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I. Motivation

Questions

QCD Phase Diagram
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Issues and Questions

√

QCD at nonzero chemical potential has a sign problem and an overlap problem.
√

Can we quantify the sign problem and overlap problem, and determine it
dependence on the parameters of the phase diagram?

√

Are there regions of phase space or observables for which these problems become
manageable?

√

Will it ever be possible to access interesting physics related to the existence of a
Fermi surface by lattice QCD methods?

√

Is the sign problem a fundamental problem rather than a technical problem? ‘
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QCD Partition Function

The QCD partition at temperature 1/β and quark chemical potential µ is given by

ZQCD(µ, β) =
X

k

e−β(Ek−µNk),

where the sum is over all states with energy Ek and quark number Nk .
√

Because of charge conjugation symmetry, ZQCD(µ, β) is an even function of µ .
√

ZQCD(µ, β) is expected to have a well-defined high-temperature expansion in
powers of µ2/T 2 .

√

Interesting effects related to the formation of a Fermi-sphere cannot be obtained
from this expansion.

√

This partition function can be rewritten as a Euclidean quantum field theory

ZQCD = 〈
NfY

k

det(D +mk + µkγ0)〉YM.

Dirac

operator

quark mass

matrix

imaginary

vector potential
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QCD Phase Diagram

The high temperature expansion of the free energy can be obtained by a Taylor
expansion (Allton-et-al-2003, Gavai-Gupta-2003), reweighting (Fodor-Katz-2002) or from an
extrapolation from imaginary µ (de Forcrand-Philipsen-2002, D’Elia-Lombardo-2002).

Τ

critical endpoint

〈q̄q〉 6= 0〈q̄q〉 6= 0

〈qq〉 6= 0

µ

〈q̄q〉 = 0

µ = mN/3

Schematic QCD phase diagram.

To get access to physics related to
the formation of a Fermi surface one
has to confront the sign problem.

180 MeV

300 MeV

confined

deconfined

superconductingB = 1
2

crystal
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III. Sign Problem

Average Phase Factor

Distribution of the Phase
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Sign Problem for µ 6= 0

Because the Dirac operator at nonzero µ is nonhermitean, the fermion determinant is
complex

det(D + µγ0 +m) = eiθ|det(D + µγ0 +m)|.

The fundamental problem is that the average phase factor may vanish in the
thermodynamic limit, so that Monte-Carlo simulations are not possible (sign problem).

The severity of the sign problem can be measured by the ratio

〈e2iθ〉1+1∗ ≡ 〈det2(D +m+ µγ0)〉
〈| det(D +m+ µγ0)|2〉 ∼ e

−V (FNf =2−Fpq)
.

full QCD
partition function

phase quenched
partition function

The phase quenched QCD partition function can be written as

Z|QCD| = 〈| det(D +m+ µγ0)|2〉 = 〈det(D +m+ µγ0) det(D +m− µγ0)〉.

Because of this it can also be interpreted as QCD at isospin chemical potential µI = µ .
Alford-Kapustin-Wilczek-1999
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Phase Factor and Dirac Eigenvalues

det(D + m + µγ0) = eiθ| det(D + m + µγ0)|

∏
k(λk + m) phase factor

Toussaint-1990

Scatter plot of Dirac eigenvalues
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quark mass m

cm

Barbour et al. 1986

m < mc then 〈eiθ〉 ∼ 0
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Phase Diagram and Average Phase Factor
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Lattice results showing contour lines
with equal variance of the phase of the
fermion determinant.

Allton-et al-2005, Splittorff-2006
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JV-2008
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The Distribution of Phase

Both within one-loop chiral perturbation theory and in one-dimensional QCD we find for
the distribution of the phase:

√

µ < mπ/2 : ρ(θ) is a periodicized Gaussian

〈ρ(θ)〉1+1 =
1√

2π∆G0
e
−

(θ−i∆G)2

∆G .

one-loop chPT integral

√

µ > mπ/2 : ρ(θ) is a periodicized Lorentzian
Lombardo-Splittorff-JV-2009
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f
/4)Im[ln(det M)]
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Quenched distribution, Ejiri-2009
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III. Overlap Problem

Overlap Problem

Distribution of the Baryon Number Density
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Overlap Problem

It is possible to put the phase factor in the observable and use gauge field configurations
generated by Z|QCD| (known as reweighting).

This might introduce the overlap problem, namely that observables for the ensemble that
is generated seem to converge to the wrong value.

For example, the chiral condensate is close to the phase quenched value for each
separate gauge field configuration

1

V
Tr

1

D + µγ0 +m
= Σ|QCD| + δΣ,

with δΣ ≪ Σ|QCD| for a finite ensemble, whereas the true value of the condensate is
reached from rare but very large fluctuations, many orders of magnitude bigger than a
typical value.
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The Baryon Number Density

nB =
1

V
Tr

1

γ0(D +m) + µ
.

It satisfies the charge conjugation relation

n∗
B(µ) = −nB(−µ).

