The meanfield laboratory to study five-dimensional gauge theories

Francesco Knechtli
Bergische Universität Wuppertal with Nikos Irges and Antonio Rago

Future directions in lattice gauge theory - LGT10, CERN, 29 July 2010
O Introduction
O Meanfield results for torus geometry
O Monte Carlo results for torus geometry
O The orbifold case
O Outlook

Introduction

Gauge-Higgs unification

O Higgs potential is generated by quantum corrections and can trigger spontaneous symmetry breaking (Hosotani mechanism)
O 5d gauge symmetry keeps the potential finite
O Triviality requires a cut-off \longrightarrow lattice
O Does a continuum limit exist non-perturbatively? \longrightarrow meanfield, Monte Carlo
O Dimensional reduction?

Meanfield results for torus geometry

Meanfield expansion [Drouffe and Zuber, 1983]
$S U(N)$ gauge links U are replaced by $N \times N$ complex matrices V and Lagrange multipliers H

$$
\begin{aligned}
& \langle\mathcal{O}[U]\rangle=\frac{1}{Z} \int \mathrm{D} V \int \mathrm{D} H \mathcal{O}[V] \mathrm{e}^{-S_{\mathrm{eff}}[V, H]} \\
& S_{\text {eff }}=S_{G}[V]+u(H)+(1 / N) \operatorname{Retr}\{H V\}, \quad \mathrm{e}^{-u(H)}=\int \mathrm{D} U \mathrm{e}^{(1 / N) \operatorname{Retr}\{U H\}}
\end{aligned}
$$

Saddle point solution (background)

$$
H \longrightarrow \bar{H} 1, \quad V \longrightarrow \bar{V} 1, \quad S_{\mathrm{eff}}[\bar{V}, \bar{H}]=\text { minimal }
$$

Corrections calculated from Gaussian fluctuations

$$
H=\bar{H}+h \quad \text { and } \quad V=\bar{V}+v
$$

Covariant gauge fixing is imposed on v [Rühl, 1982]

Meanfield results for torus geometry

Our setup: periodic boundary conditions
$L_{T} \times L^{3} \times L_{5}$ lattice, $S U(2)$ gauge theory with anisotropic plaquette action

$$
S_{W}=\frac{\beta}{4}\left[\frac{1}{\gamma} \sum_{4 \mathrm{~d}-\mathrm{p}} \operatorname{tr}\left(1-U_{p}\right)+\gamma \sum_{5 \mathrm{~d}-\mathrm{p}} \operatorname{tr}\left(1-U_{p}\right)\right], \quad \gamma=\frac{a_{4}}{a_{5}} \text { (tree level) }
$$

The background is \bar{v}_{0} along directions $\mu=0,1,2,3$ and \bar{v}_{5} along the extra dimension Observables

Static potential V_{4} along the $4 d$ hyperplanes and V_{5} along the extra dimension
O Higgs (1st order) m_{H} and gauge boson (2nd order) m_{W} masses

Meanfield results for torus geometry

Phase diagram

[Irges and Knechtli, 2009]

The deconfined phase $\left(\bar{v}_{0} \neq 0\right.$, $\bar{v}_{5} \neq 0$) has a rich structure:
\bigcirc at $\gamma \gg 1$ (compact phase) V_{4} at short distances is 4d Coulomb
O at $\gamma<1$ there is a line of 2nd order phase transitions; close to the layered phase V_{4} is 4 d Coulomb again, we call it the "d-compact" phase

Meanfield results for torus geometry

Spectrum

$a_{4} m_{H}(\beta, \gamma)$ does not depend at 1st order on the geometry

The gauge boson mass at 2 nd order depends significantly only on L

$$
a_{4} m_{W}=c_{L} / L, \quad c_{L}=12.5
$$

Extrapolation $L \rightarrow \infty$ is consistent with zero (we cannot exclude a exponentially small mass)

Meanfield results for torus geometry

The second order phase transition separating the d -compact phase from the layered phase:

$$
a_{4} m_{H} \sim\left(1-\beta_{c} / \beta\right)^{\nu}
$$

$\nu=1 / 2$: 4d Ising model, confirms [Svetitsky and Yaffe, 1982]

