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Motivation and basic facts



Center symmetry of gluodynamics

e In pure gauge theory we can identify the deconfinement transition using
the Polyakov loop:

Local loop: L(x) = Tr HU4(X, t)
t
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e The Polyakov loop tests for center symmetry ( z € Zs3 ):
L(x) — zLkx) , P — zP.

e A non-vanishing expectation value (P) = (L(x)) # 0 signals that the
center symmetry is broken spontaneously.



Polyakov loop as function of temperature for SU(3) gauge theory
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Spontaneous breaking of center symmetry

e The spontaneous breaking of center symmetry may lead to any of the
three center sectors, as seen in scatter plots of P:
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Svetitsky- Yaffe conjecture

An influential idea for understanding the phase transition of pure gluodynam-
ics is the Svetistky-Yaffe conjecture (1981):

e At T, the critical behavior of SU(/V) gauge theory in d 4+ 1 dimensions
can be decribed by a d - dimensional spin system with a Zy - invariant
effective action. The spins are related to the local loops L(x).

e Leading term of the effective action (+ term for determinant):

L) = =73 [ LLE)" + Ly)Lx)" | - KJZ[ (x)*
(x.y)



Properties of spin systems in QCD?

e The critical behavior of spins systems is well understood.
e At T, a spin system describes the critical behavior of QCD.
e Can we identify characteristic properties of spin systems directly in QCD?

e Are these properties important only at 7, or is there a range of temper-
atures where they play a role?

e Here we focus on clusters with coherent spin values and their percolation
properties near T,.

e Previous studies for SU(2): S. Fortunato, H. Satz, ...

e First results for SU(3): C. Gattringer, Phys. Lett. B 690 (2010) 179
S. Borsanyi et al, arXiv:1007.5403



Clusters and percolation in spin systems

e For many spin systems clusters of coherent spins can be defined which
percolate at the temperature of the magnetic transition.

e These clusters do not simply bind parallel spins, but have a more com-
plicated structure (Fortuin-Kasteleyn clusters).

e For the example of the Ising model two parallel spins are linked only with
probability

prx = 1 — e

e As an alternative strategy the linking probability p has been considered
as a free parameter and properties of the corresponding clusters were
studied.



Local properties of the Polyakov loop



Setting of our analysis

e We study clusters and critical percolation directly in SU(2) and SU(3)
lattice gauge theory, and in full QCD with dynamical fermions.

e Technicalities:

— SU(2), SU(3): Liischer-Weisz gauge action with lattice sizes
203 x 6 ... 403 x 10 and temperatures T' € [0.63T., 1.32T.].

— Full QCD: 241 flavors of staggered fermions with lattice sizes
183 x 6, 36% x 6, 243 x 8 and temperatures from 110 - 320 MeV.

e We write the local loops L(x) as

L(x) = p(x) et



Histograms for the modulus of the local loops
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The values p(x) = | L(x) | are distributed according to Haar measure. The
distribution is insensitive to temperature, lattice spacing and quenching.



Histograms for the phase p(x) of the local loops
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Center sectors across the phase transition, SU(3) gauge theory

Abundance of lattice sites in center sectors
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Non-vanishing (P) is driven by increasing population in one of the sectors.



Cluster- and percolation properties of center domains



Center domains of the local Polyakov loop

e The behavior of the Polyakov loop P across the phase transition is driven

by the dynamics of the phases of the local loops L(x).

e We assign sector numbers -1, 0, +1 to the three sectors and study

properties of the corresponding clusters.

e We study the effect of a cut on the fluctuations.
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Cut leaves behavior of Polyakov loop essentially unchanged

Polyakov loop from only the points in the clusters
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Behavior of the largest cluster

Size of largest cluster normalized with the volume
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Aspects of the percolation phenomenon

e In 3 dimensions the critical occupation probability for site percolation
is p. = 0.3116.

e With a naive cluster definition we always encounter a percolating cluster.

e For suitably constructed clusters the deconfinement transition may
be characterized by the onset of percolation.



Percolation at T,

Percolation probability , cut =39 %
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Clusters below and above T,
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A geometrical picture for confinement and the deconfinement transition

T<T,
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Below T, two static sources (= local loops) have a
non-vanishing expectation value only if they fit
into the same cluster, such that the phases cancel.

A

When the clusters percolate
the sources can be put at
arbitrary distances.




Physical size and scaling of the clusters



Diameter of the clusters in physical units

e We consider 2-point functions C'(r) within the clusters and define a
diameter d through the exponential decay of C(r)

C(r) ~ exp(—2r/d)
e The average diameter of the clusters depends on the cut we impose.

e We adjust the cut such that at our lowest temperature, T' = 0.6371.,
the diameter is a fixed number in physical units, e.g., d = 0.5fm.

e The procedure is implemented on lattices [T
with different lattice constant @ and we | '
compare the flow of the cut.




Fraction of points available for clusters per sector at 0.631,
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In the continuum limit the number of available lattice points is above the
percolation threshold. Thus for the clusters a continuum limit seems possible.



Fraction of points available for clusters per sector for full QCD
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Cluster size in physical

units, SU(3) gauge theory
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Cluster size in physical units, SU(2) gauge theory
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Summary

e We study the role of center symmetry in the deconfinement transition by
analyzing local Polyakov loops.

e The phases of the local loops have preferred values near all center angles
0, +427/3.

e The phases form spatially localized clusters.

e For pure gauge theory one of the sectors starts to dominate at the phase
transition and the corresponding clusters show percolation.

e Our cluster definition allows for a continuum limit and we find universal
curves for the physical cluster diameter (pure gauge theory so far).