Therefore nB generally has a nonzero real and imaginary part.

Re(nB) =
1

2
[nB(µ) − nB(−µ)] = lim

n→0

1

2nV

d

dµ
detn(γ0(D +m) + µ)detn(γ0(D +m) − µ),

Im(nB) =
1

2i
[nB(µ) + nB(−µ)] = lim

n→0

1

2inV

d

dµ

detn(γ0(D +m) + µ)

detn(γ0(D +m) − µ)
.

Therefore, 〈Im(nB)〉 = 〈θ〉 so that 〈Im(nB)〉1+1∗ = 0 and 〈Im(nB)〉1+1∗ = iνI

For QCD with, say with Nf = 2 , we know that at low temperatures

〈nB〉1+1 = 0 for µ < mN/3.
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Expectation values ofnB for µ < mπ/2

To one loop order in chiral perturbation theory we find

〈RenB〉1+1∗ = νI ,

〈RenB〉1+1 = νI ,

〈ImnB〉1+1∗ = 0,

〈ImnB〉1+1 = iνI .

It it possible to evaluate all moments of both the real and the imaginary parts of the
baryon density. Their distribution is a Gaussian with a width given by the sum and
difference of the isospin number and the baryon number susceptibility, respectively.

Lombardo-Splittorff-JV-2009
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Distribution of nB for µ < mπ/2

*

)Re(n

V
1

1/2~

0 ~O(V
1+1

ν o)I

1+1

B

Distribution of the real part of the baryon number density for two

dynamical fermions for full QCD (green) and phase quenched

QCD (red).

I)Im(n
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1+1
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B

Distribution of the imaginary part of the baryon density.

νI =
m2

πT

π2

∞X

n=1

K2( mπn
T

)

n
sinh

2µn

T
.
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Distribution of nB for µ < mπ/2
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Distribution of the real part of the baryon number density for two

dynamical fermions for full QCD (green) and phase quenched

QCD (red).
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B

Distribution of the imaginary part of the baryon density.

νI =
m2

πT

π2

∞X

n=1

K2( mπn
T

)

n
sinh

2µn

T
.

〈nB〉1+1 = 〈Re(nB)〉1+1 + i〈Im(nB)〉1+1 = νI + iiνI = 0.
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Distribution of nB for µ > mπ/2
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Spectrum of γ0(D + m)

For µ > mπ/2 moments of the baryon number diverge due to eigenvalues close to µ .
For the p -th moment we obtain after excluding a disc around µ with radius ǫ ,

〈|n|2p〉1+1∗ ∼ ǫ2p−4.

Therefore the distribution of |n| has a power tail ( 1/|n|5 in this case).

It becomes virtually impossible to sample the baryon number.
Lombardo-Splittorff-JV-2009
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VI. Teflon Plated Observables

Infrared Dominance of the Phase Factor

Correlations with Phase Factor
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Infrared Dominance of the Phase Factor

Both in the ǫ and p domain the mass and chemical potential dependence of QCD and
QCD like partition functions can be obtained from chiral perturbation theory.

Therefore the average phase factor in this domain is determined by chPT, or in QCD, by
the infrared part of the Dirac spectrum

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
mΣV

1

1.1

1.2

1.3

<
ex

p(
2i

θ(
iµ

))
>

<Φ+−>
<Φ−+>

Nf=0  8
4
  µFV

1/2
=0.159  ΣV=1039

“Phase” of the fermion determinant
for imaginary chemical potential.

Splittorff-Svetitsky-2007

Analytical continuation of average phase fac-
tor:
fi

det(D + iµ)

det(D − iµ)

fl

= 1 − 4µ̂2I0(m̂)K0(m̂).

Here, m̂ = mV Σ and µ̂2 = µ2F 2
πV . The

analytical result has been obtained in the mi-
croscopic domain
Damgaard-Splittorff-2006, Splittorff-JV 2007.

Phase of the Fermion Determinant, CERN, July 2010 – p. 21/30



Quest for Teflon Plated Observables

√

Observables that are not sensitive to the infrared part of the Dirac spectrum can be
measured in QCD at nonzero chemical potential.

More generally, these are observables that have no correlations with the phase factor,

〈Oe2iθ〉|QCD|
| {z }

= 〈O〉|QCD|〈e2iθ〉|QCD|
| {z }

.

Then

〈O〉QCD = 〈O〉|QCD|.

Examples:
√

Chiral condensate for µ < mπ/2 and very low temperatures.√
Baryon density for T & Tco .√
Tco(µ) Allton-et al-2002

There is no sign problem or overlap problem but do we learn anything about QCD at
nonzero chemical potential?
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Correlators in Chiral Perturbation Theory

Correlators between operator such as nq , nI , 〈ψ̄ψ〉 and the phase factor can be
calculated in chiral perturbation theory.

