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Motivation and basic facts



Center symmetry of gluodynamics

• In pure gauge theory we can identify the deconfinement transition using
the Polyakov loop:

Local loop: L(x) = Tr
∏
t

U4(x, t)

Averaged loop: P =
1

V

∑
x

L(x)

• The Polyakov loop tests for center symmetry ( z ∈ Z3 ):

L(x) −→ z L(x) , P −→ z P .

• A non-vanishing expectation value 〈P 〉 = 〈L(x)〉 6= 0 signals that the
center symmetry is broken spontaneously.



Polyakov loop as function of temperature for SU(3) gauge theory
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Spontaneous breaking of center symmetry

• The spontaneous breaking of center symmetry may lead to any of the
three center sectors, as seen in scatter plots of P :
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Svetitsky-Yaffe conjecture

An influential idea for understanding the phase transition of pure gluodynam-
ics is the Svetistky-Yaffe conjecture (1981):

• At Tc the critical behavior of SU(N) gauge theory in d + 1 dimensions
can be decribed by a d - dimensional spin system with a ZN - invariant
effective action. The spins are related to the local loops L(x).

• Leading term of the effective action (+ term for determinant):

S[L] = − τ
∑
〈x,y〉

[
L(x)L(y)? + L(y)L(x)?

]
− κ

∑
x

[
L(x) + L(x)?

]



Properties of spin systems in QCD?

• The critical behavior of spins systems is well understood.

• At Tc a spin system describes the critical behavior of QCD.

• Can we identify characteristic properties of spin systems directly in QCD?

• Are these properties important only at Tc, or is there a range of temper-
atures where they play a role?

• Here we focus on clusters with coherent spin values and their percolation
properties near Tc.

• Previous studies for SU(2): S. Fortunato, H. Satz, ...

• First results for SU(3): C. Gattringer, Phys. Lett. B 690 (2010) 179

S. Borsanyi et al, arXiv:1007.5403



Clusters and percolation in spin systems

• For many spin systems clusters of coherent spins can be defined which
percolate at the temperature of the magnetic transition.

• These clusters do not simply bind parallel spins, but have a more com-
plicated structure (Fortuin-Kasteleyn clusters).

• For the example of the Ising model two parallel spins are linked only with
probability

pFK = 1 − e−2β

• As an alternative strategy the linking probability p has been considered
as a free parameter and properties of the corresponding clusters were
studied.



Local properties of the Polyakov loop



Setting of our analysis

• We study clusters and critical percolation directly in SU(2) and SU(3)
lattice gauge theory, and in full QCD with dynamical fermions.

• Technicalities:

– SU(2), SU(3): Lüscher-Weisz gauge action with lattice sizes
203 × 6 ... 403 × 10 and temperatures T ∈ [ 0.63Tc , 1.32Tc ].

– Full QCD: 2+1 flavors of staggered fermions with lattice sizes
183 × 6, 363 × 6, 243 × 8 and temperatures from 110 - 320 MeV.

• We write the local loops L(x) as

L(x) = ρ(x) e iϕ(x)



Histograms for the modulus of the local loops
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The values ρ(x) ≡ | L(x) | are distributed according to Haar measure. The
distribution is insensitive to temperature, lattice spacing and quenching.



Histograms for the phase ϕ(x) of the local loops
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Haar measure distribution below Tc. Enhancement of one sector above Tc.



Center sectors across the phase transition, SU(3) gauge theory
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Non-vanishing 〈P 〉 is driven by increasing population in one of the sectors.



Cluster- and percolation properties of center domains



Center domains of the local Polyakov loop

• The behavior of the Polyakov loop P across the phase transition is driven
by the dynamics of the phases of the local loops L(x).

• We assign sector numbers -1, 0, +1 to the three sectors and study
properties of the corresponding clusters.

• We study the effect of a cut on the fluctuations.
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Cut leaves behavior of Polyakov loop essentially unchanged
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Behavior of the largest cluster
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Aspects of the percolation phenomenon

• In 3 dimensions the critical occupation probability for site percolation
is pc = 0.3116.

• With a naive cluster definition we always encounter a percolating cluster.

• For suitably constructed clusters the deconfinement transition may
be characterized by the onset of percolation.



Percolation at Tc
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Clusters below and above Tc
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A geometrical picture for confinement and the deconfinement transition

*< L(x) L(y) >  =  0

Below T  two static sources (= local loops) have a 

non−vanishing expectation value only if they fit 

into the same cluster, such that the phases cancel.

T < T c T > T c

< L(x) L(y) >  =  0

c

*

When the clusters percolate

the sources can be put at

arbitrary distances.
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Physical size and scaling of the clusters



Diameter of the clusters in physical units

• We consider 2-point functions C(r) within the clusters and define a
diameter d through the exponential decay of C(r)

C(r) ∼ exp(−2r/d)

• The average diameter of the clusters depends on the cut we impose.

• We adjust the cut such that at our lowest temperature, T = 0.63Tc,
the diameter is a fixed number in physical units, e.g., d = 0.5fm.

• The procedure is implemented on lattices
with different lattice constant a and we
compare the flow of the cut.
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Fraction of points available for clusters per sector at 0.63Tc
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In the continuum limit the number of available lattice points is above the
percolation threshold. Thus for the clusters a continuum limit seems possible.



Fraction of points available for clusters per sector for full QCD
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Cluster size in physical units, SU(3) gauge theory
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Cluster size in physical units, SU(2) gauge theory
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Summary

• We study the role of center symmetry in the deconfinement transition by
analyzing local Polyakov loops.

• The phases of the local loops have preferred values near all center angles
0, ± i2π/3.

• The phases form spatially localized clusters.

• For pure gauge theory one of the sectors starts to dominate at the phase
transition and the corresponding clusters show percolation.

• Our cluster definition allows for a continuum limit and we find universal
curves for the physical cluster diameter (pure gauge theory so far).