Meanfield results for torus geometry

Lines of constant physics [Irges and Knechtli, 2010]

$$
\left.\left(L=L_{T}=L_{5} \longrightarrow \infty, \quad \beta \longrightarrow \beta_{c}\right)\right|_{\gamma, \rho=m_{W} / m_{H}} \Longleftrightarrow \text { continuum limit }
$$

A physical scale r_{s} is defined through $\left.r^{2} F(r)\right|_{r=r_{s}}=s=0.2$ with $F=V_{4}^{\prime}$. Fixing $\gamma=0.55$:

m_{H} is independent on ρ

ρ determines the physical box size l

Meanfield results for torus geometry

Line of constant physics $\gamma=0.55, \rho=0.625$: dimensional reduction

The force F_{4} has a physical nonzero continuum limit

O F_{5} / F_{4} tends to zero in the continuum limit \Rightarrow localization
O Dimensional reduction to 4d GeorgiGlashow model. It must be in the confined phase

Meanfield results for torus geometry

Line of constant physics $\gamma=0.55, \rho=0.625$: confinement

$$
V_{4}(r)=\mu+\sigma r+c_{0} \log (r)+\frac{c_{1}}{r}+\frac{c_{2}}{r^{2}}, \quad r / r_{s}>1
$$

Perform local fits, there are simultaneous plateaus for all four coefficients
Continuum limit of plateau values in the range $r / r_{s} \in[2.15,2.80]$:

We get the universal 4 d value $-\pi / 12$!

There is a positive string tension

Meanfield results for torus geometry

Line of constant physics $\gamma=0.55, \rho=0.625$: confinement

$$
V_{4}(r)=\mu+\sigma r+c_{0} \log (r)+\frac{c_{1}}{r}+\frac{c_{2}}{r^{2}}, \quad r / r_{s}>1
$$

Continuum limit of plateau values in the range $r / r_{s} \in[2.15,2.80]$:

A large negative log term is present (origin?)

There are also higher order corrections

LGT10, CERN, 29 July 2010
Monte Carlo results for torus geometry: $\beta_{4}=\beta / \gamma, \beta_{5}=\beta \gamma$

Monte Carlo results for torus geometry

Bulk phase transition at $\gamma<1: 10^{4} \times 6$ at $\beta_{4}=2.33$:

$P=(t \mu)$-plaquette: looks like there is no hysteresis . . .

and its susceptibility
$\chi_{P}=L_{T} L^{3} L_{5}\left\langle(P-\langle P\rangle)^{2}\right\rangle$ has one peak
(similar results for the 5μ plaquette)

Monte Carlo results for torus geometry

But: larger volume $14^{4} \times 8$ at $\beta_{4}=2.33$:

$(t \mu)$-plaquette: there is a strong hysteresis

and the susceptibility has a double peak \Rightarrow first order phase transition
(similar results for the 5μ plaquette)

Monte Carlo results for torus geometry

O We confirm [Ejiri, Kubo and Murata, 2000; de Forcrand, Kurkela and Panero, 2010]:

- in infinite volume there is only a first order bulk phase transition (shaded line);
- at $\gamma>1$ there are second order phase transitions due to compactification

O We located second order phase transitions when $\gamma<1$ and $L_{T} \ll L, L_{5}$
O We can accurately compute the static potential (using 2 levels of 4d spatial HYP smearing), examples at $\gamma<1$:
$-32^{4} \times L_{5}=16$ lattice in the deconfined phase at $\beta_{5}=1.24, \beta_{4}=2.10$
$-32^{3} \times L_{z}=4 \times L_{5}=16$ lattice at $\beta_{5}=0.5, \beta_{4}=2.4$ close to second order phase transition

Monte Carlo results for torus geometry

Five-dimensional Coulomb phase

Four-dimensional confined phase
The fitted coefficient c_{1} of the $1 / r$ term agrees with $-\pi / 12=-0.2618$ of the 4 d universal Lüscher term