For example in a small chemical potential and small temperature expansion we obtain

〈Re(nB) e2iθ〉1+1∗ − 〈Re(nB)〉1+1∗〈e2iθ〉1+1∗ = 0,

〈Im(nB) e2iθ〉1+1∗ − 〈Im(nB)〉1+1∗〈e2iθ〉1+1∗

〈Im(nB)e2iθ〉1+1∗
= 1.

Lombardo-Splittorff-JV-2010
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V. Ergodicity
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Ergodicity (Self-Averaging)

√

Ergodicity: Space-Time average of an observable is equal to the ensemble average.
√

QCD at nonzero chemical potential is maximally nonergodic: space-time averaging
gives the phase quenched result.

√

Master configurations do not exist for QCD at nonzero chemical potential.
√

One way out might be to complexify the fields so that cancellations can be achieved
by spatial averaging.

√

One method that may achieve this is the complex Langevin algorithm which has its
own issues. de Forcrand-2009

Not being self-averaging is a fundamental problem for QCD at µ 6= 0 .
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VI. Spectral Representations

Dirac Spectra

Alternative to Banks-Casher Relations
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Spectral Representations

Spectral representations of the Dirac operator have been extremely useful for
nonhermitean theories with a real determinant (see talk by Steve Sharpe).

c
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Scatter plot of Dirac eigenvalues

m

√

The critical point is when the quark
mass hits the cloud of eigenvalues.

√

For phase quenched QCD this is the
point when µ = mπ/2 .

√

For Wilson fermions this is the onset of
the Aoki phase.

√

For nonhermitean theories theories with a complex determinant, the support of the
Dirac spectrum does not depend on the complex phase of the determinant.

√

Exponential cancellations can wipe out the critical point and reveal a completely
different physical system. This is the case of QCD at nonzero baryon density.
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Alternative to the Banks-Casher Relation

x=−µ µ
                                        

m

x=

Σ
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(m)

m
x=−µ x=µ
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Based on the situation for QCD in 1d we consider the chiral condensate of a complex
eigenvalue density with support only on x± µ .

Σ(m) =

Z
dxdy

π

1

x+ iy −m

eV (x+iy)δ(x− µ) + e−V (x+iy)δ(x+ µ)

eV m + e−V m

| {z }

= tanh(Vm).

ρ(x, y)

In the thermodynamic limit (V → ∞) this results in a discontinuity across m = 0 , but
only after exponentially large cancellations. Osborn-Splittorff-JV-2005, Ravagli-JV-2008
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Conclusions and Outlook
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VII. Conclusions and Outlook

√

The physics of QCD at finite baryon density is obscured by both
the sign problem and the overlap problem.

Phase of the Fermion Determinant, CERN, July 2010 – p. 30/30



VII. Conclusions and Outlook

√

The physics of QCD at finite baryon density is obscured by both
the sign problem and the overlap problem.

√

The physics of the phase quenched partition function has to be
nullified before the physics of full QCD will be revealed.

Phase of the Fermion Determinant, CERN, July 2010 – p. 30/30



VII. Conclusions and Outlook

√

The physics of QCD at finite baryon density is obscured by both
the sign problem and the overlap problem.

√

The physics of the phase quenched partition function has to be
nullified before the physics of full QCD will be revealed.

√

QCD at µ 6= 0 is not selfaveraging.

Phase of the Fermion Determinant, CERN, July 2010 – p. 30/30



VII. Conclusions and Outlook

√

The physics of QCD at finite baryon density is obscured by both
the sign problem and the overlap problem.

√

The physics of the phase quenched partition function has to be
nullified before the physics of full QCD will be revealed.

√

QCD at µ 6= 0 is not selfaveraging.
√

The sign problem is a fundamental problem and substantial
progress requires a complete reformulation of QCD at nonzero
chemical potential.

Phase of the Fermion Determinant, CERN, July 2010 – p. 30/30



VII. Conclusions and Outlook

√

The physics of QCD at finite baryon density is obscured by both
the sign problem and the overlap problem.

√

The physics of the phase quenched partition function has to be
nullified before the physics of full QCD will be revealed.

√

QCD at µ 6= 0 is not selfaveraging.
√

The sign problem is a fundamental problem and substantial
progress requires a complete reformulation of QCD at nonzero
chemical potential.

√

Lattice QCD simulations are not feasible in the region of phase
space where interesting baryonic effects occur.

Phase of the Fermion Determinant, CERN, July 2010 – p. 30/30



VII. Conclusions and Outlook

√

The physics of QCD at finite baryon density is obscured by both
the sign problem and the overlap problem.

√

The physics of the phase quenched partition function has to be
nullified before the physics of full QCD will be revealed.

√

QCD at µ 6= 0 is not selfaveraging.
√

The sign problem is a fundamental problem and substantial
progress requires a complete reformulation of QCD at nonzero
chemical potential.

√

Lattice QCD simulations are not feasible in the region of phase
space where interesting baryonic effects occur.

√

As was emphasized in the talk by David Kaplan, rather than
studying QCD at µ 6= 0 , to make substantial progress we first
have to rethink the problem for much simpler model systems.
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