1 — B./B)"

0.8

v = 1/2: 4d Ising model, confirms [Svetitsky

y=0.25

o mfdata

fit v=0.4982
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B

and Yaffe, 1982]
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B

v = 1/4, the mass does never go to zero
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Meanfield results for torus geometry

Lines of constant physics [Irges and Knechtli, 2010]

(L=Lr=Ls — o0, B — B¢l <= continuum limit

p=myy /m

A physical scale 7 is defined through r*F (1) |,=r, = s = 0.2 with F' = V.
Fixing v = 0.55:

y=055,s=0.2 y=0.55, s=0.2
T T T 30 T T
o p=0.4
| = p=0.625 | —
1451 ) % S
oo
-
1.4¢ % f
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my is independent on p p determines the physical box size [
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Meanfield results for torus geometry

Line of constant physics v = 0.55, p = 0.625: dimensional reduction

F (/F,(r)

y=0.55,p=0.625,s=0.2
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The force F4 has a physical nonzero
continuum limit

F5/Fy tends to zero in the
continuum limit = localization

Dimensional reduction to 4d Georgi—
Glashow model. It must be in the
confined phase
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Meanfield results for torus geometry

Line of constant physics v = 0.55, p = 0.625: confinement

V4(7"):,u—|—07“—|—colog(r)—l—%—|—2 r/rs > 1

)
72

Perform local fits, there are simultaneous plateaus for all four coefficients

Continuum limit of plateau values in the range r/rs € [2.15, 2.80]:
y=0.55 , p=0.625 , s = 0.2 y=0.55 , p=0.625 , s = 0.2

~0.25 0.06
o  mf data
~0.255| linear fit 0.055|
*  c.l.
— — — 4d Luescher coeff.
7))
ot -0.26 S 0.05}
(@}
-0.265+ 0.045r o mf data| ]
linear fit
* c.l.
~0.274 ‘ ‘ ‘ ‘ ‘ 0.04L ‘ ‘
0 1 2 3, 4 5 6 0 1 3, 4 5 6
(a 4/rs) 107 (a 4/rs) %107
We get the universal 4d value —7r /12! There is a positive string tension
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Meanfield results for torus geometry

Line of constant physics v = 0.55, p = 0.625: confinement

Vi(r) :u+ar+colog(r)—l—%—|—%, r/rs > 1

Continuum limit of plateau values in the range r/rs € [2.15, 2.80]:
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A large negative log term is present (origin?)
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There are also higher order corrections
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Monte Carlo results for torus geometry: 3, = 3/, 85 = 8~
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Monte Carlo results for torus geometry

Bulk phase transition at v < 1: 10* x 6 at 8, = 2.33:

1.3 T T T T
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P = (t pu)-plaquette: looks like there is  and its susceptibility

no hysteresis . . . xp = LpL?Ls (P — (P))?) has one
peak
(similar results for the 5 plaquette)
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Monte Carlo results for torus geometry

But: larger volume 14* x 8

at B4 = 2.33:
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(t p)—plaquette: there is a strong hysteresis
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and the susceptibility has a double peak
= first order phase transition
(similar results for the 5 plaquette)

0.941
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Monte Carlo results for torus geometry

[1 We confirm [Ejiri, Kubo and Murata, 2000; de Forcrand, Kurkela and Panero, 2010]:
— in infinite volume there is only a first order bulk phase transition (shaded line);
—at v > 1 there are second order phase transitions due to compactification

[ We located second order phase transitions when
v < land Ly < L, L5

[1 We can accurately compute the static potential (using 2 levels of 4d spatial HYP
smearing), examples at v < 1:
— 32% x L5 = 16 lattice in the deconfined phase at 85 = 1.24, 8, = 2.10
~32° X L, = 4 x L; = 16 lattice at 85 = 0.5, B4 = 2.4 close to second order

phase transition

14
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Monte Carlo results for torus geometry
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Yiree = 0.45644
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Four-dimensional confined phase
The fitted coefficient c¢; of the 1/r term

agrees with —7 /12 = —0.2618 of the 4d
universal Luscher term
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The orbifold case

Orbifold S*/Z;

S': x5 € (=R, wR]; Reflection

R: z=(xy,x5) — zZ=(xu, —T5)

Av(z) — avAm(z), a,=1, as=—1

Fixed points z = z << x5 = 0 and x5 = ™R define 4d boundaries

Z.5 projection for gauge fields

RAy = gAmg ', g € centre of SU(N)
ROsAy = gOsAmg |

Parities of SU(IN') generators

1 1

gT"g~ ' = T" (unbroken), ¢gT%g " = —T" (broken)