The orbifold case

Orbifold S^{1} / \mathbb{Z}_{2}

$S^{1}: x_{5} \in(-\pi R, \pi R] ;$ Reflection

$$
\begin{aligned}
\mathcal{R}: z=\left(x_{\mu}, x_{5}\right) & \rightarrow \bar{z}=\left(x_{\mu},-x_{5}\right) \\
A_{M}(z) & \rightarrow \alpha_{M} A_{M}(\bar{z}), \quad \alpha_{\mu}=1, \alpha_{5}=-1
\end{aligned}
$$

Fixed points $z=\bar{z} \Leftrightarrow x_{5}=0$ and $x_{5}=\pi R$ define 4d boundaries
\mathbb{Z}_{2} projection for gauge fields

$$
\begin{aligned}
\mathcal{R} A_{M} & =g A_{M} g^{-1}, \quad g^{2} \in \text { centre of } S U(N) \\
\mathcal{R} \partial_{5} A_{M} & =g \partial_{5} A_{M} g^{-1}
\end{aligned}
$$

Parities of $S U(N)$ generators

$$
g T^{a} g^{-1}=T^{a}(\text { unbroken }), \quad g T^{\hat{a}} g^{-1}=-T^{\hat{a}}(\text { broken })
$$

The orbifold case

Dirichlet boundary conditions at $z=\bar{z}$

$$
A_{\mu}=g A_{\mu} g^{-1} \quad \text { and } \quad A_{5}=-g A_{5} g^{-1}
$$

\Rightarrow Only even components A_{μ}^{a} and $A_{5}^{\hat{a}}$ are $\neq 0$: breaking of the gauge symmetry

$$
G=S U(p+q) \xrightarrow{\mathbb{Z}_{2}} \mathcal{H}=S U(p) \times S U(q) \times U(1)
$$

depending on the choice of g
$\bigcirc S U(2) \xrightarrow{\mathbb{Z}_{2}} U(1)$ with $g=\operatorname{diag}(-i, i):$ even fields
$A_{\mu}^{3}:$ "photon $/ Z$ "
$A_{5}^{1,2}$: complex "Higgs"
$\bigcirc S U(3) \xrightarrow{\mathbb{Z}_{2}} S U(2) \times U(1)$ with $g=\operatorname{diag}(-1,-1,1)$: even fields
$A_{\mu}^{1,2,3,8}$: "photon, Z and $W^{ \pm "}$
$A_{5}^{4,5,6,7}$: doublet of complex "Higgs" in the fundamental representation of $S U(2)$

The orbifold case

Mass of the Higgs zero mode $h=A_{5}^{\hat{a},(0)}$
O zero at tree level (5d gauge invariance)
O 1-loop vacuum polarization
[von Gersdorff, Irges and Quiros, 2002 and 2003; Cheng, Matchev and Schmaltz, 2002;
Del Debbio, Kerrane and Russo, $2009\left(S^{1}\right)$]

$$
\left(m_{H} R\right)^{2}=\frac{9 N \zeta(3)}{32 \pi^{4}} g_{4}^{2}, \quad g_{4}^{2}=\frac{g_{5}^{2}}{2 \pi R}
$$

O finite (bulk) mass!
O logarithmic (bulk-boundary) corrections from 2-loops
[von Gersdorff and Hebecker, 2005]

The orbifold case

Hosotani mechanism [Hosotani, 1983; 1989]

$$
\alpha=g_{5}\left\langle A_{5}^{1}\right\rangle R
$$

α is determined by dynamics:

$$
S U(N) \xrightarrow{\mathbb{Z}_{2}} \mathcal{H} \xrightarrow{S S B} ?
$$

O KK masses for $S U(2)$ [Kubo, Lim and Yamashita, 2002]

$$
\begin{aligned}
A_{\mu}^{3,(0)}(Z): & \left(m_{Z} R\right)^{2}=\alpha^{2} \\
A_{5}^{1,2(0)}(\mathrm{Higgs}): & \left(m_{A_{5}} R\right)^{2}=\alpha^{2}, 0
\end{aligned}
$$

$$
\text { higher KK modes : } \quad\left(m_{n} R\right)^{2}=n^{2},(n \pm \alpha)^{2}
$$

O 1-loop Coleman-Weinberg (CW) scalar potential V

$$
\int[\mathrm{D} \phi] \mathrm{e}^{-S_{\mathrm{E}}} \sim \mathrm{e}^{-V} \equiv \frac{1}{\sqrt{\operatorname{det}\left[-\partial_{\mu} \partial_{\mu}+M^{2}\right]}}
$$

O Take $D=4$, use KK masses m_{n} and Poisson resummation

The orbifold case

$$
V=-\frac{9}{64 \pi^{6} R^{4}} \sum_{m=1}^{\infty} \frac{\cos (2 \pi m \alpha)}{m^{5}}
$$

Minima at $\alpha=\alpha_{\min }=0 \bmod \mathbb{Z} \Rightarrow \mathcal{H}=U(1)$ unbroken
Next step in perturbation theory: introduce fermions to get SSB. We go on the lattice . . .

The orbifold case

Lattice action: $S U(2), g=-i \sigma^{3}, L_{T} \times L^{3} \times\left(L_{5}+1\right)$ lattice

$$
\begin{aligned}
S_{W}^{\mathrm{orb}} & =\frac{\beta}{4}\left[\frac{1}{\gamma} \sum_{4 \mathrm{~d}-\mathrm{p}} w(p) \operatorname{tr}\left(1-U_{p}\right)+\gamma \sum_{5 \mathrm{~d}-\mathrm{p}} \operatorname{tr}\left(1-U_{p}\right)\right] \\
w(p) & = \begin{cases}\frac{1}{2} & p \text { in the boundary } \\
1 & \text { in all other cases. }\end{cases}
\end{aligned}
$$

O Periodic boundary conditions (b.c.) in 4d. In the 5th dimension, only Dirichlet b.c.

$$
A_{\mu}=g A_{\mu} g^{-1} \quad \longrightarrow \quad U(z, \mu)=g U(z, \mu) g^{-1} \quad \text { at } n_{5}=0, L_{5}
$$

O No boundary counterterm $\operatorname{tr}\left\{\left[A_{5}, g\right]^{2}\right\}$ [von Gersdorff, Irges and Quiros, 2003; Irges and F.K., 2005]
O Meanfield: background

$$
v(n, \mu)=\bar{v}_{0}\left(n_{5}\right) 1, \quad v(n, 5)=\bar{v}_{0}\left(n_{5}+1 / 2\right) 1
$$

Twisted orbifold: vev for $v^{1}(n, 5)$ is equivalent to $S^{1} /\left(\mathbf{Z}_{2} \times \mathbf{Z}_{2}^{\prime}\right)$ orbifold on circle of radius $2 R$ [Scrucca, Serone and Silvestrini, 2003]

The orbifold case

- Higgs mass is finite close to 1-loop value
- Z-boson is massive: there is spontaneous symmetry breaking (SSB)
[Irges and F.K., 2007]

Contradiction with perturbation theory (no SSB) is resolved if cut-off effects are included in the Coleman-Weinberg potential calculation
[Irges, F.K. and Luz, 2007]

The orbifold case

Meanfield computation of the potential along the extra dimension

$$
\begin{aligned}
a_{4} V_{5}(r) & =-\ln \left[\bar{v}_{0}(0) \bar{v}_{0}\left(n_{5}\right)\right] \\
n_{5} & =r / a_{5}
\end{aligned}
$$

O potential barrier at tree level
O good agreement with Monte Carlo
O compute corrections in the meanfield, study behavior of the barrier as L_{5} grows, localization?

Outlook

Meanfield:

O Convergence of the meanfield expansion: second order correction to the Higgs mass (ongoing)
O Spontaneous symmetry breaking in the meanfield laboratory (ongoing)

Monte Carlo:

O Map of the phase diagram on the torus, order of the phase transition and dimensional reduction for $\gamma<1$ (ongoing)
O Spectrum, orbifold boundary conditions, $S U(3)$
... in order to be ready with predictions when first LHC results will come!
Thanks to:

O Funding agencies: DFG (A. Rago), Alexander von Humboldt Foundation (N. Irges)
O Computing resources: RRZK University of Cologne, University of Wuppertal