16
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The orbifold case

Dirichlet boundary conditions at z = 2z

1 1

A, =9gA,g9 and As = —gAsg

= Only even components AZ and Ag are # 0: breaking of the gauge symmetry

G = SU(p+q) =2 H = SU(p) x SU(q) x U(1)

depending on the choice of g

0 SU(2) =2+ U(1) with g = diag(—4,4): even fields
Ai: “photon/Z"
Aé’Q: complex “Higgs”

0 SU(3) =2 SU(2) x U(1) with g = diag(—1, —1,1): even fields
Ai’2’3’8: “ohoton,Z and W ="
A§’5’6’7: doublet of complex “Higgs" in the fundamental representation of SU(2)

17
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The orbifold case

Mass of the Higgs zero mode h = Ag,(())

[J zero at tree level (5d gauge invariance)

[1 1-loop vacuum polarization

[von Gersdorff, Irges and Quiros, 2002 and 2003; Cheng, Matchev and Schmaltz, 2002;
Del Debbio, Kerrane and Russo, 2009 (S*)]

[0 finite (bulk) mass!

[0 logarithmic (bulk-boundary) corrections from 2-loops
[von Gersdorff and Hebecker, 2005]

18
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The orbifold case

Hosotani mechanism [Hosotani, 1983; 1989]
a = g5<Aé>R

« is determined by dynamics:

SU(N) 22 12587

[0 KK masses for SU(2) [Kubo, Lim and Yamashita, 2002]
AZ’(O) (Z2) : (mzR)* = o

Aé’ﬂo) (Higgs) : (ma,R)* =a?, 0
higher KK modes :  (m,R)?> =n?, (n+ a)?

[0 1-loop Coleman—Weinberg (CW) scalar potential V'

/[D¢]eSE ~e V= -
/det[—0,0, + M?]

[0 Take D = 4, use KK masses m,, and Poisson resummation

19
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The orbifold case

9 f: cos(2mma)

Minima at @ = apin = 0 mod Z = H = U(1) unbroken

Next step in perturbation theory: introduce fermions to get SSB. We go on the lattice . ..

20
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The orbifold case

Lattice action: SU(2), g = —io®, Ly x L® x (L + 1) lattice

S%I}b- — g[ Zw(ptr(l— p)+’)’ztr(1_Up>]

4d P 5d—p

p in the boundary

1
_ 2
w(p) 1 in all other cases.

—

[0 Periodic boundary conditions (b.c.) in 4d. In the 5th dimension, only Dirichlet b.c.

A, =gA,g " — Uz,p) =gU(z,p) g " atns =0, L;

O No boundary counterterm tr{[As, g]*}

[von Gersdorff, Irges and Quiros, 2003; Irges and F.K., 2005]

[1 Meanfield: background

v(n,p) = ve(ns)1, v(n,b) = vo(ns +1/2)1

Twisted orbifold: vev for v'(n, 5) is equivalent to S'/(Zs x Z) orbifold on circle of
radius 2R [Scrucca, Serone and Silvestrini, 2003]

21



The orbifold case
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— Higgs mass is finite close to 1-loop value
— Z-boson is massive: there is spontaneous

symmetry breaking (SSB)
[Irges and F.K., 2007]

Contradiction
(no SSB) is resolved if cut-off effects
included

are

with perturbation theory

in the Coleman—Weinberg

potential calculation
[Irges, F.K. and Luz, 2007]
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The orbifold case

Meanfield computation of the potential along the extra dimension

B=1.7, y=1, N5=16

Xxéég@&é%@@
=]

=1

o  MC data
tree level meanfield

8

rla

15

]

asVs(r) = —1In[vg(0)vo(ns)]

ns = r/as

potential barrier at tree level
good agreement with Monte Carlo

compute corrections in the meanfield,
study behavior of the barrier as Ls
grows, localization?

23
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Outlook

Meanfield:

[1 Convergence of the meanfield expansion: second order correction to the Higgs mass
(ongoing)
[J Spontaneous symmetry breaking in the meanfield laboratory (ongoing)

Monte Carlo:

[0 Map of the phase diagram on the torus, order of the phase transition and dimensional
reduction for v < 1 (ongoing)

[0 Spectrum, orbifold boundary conditions, SU (3)

. in order to be ready with predictions when first LHC results will come!
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